
Embedded Intel486™ Processor
Hardware Reference Manual

The embedded Intel486™ processors may contain design defects known as errata which may
cause the products to deviate from published specifications. Currently characterized errata are
available on request.

Release Date: July 1997
Order Number: 273025-001

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or oth-
erwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to
sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications. Intel retains the right to make changes to specifications and product descriptions at any
time, without notice. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683
or visit Intel’s web site at http:\\www.intel.com

Copyright © INTEL CORPORATION, July 1997

*Third-party brands and names are the property of their respective owners.

CONTENTS
CHAPTER 1
GUIDE TO THIS MANUAL

1.1 MANUAL CONTENTS ... 1-1

1.2 NOTATIONAL CONVENTIONS... 1-3

1.3 SPECIAL TERMINOLOGY .. 1-4

1.4 ELECTRONIC SUPPORT SYSTEMS ... 1-5
1.4.1 FaxBack Service ..1-5
1.4.2 World Wide Web ..1-5

1.5 TECHNICAL SUPPORT .. 1-5

1.6 PRODUCT LITERATURE.. 1-6
1.6.1 Related Documents ...1-6

CHAPTER 2
INTRODUCTION

2.1 PROCESSOR FEATURES.. 2-2

2.2 Intel486™ PROCESSOR PRODUCT FAMILY.. 2-4
2.2.1 Operating Modes and Compatibility ...2-5
2.2.2 Memory Management ..2-5
2.2.3 On-chip Cache ...2-6
2.2.4 Floating-Point Unit ...2-6
2.2.5 Upgrade Power Down Mode..2-7

2.3 SYSTEM COMPONENTS ... 2-7

2.4 SYSTEM ARCHITECTURE ... 2-7
2.4.1 Single Processor System...2-8
2.4.2 Loosely Coupled Multi-Processor System ...2-9
2.4.3 External Cache ..2-10

2.5 SYSTEMS APPLICATIONS... 2-11
2.5.1 Embedded Personal Computers ..2-12
2.5.2 Embedded Controllers ...2-12
iii

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
CHAPTER 3
INTERNAL ARCHITECTURE

3.1 INSTRUCTION PIPELINING ... 3-6

3.2 BUS INTERFACE UNIT... 3-7
3.2.1 Data Transfers ...3-8
3.2.2 Write Buffers ..3-8
3.2.3 Locked Cycles..3-9
3.2.4 I/O Transfers ..3-9

3.3 CACHE UNIT... 3-10
3.3.1 Cache Structure ...3-10
3.3.2 Cache Updating ...3-12
3.3.3 Cache Replacement ..3-12
3.3.4 Cache Configuration ..3-12

3.4 INSTRUCTION PREFETCH UNIT... 3-13

3.5 INSTRUCTION DECODE UNIT... 3-14

3.6 CONTROL UNIT.. 3-14

3.7 INTEGER (DATAPATH) UNIT... 3-14

3.8 FLOATING-POINT UNIT ... 3-15
3.8.1 IntelDX2™ and IntelDX4™ Processor On-Chip Floating-Point Unit3-15

3.9 SEGMENTATION UNIT... 3-15

3.10 PAGING UNIT ... 3-16

CHAPTER 4
BUS OPERATION

4.1 DATA TRANSFER MECHANISM.. 4-1
4.1.1 Memory and I/O Spaces ..4-1

4.1.1.1 Memory and I/O Space Organization ..4-2
4.1.2 Dynamic Data Bus Sizing ..4-3
4.1.3 Interfacing with 8-, 16-, and 32-Bit Memories ..4-5
4.1.4 Dynamic Bus Sizing During Cache Line Fills ...4-9
4.1.5 Operand Alignment ..4-10

4.2 BUS ARBITRATION LOGIC .. 4-12

4.3 BUS FUNCTIONAL DESCRIPTION.. 4-15
4.3.1 Non-Cacheable Non-Burst Single Cycle ..4-16

4.3.1.1 No Wait States ..4-16
4.3.1.2 Inserting Wait States ...4-17

4.3.2 Multiple and Burst Cycle Bus Transfers ...4-17
4.3.2.1 Burst Cycles ..4-18
4.3.2.2 Terminating Multiple and Burst Cycle Transfers ...4-19
4.3.2.3 Non-Cacheable, Non-Burst, Multiple Cycle Transfers...4-19
4.3.2.4 Non-Cacheable Burst Cycles ..4-20

4.3.3 Cacheable Cycles ..4-21
4.3.3.1 Byte Enables during a Cache Line Fill ..4-22
iv

CONTENTS
4.3.3.2 Non-Burst Cacheable Cycles ..4-23
4.3.3.3 Burst Cacheable Cycles..4-24
4.3.3.4 Effect of Changing KEN# during a Cache Line Fill..4-25

4.3.4 Burst Mode Details...4-26
4.3.4.1 Adding Wait States to Burst Cycles ..4-26
4.3.4.2 Burst and Cache Line Fill Order..4-27
4.3.4.3 Interrupted Burst Cycles..4-28

4.3.5 8- and 16-Bit Cycles...4-29
4.3.6 Locked Cycles..4-31
4.3.7 Pseudo-Locked Cycles ..4-32

4.3.7.1 Floating-Point Read and Write Cycles ..4-33
4.3.8 Invalidate Cycles ..4-33

4.3.8.1 Rate of Invalidate Cycles ..4-35
4.3.8.2 Running Invalidate Cycles Concurrently with Line Fills.......................................4-35

4.3.9 Bus Hold ..4-38
4.3.10 Interrupt Acknowledge ...4-40
4.3.11 Special Bus Cycles ..4-41

4.3.11.1 HALT Indication Cycle...4-41
4.3.11.2 Shutdown Indication Cycle ..4-41
4.3.11.3 Stop Grant Indication Cycle ..4-41

4.3.12 Bus Cycle Restart ..4-43
4.3.13 Bus States..4-45
4.3.14 Floating-Point Error Handling for the IntelDX2™ and IntelDX4™ Processors.........4-46

4.3.14.1 Floating-Point Exceptions ...4-46
4.3.15 IntelDX2™ and IntelDX4™ Processors Floating-Point Error Handling

in AT-Compatible Systems...4-47

4.4 ENHANCED BUS MODE OPERATION (WRITE-BACK MODE)
FOR THE WRITE-BACK ENHANCED IntelDX4™ PROCESSOR4-50

4.4.1 Summary of Bus Differences ...4-50
4.4.2 Burst Cycles ...4-50

4.4.2.1 Non-Cacheable Burst Operation ...4-51
4.4.2.2 Burst Cycle Signal Protocol...4-51

4.4.3 Cache Consistency Cycles ..4-52
4.4.3.1 Snoop Collision with a Current Cache Line Operation ..4-54
4.4.3.2 Snoop under AHOLD ..4-54
4.4.3.3 Snoop During Replacement Write-Back..4-59
4.4.3.4 Snoop under BOFF# ...4-61
4.4.3.5 Snoop under HOLD...4-64
4.4.3.6 Snoop under HOLD during Replacement Write-Back ...4-66

4.4.4 Locked Cycles..4-67
4.4.4.1 Snoop/Lock Collision...4-68

4.4.5 Flush Operation ...4-69
4.4.6 Pseudo Locked Cycles ..4-70

4.4.6.1 Snoop under AHOLD during Pseudo-Locked Cycles..4-70
4.4.6.2 Snoop under Hold during Pseudo-Locked Cycles...4-71
4.4.6.3 Snoop under BOFF# Overlaying a Pseudo-Locked Cycle4-72
v

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
CHAPTER 5
MEMORY SUBSYSTEM DESIGN

5.1 INTRODUCTION ... 5-1

5.2 PROCESSOR AND CACHE FEATURE OVERVIEW.. 5-1
5.2.1 The Burst Cycle ...5-1
5.2.2 The KEN# Input ...5-2
5.2.3 Bus Characteristics ..5-4
5.2.4 Improving Write Cycle Latency ..5-5

5.2.4.1 Interleaving..5-5
5.2.4.2 Write Posting...5-5

5.2.5 Second-Level Cache..5-6

CHAPTER 6
CACHE SUBSYSTEM

6.1 INTRODUCTION ... 6-1

6.2 CACHE MEMORY ... 6-1
6.2.1 What is a Cache?...6-1
6.2.2 Why Add an External Cache?..6-2

6.3 CACHE TRADE-OFFS .. 6-2
6.3.1 Cache Size and Performance ..6-3
6.3.2 Associativity and Performance Issues ...6-5
6.3.3 Block/Line Size ..6-10
6.3.4 Replacement Policy ...6-11

6.4 UPDATING MAIN MEMORY ... 6-11
6.4.1 Write-Through and Buffered Write-Through Systems..6-12
6.4.2 Write-Back System ..6-13
6.4.3 Cache Consistency ..6-13

6.5 NON-CACHEABLE MEMORY LOCATIONS... 6-15

6.6 CACHE AND DMA OPERATIONS .. 6-16

6.7 CACHE FOR SINGLE VERSUS MULTIPLE PROCESSOR SYSTEMS 6-16
6.7.1 Cache in Single Processor Systems..6-16
6.7.2 Cache in Multiple Processor Systems..6-16

6.8 AN Intel486™ PROCESSOR SYSTEM EXAMPLE... 6-18
6.8.1 The Memory Hierarchy and Advantages of a Second-level Cache6-19
vi

CONTENTS
CHAPTER 7
PERIPHERAL SUBSYSTEM

7.1 PERIPHERAL/PROCESSOR BUS INTERFACE .. 7-1
7.1.1 Mapping Techniques..7-1
7.1.2 Dynamic Bus Sizing ...7-3
7.1.3 Address Decoding for I/O Devices ...7-5

7.1.3.1 Address Bus Interface ...7-6
7.1.3.2 8-Bit I/O Interface ..7-7
7.1.3.3 16-Bit I/O Interface ..7-10
7.1.3.4 32-Bit I/O Interface ..7-14

7.2 BASIC PERIPHERAL SUBSYSTEM ... 7-17
7.2.1 Bus Control and Ready Logic ..7-20
7.2.2 Bus Control Signal Description ..7-21

7.2.2.1 Processor Interface ...7-21
7.2.2.2 Wait State Generation Signals ..7-22

7.2.3 Wait State Generator Logic..7-22
7.2.4 Address Decoder ...7-23
7.2.5 Data Transceivers ..7-26
7.2.6 Recovery and Bus Contention ...7-26
7.2.7 Write Buffers and I/O Cycles..7-27

7.2.7.1 Write Buffers and Recovery Time ...7-27
7.2.8 Non-Cacheability of Memory-Mapped I/O Devices ..7-27
7.2.9 Intel486™ Processor On-Chip Cache Consistency ...7-28

7.3 I/O CYCLES... 7-29
7.3.1 Read Cycle Timing...7-29
7.3.2 Write Cycle Timings ...7-31

7.4 DIFFERENCE BETWEEN THE Intel486™ DX PROCESSOR FAMILY
AND Intel386™ PROCESSORS...7-33

7.5 INTERFACING TO x86 PERIPHERALS.. 7-34
7.5.1 Universal Peripheral Interface..7-34
7.5.2 82C59A Interface ...7-35

7.5.2.1 Single Interrupt Controller ...7-35
7.5.2.2 Cascaded Interrupt Controllers ...7-37
7.5.2.3 Handling More than 64 Interrupts..7-38

7.6 Intel486™ PROCESSOR LAN CONTROLLER INTERFACE...................................... 7-38
7.6.1 82596CA Coprocessor...7-38

7.6.1.1 Hardware Interface..7-41
7.6.1.2 Processor and Coprocessor Interaction ..7-44
7.6.1.3 Memory Structure..7-46
7.6.1.4 Media Access ..7-46
7.6.1.5 Transmit and Receive Operation ..7-47
7.6.1.6 Bus Throttle Timers ...7-47
7.6.1.7 Design Considerations ..7-48
7.6.1.8 82596 Co-processor Performance ..7-49
vii

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
7.6.2 82557 High Speed LAN Controller Interface..7-50
7.6.2.1 82557 Overview ..7-50
7.6.2.2 Features and Enhancements ..7-51
7.6.2.3 PCI Bus Interface ..7-52
7.6.2.4 82557 Bus Operations ..7-52
7.6.2.5 Initializing the 82557 ...7-52
7.6.2.6 Controlling the 82557 ..7-53

CHAPTER 8
SYSTEM BUS DESIGN

8.1 INTRODUCTION ... 8-1

8.2 SYSTEM BUS INTERFACE .. 8-1

8.3 EISA BUS: SYSTEM DESIGN EXAMPLE... 8-2
8.3.1 Introduction to the EISA Architecture ...8-2
8.3.2 An Example EISA Chip Set..8-3
8.3.3 EBC Host Bus Interface ...8-9

8.3.3.1 Clock, Control and Status Interface ..8-9
8.3.3.2 Host Local Memory and I/O Interface ...8-10
8.3.3.3 Host Bus Acquisition and Release ..8-10
8.3.3.4 Lock, Snoop, and Address Greater than 16 Mbytes ...8-10

8.3.4 EISA/ISA Bus Interface to the EBC ...8-11
8.3.4.1 EBC and EISA Bus Interface Signals..8-11
8.3.4.2 EBC and ISA Bus Interface Signals ..8-12

8.3.5 EBC and ISP Interface ...8-13
8.3.6 EBC and EBB Data and Address Buffer Controls..8-14

8.3.6.1 Functions of the ISP..8-16
8.3.6.2 ISP-to-Host Interface...8-17

8.3.7 ISP-to-EISA Interface...8-17

8.4 PCI BUS: SYSTEM DESIGN EXAMPLE... 8-19
8.4.1 Introduction to PCI Architecture ...8-19
8.4.2 Example PCI System Design ...8-19
8.4.3 Host CPU Interface ..8-24

8.4.3.1 Host Bus Slave Device..8-24
8.4.3.2 L1 Cache Support ...8-24
8.4.3.3 Control and Status Interface ...8-24
8.4.3.4 PCI Bus Cycles Support..8-26
8.4.3.5 Host to PCI Cycles ..8-27
8.4.3.6 Exclusive Cycles ...8-27
8.4.3.7 Status and Control Interface ...8-28

8.4.4 System Controller/ISA Bridge Link Interface..8-29
8.4.4.1 Status and Control Interface ...8-29

8.4.5 ISA Interface ..8-30
8.4.5.1 I/O Recovery Support..8-30
8.4.5.2 SYSCLK Generation ...8-30
8.4.5.3 Data Byte Swapping (ISA Master or DMA to ISA Device)...................................8-30
8.4.5.4 Wait-State Generation...8-31
viii

CONTENTS
8.4.5.5 Cycle Shortening ...8-31
8.4.5.6 Status and Control Interface ...8-32

8.4.6 DMA Controller ..8-33
8.4.6.1 DMA Status and Control Interface ..8-34

CHAPTER 9
PERFORMANCE CONSIDERATIONS

9.1 INTRODUCTION ... 9-1
9.1.1 Memory Performance Factors..9-1

9.2 INSTRUCTION EXECUTION PERFORMANCE ... 9-2
9.2.1 Intel486™ Processor Execution Times..9-2
9.2.2 Application Programs Used in Analysis ...9-4

9.3 INTERNAL CACHE PERFORMANCE ISSUES .. 9-4
9.3.1 On-Chip Cache Organization Issues..9-4
9.3.2 Performance Effects of the On-Chip Cache...9-5
9.3.3 Bus Cycle Mix with and without On-Chip Cache..9-6

9.4 ON-CHIP WRITE BUFFERS ... 9-7

9.5 EXTERNAL MEMORY CONSIDERATIONS ... 9-8
9.5.1 Introduction ..9-8
9.5.2 Wait States in Burst and Non-Burst Modes..9-9
9.5.3 Impact of Wait States on Performance ..9-10
9.5.4 Bus Utilization and Wait States ..9-10

9.6 SECOND-LEVEL CACHE PERFORMANCE CONSIDERATIONS 9-11
9.6.1 Advantages of a Second-Level Cache...9-11
9.6.2 An Example of a Second-Level Cache ..9-12
9.6.3 System Performance with a Second-Level Cache...9-12
9.6.4 Impact of Second-Level Cache on Bus Utilization ...9-13

9.7 DRAM DESIGN TECHNIQUES... 9-14

9.8 EXTENDED DATA OUTPUT RAM (EDO RAM).. 9-14
9.8.1 Interleaving ..9-14
9.8.2 Impact of Performance for Posted Write Cycles ..9-15

9.9 FLOATING-POINT PERFORMANCE.. 9-16
9.9.1 Floating-Point Execution Sequences ...9-16
9.9.2 Performance of the Floating-Point Unit ..9-17
ix

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
CHAPTER 10
PHYSICAL DESIGN AND SYSTEM DEBUGGING

10.1 GENERAL SYSTEM GUIDELINES ... 10-1

10.2 POWER DISSIPATION AND DISTRIBUTION... 10-1
10.2.1 Power and Ground Planes ...10-2

10.3 HIGH-FREQUENCY DESIGN CONSIDERATIONS .. 10-9
10.3.1 Transmission Line Effects ..10-9

10.3.1.1 Transmission Line Types ..10-10
10.3.1.2 Micro-Strip Lines ...10-10
10.3.1.3 Strip Lines ...10-11

10.3.2 Impedance Mismatch ...10-12
10.3.2.1 Impedance Matching...10-18
10.3.2.2 Daisy Chaining ..10-24
10.3.2.3 90-Degree Angles ...10-24
10.3.2.4 Vias (Feed-Through Connections) ..10-25

10.3.3 Interference..10-25
10.3.3.1 Electromagnetic Interference (EMI)...10-25
10.3.3.2 Minimizing Electromagnetic Interference ..10-26
10.3.3.3 Electrostatic Interference ..10-28

10.3.4 Propagation Delay ...10-29

10.4 LATCH-UP... 10-30

10.5 CLOCK CONSIDERATIONS ... 10-30
10.5.1 Requirements...10-31
10.5.2 Routing...10-31

10.6 THERMAL CHARACTERISTICS... 10-33

10.7 DERATING CURVE AND ITS EFFECTS .. 10-36

10.8 BUILDING AND DEBUGGING THE Intel486™ PROCESSOR-BASED SYSTEM.... 10-37
10.8.1 Debugging Features of the Intel486™ Processor..10-39
10.8.2 Breakpoint Instruction ..10-39
10.8.3 Single-Step Trap ..10-39
10.8.4 Debug Registers ..10-39
10.8.5 Debug Control Register (DR7)...10-42
10.8.6 Debugging Overview..10-43

INDEX
x

CONTENTS

FIGURES

Figure Page

2-1 A Typical Intel486™ Processor System ...2-8
2-2 Single-Processor System ...2-9
2-3 Loosely Coupled Multi-processor System ..2-10
2-4 External Cache...2-11
2-5 Embedded Personal Computer and Embedded Controller Example2-12
3-1 IntelDX2™ and IntelDX4™ Processors Block Diagram ...3-2
3-2 Intel486™ SX Processor Block Diagram..3-3
3-3 Ultra-Low Power Intel486™ SX and Ultra-Low Power Intel486 GX Processors

Block Diagram ..3-4
3-4 Internal Pipelining...3-7
3-5 Cache Organization..3-11
3-6 Segmentation and Paging Address Formats..3-16
3-7 Translation Lookaside Buffer..3-17
4-1 Physical Memory and I/O Spaces ..4-2
4-2 Physical Memory and I/O Space Organization...4-3
4-3 Intel486™ Processor with 32-Bit Memory ..4-5
4-4 Addressing 16- and 8-Bit Memories ...4-6
4-5 Logic to Generate A1, BHE# and BLE# for 16-Bit Buses...4-8
4-6 Data Bus Interface to 16- and 8-Bit Memories ...4-9
4-7 Single Master Intel486™ Processor System..4-12
4-8 Single Intel486™ Processor with DMA...4-13
4-9 Single Intel486™ Processor with Multiple Secondary Masters4-14
4-10 Basic 2-2 Bus Cycle ...4-16
4-11 Basic 3-3 Bus Cycle ...4-17
4-12 Non-Cacheable, Non-Burst, Multiple-Cycle Transfers..4-20
4-13 Non-Cacheable Burst Cycle ...4-21
4-14 Non-Burst, Cacheable Cycles ..4-23
4-15 Burst Cacheable Cycle ...4-24
4-16 Effect of Changing KEN# ...4-25
4-17 Slow Burst Cycle ..4-26
4-18 Burst Cycle Showing Order of Addresses ..4-27
4-19 Interrupted Burst Cycle...4-28
4-20 Interrupted Burst Cycle with Non-Obvious Order of Addresses4-29
4-21 8-Bit Bus Size Cycle ...4-30
4-22 Burst Write as a Result of BS8# or BS16#...4-31
4-23 Locked Bus Cycle...4-32
4-24 Pseudo Lock Timing ...4-33
4-25 Fast Internal Cache Invalidation Cycle ...4-34
4-26 Typical Internal Cache Invalidation Cycle...4-35
4-27 System with Second-Level Cache..4-36
4-28 Cache Invalidation Cycle Concurrent with Line Fill ..4-37
4-29 HOLD/HLDA Cycles ...4-38
4-30 HOLD Request Acknowledged during BOFF# ...4-39
4-31 Interrupt Acknowledge Cycles ..4-40
xi

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

FIGURES

Figure Page

4-32 Stop Grant Bus Cycle ...4-42
4-33 Restarted Read Cycle ..4-43
4-34 Restarted Write Cycle...4-44
4-35 Bus State Diagram ...4-45
4-36 DOS-Compatible Numerics Error Circuit ..4-49
4-37 Basic Burst Read Cycle..4-51
4-38 Snoop Cycle Invalidating a Modified Line...4-55
4-39 Snoop Cycle Overlaying a Line-Fill Cycle ..4-57
4-40 Snoop Cycle Overlaying a Non-Burst Cycle...4-58
4-41 Snoop to the Line that is Being Replaced ..4-60
4-42 Snoop under BOFF# during a Cache Line-Fill Cycle ...4-62
4-43 Snoop under BOFF# to the Line that is Being Replaced..4-63
4-44 Snoop under HOLD during Line Fill..4-65
4-45 Snoop using HOLD during a Non-Cacheable, Non-Burstable Code Prefetch............4-66
4-46 Locked Cycles (Back-to-Back) ...4-68
4-47 Snoop Cycle Overlaying a Locked Cycle ...4-69
4-48 Flush Cycle...4-70
4-49 Snoop under AHOLD Overlaying Pseudo-Locked Cycle ...4-71
4-50 Snoop under HOLD Overlaying Pseudo-Locked Cycle..4-72
4-51 Snoop under BOFF# Overlaying a Pseudo-Locked Cycle ...4-73
5-1 Typical Burst Cycle...5-3
5-2 Burst Cycle: KEN# Normally Active..5-4
5-3 Intel386™ Processor Bus Cycle Mix/Intel486™ Processor Bus Cycle Mix..................5-5
6-1 A Fully Associative Cache Organization...6-5
6-2 Direct Mapped Cache Organization ...6-7
6-3 Two-Way Set Associative Cache Organization ..6-8
6-4 Sector Buffer Cache Organization..6-9
6-5 The Cache Data Organization for the Intel486™ Processor’s On-Chip Cache..........6-10
6-6 Stale Data Problem in the Cache/Main Memory ..6-12
6-7 Bus Watching/Snooping for Shared Memory Systems...6-14
6-8 Hardware Transparency ...6-14
6-9 Non-Cacheable Share Memory ..6-15
6-10 Intel486™ Processor System Arbitration..6-17
6-11 A Typical Intel486™ Processor System ...6-18
6-12 Intel486™ Processor System Memory Hierarchy...6-19
7-1 Mapping Scheme ...7-2
7-2 Intel486™ Processor Interface to I/O Devices ...7-6
7-3 Logic to Generate A1, BHE# and BLE# for 16-Bit Buses...7-7
7-4 Intel486™ Processor Interface to 8-Bit Device...7-8
7-5 Bus Swapping 16-Bit Interface ...7-11
7-6 Bus Swapping and Low Address Bit Generating Control Logic..................................7-14
7-7 32-Bit I/O Interface ...7-15
7-8 System Block Diagram ...7-17
7-9 Basic I/O Interface Block Diagram..7-19
xii

CONTENTS

FIGURES

Figure Page

7-10 PLD Equations for Basic I/O Control Logic...7-23
7-11 I/O Address Example ...7-24
7-12 Internal Logic and Truth Table of 74S138 ..7-25
7-13 I/O Read Timing Analysis ...7-29
7-14 I/O Read Timings ...7-30
7-15 I/O Write Cycle Timings..7-31
7-16 I/O Write Cycle Timing Analysis ...7-32
7-17 Posted Write Circuit..7-32
7-18 Timing of a Posted Write ..7-33
7-19 Intel486™ Processor Interface to the 82C59A ...7-36
7-20 Cascaded Interrupt Controller ..7-37
7-21 82596CA Coprocessor Block Diagram...7-40
7-22 82596CA Application Example ...7-41
7-23 82596-to-Processor Interfacing ..7-44
7-24 82596 Shared Memory ...7-45
7-25 Bus Throttle Timers ..7-48
7-26 596RESET, CA, and PORT# Equations...7-49
7-27 Intel 82557 Block Diagram ...7-52
8-1 Intel486™ Processor System ...8-4
8-2 Block Diagram of EISA Bus Controller (EBC) ..8-6
8-3 Block Diagram of Integrated System Peripheral (ISP) ...8-8
8-4 EBB Byte Transfer..8-15
8-5 Example System Block Diagram ..8-20
8-6 System Controller Block Diagram...8-22
8-7 ISA Bridge Block Diagram ..8-23
8-8 Internal DMA Controller ..8-34
9-1 Cache Hit Rate for Various Programs ..9-6
9-2 Intel486™ Processor Bus Cycle Mix with On-Chip Cache...9-7
9-3 Effect of Wait States on Performance ..9-10
9-4 Effect of External Bus Utilization versus Wait States ...9-11
9-5 L2 Cache Performance Data with One Write Buffer...9-13
9-6 Performance in Interleaved and Non-Interleaved Systems..9-15
9-7 Performance in Systems with and without Posted Writes ..9-16
10-1 Reduction in Impedance...10-3
10-2 Typical Power and Ground Trace Layout for Double-Layer Boards...........................10-5
10-3 Decoupling Capacitors ...10-6
10-4 Circuit without Decoupling ..10-7
10-5 Decoupling Chip Capacitors ...10-8
10-6 Decoupling Leaded Capacitors ..10-9
10-7 Micro-Strip Lines ..10-11
10-8 Strip Lines ..10-12
10-9 Overshoot and Undershoot Effects ..10-13
10-10 Loaded Transmission Line ...10-13
10-11 Lattice Diagram ..10-16
xiii

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

FIGURES

Figure Page

10-12 Lattice Diagram Example ...10-17
10-13 Series Termination ...10-19
10-14 Parallel Termination ...10-19
10-15 Thevenin’s Equivalent Circuit ...10-20
10-16 AC Termination ..10-21
10-17 Active Termination..10-22
10-18 Impedance Mismatch Example ..10-23
10-19 Use of Series Termination to Avoid Impedance Mismatch.......................................10-24
10-20 “Daisy” Chaining ...10-24
10-21 Avoiding 90-Degree Angles..10-25
10-22 Typical Layout ..10-26
10-23 Removing Closed Loop Signal Paths ...10-28
10-24 Typical Clock Timings...10-31
10-25 Clock Routing ...10-32
10-26 Star Connection..10-32
10-27 Typical Heat Sinks..10-35
10-28 Heat Sink Dimensions ..10-36
10-29 Derating Curves for the Intel486™ Processor..10-37
10-30 Typical Intel486™ Processor-Based System ...10-38
10-31 Debug Registers...10-41
xiv

CONTENTS

TABLES

Table Page

2-1 Product Options..2-4
3-1 Intel486™ Processor Family Functional Units..3-1
3-2 Cache Configuration Options ...3-13
4-1 Byte Enables and Associated Data and Operand Bytes ..4-1
4-2 Generating A31–A0 from BE3#–BE0# and A31–A2 ..4-2
4-3 Next Byte Enable Values for BSx# Cycles ...4-4
4-4 Data Pins Read with Different Bus Sizes ...4-5
4-5 Generating A1, BHE# and BLE# for Addressing 16-Bit Devices..................................4-7
4-6 Generating A0, A1 and BHE# from the Intel486™ Processor Byte Enables..............4-10
4-7 Transfer Bus Cycles for Bytes, Words and Dwords ...4-11
4-8 Burst Order (Both Read and Write Bursts) ...4-27
4-9 Special Bus Cycle Encoding ..4-42
4-10 Bus State Description ...4-46
4-11 Snoop Cycles under AHOLD, BOFF#, or HOLD ..4-52
4-12 Various Scenarios of a Snoop Write-Back Cycle Colliding with

an On-Going Cache Fill or Replacement Cycle..4-54
5-1 Access Length of Typical CPU Functions ..5-2
5-2 Clock Latencies for DRAM Functions...5-6
6-1 Level-1 Cache Hit Rates ..6-3
7-1 Next Byte-Enable Values for the BSx# Cycles ...7-4
7-2 Valid Data Lines for Valid Byte Enable Combinations..7-5
7-3 PLD Input Signals...7-9
7-4 Equations ...7-9
7-5 32-Bit to 8-Bit Steering ...7-9
7-6 PLD Input Signals...7-12
7-7 PLD Output Signals ..7-12
7-8 Equation ...7-12
7-9 32-Bit to 16-Bit Bus Swapping Logic Truth Table...7-12
7-10 32-Bit to 32-Bit Bus Swapping Logic Truth Table...7-16
7-11 Bus Cycle Definitions ...7-21
7-12 82596 Signals...7-42
7-13 82596 Bus Bandwidth Utilization ..7-50
8-1 AENx Decode Table ...8-11
8-2 Supported PCI Bus Commands ...8-27
8-3 DMA Data Swap...8-31
8-4 16-bit Master to 8-bit Slave Data Swap..8-31
9-1 Typical Instruction Mix and Execution Times for the Intel486™ Processor..................9-3
9-2 Programs Used ..9-6
9-3 Floating-Point Instruction Execution ...9-17
10-1 Comparison of Various Termination Techniques ...10-22
10-2 LENi Fields ...10-42
xv

1
GUIDE TO THIS
MANUAL

Chapter Contents

1.1 Manual Contents ... 1-1

1.2 Text Conventions .. 1-3

1.3 Special Terminology ... 1-4

1.4 Electronic Support Systems .. 1-5

1.5 Technical Support ... 1-5

1.6 Product Literature ... 1-6

re
 pro-

 the re-
nology

l486
nts,
duct

 with

g bus
ting-

es of
r also
ycle

erfor-
 di-

rite-
 de-
CHAPTER 1
GUIDE TO THIS MANUAL

This manual describes the embedded Intel486™ processors. It is intended for use by hardwa
designers familiar with the principles of embedded microprocessors and with the Intel486
cessor architecture.

1.1 MANUAL CONTENTS

This manual contains 10 chapters and an index. This section summarizes the contents of
maining chapters. The remainder of this chapter describes conventions and special termi
used throughout the manual and provides references to related documentation.

Chapter 2:
“Introduction”

This chapter provides an overview of the current embedded Inte
processor family, including product features, system compone
system architecture, and applications. This chapter also lists pro
frequency, voltage and package offerings.

Chapter 3:
“Internal
Architecture”

This chapter describes the Intel486 processor internal architecture,
a description of the processor’s functional units.

Chapter 4:
“Bus Operation”

This chapter describes the features of the processor bus, includin
cycle handling, interrupt and reset signals, cache control, and floa
point error control.

Chapter 5:
“Memory Subsystem
Design”

This chapter designing a memory subsystem that supports featur
the Intel486 processor such as burst cycles and cache. This chapte
discusses using write-posting and interleaving to reduce bus c
latency.

Chapter 6:
“Cache Subsystem”

This chapter discusses cache theory and the impact of caches on p
mance. This chapter details different cache configurations, including
rect-mapped, set associative, and fully associative. In addition, w
back and write-through methods for updating main memory are
scribed.
1-1

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

 the
acing
pt

ions,

ance.
ving

esign
ding
ues.
Chapter 7:
“Peripheral
Subsystem”

This chapter describes the connection of peripheral devices to
Intel486 processor bus. Design techniques are discussed for interf
a variety of devices, including a LAN controller and an interru
controller.

Chapter 8:
“System Bus Design”

This chapter provides an overview of system bus design considerat
including implementing of the EISA and PCI system buses.

Chapter 9:
“Performance
Considerations”

This chapter focuses on the system parameters that affect perform
External (L2) caches are also examined as a means of impro
memory system performance.

Chapter 10:
“Physical Design and
System Debugging”

The higher clock speeds of Intel486 processor systems require d
guidelines. This chapter outlines basic design considerations, inclu
power and ground, thermal environment, and system debugging iss
1-2

GUIDE TO THIS MANUAL
1.2 TEXT CONVENTIONS

The following notations are used throughout this manual.

The pound symbol (#) appended to a signal name indicates that the signal
is active low.

Variables Variables are shown in italics. Variables must be replaced with correct
values.

New Terms New terms are shown in italics. See the Glossary for a brief definition of
commonly used terms.

Instructions Instruction mnemonics are shown in uppercase. When you are
programming, instructions are not case-sensitive. You may use either
upper- or lowercase.

Numbers Hexadecimal numbers are represented by a string of hexadecimal digits
followed by the character H. A zero prefix is added to numbers that begin
with A through F. (For example, FF is shown as 0FFH.) Decimal and
binary numbers are represented by their customary notations. (That is,
255 is a decimal number and 1111 1111 is a binary number. In some
cases, the letter B is added for clarity.)

Units of Measure The following abbreviations are used to represent units of measure:

A amps, amperes

Gbyte gigabytes

Kbyte kilobytes

KΩ kilo-ohms

mA milliamps, milliamperes

Mbyte megabytes

MHz megahertz

ms milliseconds

mW milliwatts

ns nanoseconds

pF picofarads

W watts

V volts

µA microamps, microamperes

µF microfarads

µs microseconds

µW microwatts
1-3

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

st-

ins a
For
FG.

are a
ame
ame
re
S
low
 and

the

w.

an

.
o

Register Bits When the text refers to more that one bit, the range of bits is represented
by the highest and lowest numbered bits, separated by a long dash
(example: A15–A8). The first bit shown (15 in the example) is the mo
significant bit and the second bit shown (8) is the least-significant bit.

Register Names Register names are shown in uppercase. If a register name conta
lowercase italic character, it represents more than one register.
example, PnCFG represents three registers: P1CFG, P2CFG, and P3C

Signal Names Signal names are shown in uppercase. When several signals sh
common name, an individual signal is represented by the signal n
followed by a number, while the group is represented by the signal n
followed by a variable (n). For example, the lower chip-select signals a
named CS0#, CS1#, CS2#, and so on; they are collectively called Cn#.
A pound symbol (#) appended to a signal name identifies an active-
signal. Port pins are represented by the port abbreviation, a period,
the pin number (e.g., P1.0, P1.1).

1.3 SPECIAL TERMINOLOGY

The following terms have special meanings in this manual.

Assert and Deassert The terms assert and deassert refer to the acts of making a signal
active and inactive, respectively. The active polarity (high/low) is
defined by the signal name. Active-low signals are designated by
pound symbol (#) suffix; active-high signals have no suffix. To
assert RD# is to drive it low; to assert HOLD is to drive it high; to
deassert RD# is to drive it high; to deassert HOLD is to drive it lo

DOS I/O Address Peripherals that are compatible with PC/AT system architecture c
be mapped into DOS (or PC/AT) addresses 0H–03FFH. In this
manual, the terms DOS address and PC/AT address are synonymous.

Expanded I/O Address All peripheral registers reside at I/O addresses 0F000H–0FFFFH
PC/AT-compatible integrated peripherals can also be mapped int
DOS (or PC/AT) address space (0H–03FFH).

PC/AT Address Integrated peripherals that are compatible with PC/AT system
architecture can be mapped into PC/AT (or DOS) addresses 0H–
03FFH. In this manual, the terms DOS address and PC/AT address
are synonymous.

Set and Clear The terms set and clear refer to the value of a bit or the act of giving
it a value. If a bit is set, its value is “1”; setting a bit gives it a “1”
value. If a bit is clear, its value is “0”; clearing a bit gives it a “0”
value.
1-4

GUIDE TO THIS MANUAL

ty of
 week,

ou can
cs, de-
ay, 7

h your
t a doc-

estions
r voice
ide the
1.4 ELECTRONIC SUPPORT SYSTEMS

Intel’s FaxBack* service provides up-to-date technical information. Intel also offers a varie
information on the World Wide Web. These systems are available 24 hours a day, 7 days a
providing technical information whenever you need it.

1.4.1 FaxBack Service

FaxBack is an on-demand publishing system that sends documents to your fax machine. Y
get product announcements, change notifications, product literature, device characteristi
sign recommendations, and quality and reliability information from FaxBack 24 hours a d
days a week.

1-800-525-3019 (US or Canada)

+44-1793-496646 (Europe)

+65-256-5350 (Singapore)

+852-2-844-4448 (Hong Kong)

+886-2-514-0815 (Taiwan)

+822-767-2594 (Korea)

+61-2-975-3922 (Australia)

1-503-264-6835 (Worldwide)

Think of the FaxBack service as a library of technical documents that you can access wit
phone. Just dial the telephone number and respond to the system prompts. After you selec
ument, the system sends a copy to your fax machine.

1.4.2 World Wide Web

Intel offers a variety of information through the World Wide Web (http://www.intel.com/).

1.5 TECHNICAL SUPPORT

In the U.S. and Canada, technical support representatives are available to answer your qu
between 5 a.m. and 5 p.m. PST. You can also fax your questions to us. (Please include you
telephone number and indicate whether you prefer a response by phone or by fax). Outs
U.S. and Canada, please contact your local distributor.

1-800-628-8686 U.S. and Canada

916-356-7599 U.S. and Canada

916-356-6100 (fax) U.S. and Canada
1-5

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
1.6 PRODUCT LITERATURE

You can order product literature from the following Intel literature centers.

1-800-548-4725 U.S. and Canada

708-296-9333 U.S. (from overseas)

44(0)1793-431155 Europe (U.K.)

44(0)1793-421333 Germany

44(0)1793-421777 France

81(0)120-47-88-32 Japan (fax only)

1.6.1 Related Documents

The following Intel documents contain additional information on designing systems that incor-
porate the Intel486 processors.

Intel Document Name Intel Order Number

Datasheets

Embedded Intel486™ SX Processor datasheet 272769-001

Embedded IntelDX2™ Processor datasheet 272770-001

Embedded Ultra-Low Power Intel486™ SX Processor datasheet 272731-001

Embedded Ultra Low-Power Intel486™ GX Processor datasheet 272755-001

Embedded Write-Back Enhanced IntelDX4™ Processor datasheet 272771-001

MultiProcessor Specification 242016-005

Manuals

Intel Architecture Software Developer's Manual, Volumes 1 and 2 243190-001
243191-001

Embedded Intel486™ Processor Family Developer’s Manual 273021.001

Ultra-Low Power Intel486™ SX Processor Evaluation Board Manual 272815-001

Intel486™ Processor Family Programmer’s Reference Manual 240486-003

Application Notes/Performance Briefs

AP-505–Picking Up the Pace: Designing the IntelDX4™ Processor into
Intel486™ Processor-Based Designs

242034-001

Intel486™ Microprocessor Performance Brief 241254-002

IntelDX4™ Processor Performance Brief 242446-001
1-6

GUIDE TO THIS MANUAL
You can obtain the following resources from the Word Wide Web at the sites listed.

Document Name Web Site

Standard 1149.1—1990, IEEE Standard Test Access Port and Boundary-
Scan Architecture and its supplement, Standard 1149.1a—1993

Contact the IEEE at
http://www.ieee.org.

PCI Local Bus Specification, Revisions 2.0 and 2.1 Contact the PCI Special
Interest Group at
http://www.pcisig.com
1-7

2
Introduction

Chapter Contents

2.1 Processor Features... 2-2

2.2 Intel486™ Processor Product Family2-4

2.3 System Components..2-7

2.4 System Architecture..2-7

2.5 Systems Applications..2-11

d sys-
NIX*
:

nd

g-

bit
data

bile
nviron-
 per-
l486
entiate
g fea-

ion and
own

ption.
ystem
mory
ystem,

emory,
CHAPTER 2
INTRODUCTION

The Intel486™ processor family enables a range of low-cost, high-performance embedde
tem designs capable of running the entire installed base of DOS*, Windows*, OS/2*, and U
applications written for the Intel architecture. This family includes the following processors

• The IntelDX4™ processor is the fastest Intel486 processor (up to 50% faster than an
IntelDX2™ processor). The IntelDX4 processor integrates a 16-Kbyte unified cache a
floating-point hardware on-chip for improved performance.

The IntelDX4 processor is also available with a write-back on-chip cache for improved
entry-level performance.

• The IntelDX2™ processor integrates an 8-Kbyte unified cache and floating-point
hardware on-chip.

The IntelDX4 and IntelDX2 processors use Intel’s speed-multiplying technology, allowing
the processor core to operate at frequencies higher than the external memory bus.

• The Intel486 SX processor offers the features of the IntelDX2 processor without floatin
point hardware and clock multiplying.

• The Ultra-Low Power Ultra-Low Power Intel486 SX and Ultra-Low Power
Intel486 GX processors provide additional power-saving features for use in battery-
operated and hand-held embedded designs. The Ultra-Low Power Intel486 SX processor,
like the other Intel486 processors, supports dynamic data bus sizing for 8-, 16-, or 32-
bus sizes, whereas the Ultra-Low Power Intel486 GX processor has a 16-bit external
bus.

The entire Intel486 processor family incorporates energy efficient “SL Technology” for mo
and fixed embedded computing. SL Technology enables system designs that exceed the E
mental Protection Agency’s (EPA) Energy Star program guidelines without compromising
formance. It also increases system design flexibility and improves battery life in all Inte
processor-based hand-held applications. SL Technology allows system designers to differ
their power management schemes with a variety of energy efficient, battery life enhancin
tures.

Intel486 processors provide power management features that are transparent to applicat
operating system software. Stop Clock, Auto HALT Power Down, and Auto Idle Power D
allow software-transparent control over processor power management.

Equally important is the capability of the processor to manage system power consum
Intel486 processor System Management Mode (SMM) incorporates a non-maskable S
Management Interrupt (SMI#), a corresponding Resume (RSM) instruction and a new me
space for system management code. Although transparent to any application or operating s
Intel's SMM ensures seamless power control of the processor core, system logic, main m
and one or more peripheral devices.
2-1

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

. All

ic
ht

,
ith

ed

ion

ch
g

 of
 write

ted
e bus

r
Intel486 processors are available in a full range of speeds (16 MHz to 100 MHz), packages (PGA,
SQFP, PQFP, TQFP), and voltages (5 V, 3.3 V, 3.0 V and 2.0 V) to meet many system design
requirements.

2.1 PROCESSOR FEATURES

All Intel486 processors consist of a 32-bit integer processing unit, an on-chip cache, and a mem-
ory management unit. These ensure full binary compatibility with the 8086, 8088, 80186, 80286,
Intel386™ SX, and Intel386 DX processors, and with all versions of Intel486 processors
Intel486 processors offer the following features:

• 32-bit RISC integer core — The Intel486 processor performs a complete set of arithmet
and logical operations on 8-, 16-, and 32-bit data types using a full-width ALU and eig
general purpose registers.

• Single Cycle Execution — Many instructions execute in a single clock cycle.

• Instruction Pipelining — The fetching, decoding, address translation, and execution of
instructions are overlapped within the Intel486 processor.

• On-Chip Floating-Point Unit — The IntelDX2 and Intel DX4 processors support the 32-
64-, and 80-bit formats specified in IEEE standard 754. The unit is binary compatible w
the 8087, Intel287, and Intel387 coprocessors, and with the Intel OverDrive® processor.

• On-Chip Cache with Cache Consistency Support — An 8-Kbyte (16-Kbyte on the IntelDX4
processor) internal cache is used for both data and instructions. Cache hits provide zero wait
state access times for data within the cache. Bus activity is tracked to detect alterations in
the memory represented by the internal cache. The internal cache can be invalidated or
flushed so that an external cache controller can maintain cache consistency.

• External Cache Control — Write-back and flush controls for an external cache are provid
so the processor can maintain cache consistency.

• On-Chip Memory Management Unit — Address management and memory space protect
mechanisms maintain the integrity of memory in a multi-tasking and virtual memory
environment. The memory management unit supports both segmentation and paging.

• Burst Cycles — Burst transfers allow a new doubleword to be read from memory on ea
bus clock cycle. This capability is especially useful for instruction prefetch and for fillin
the internal cache.

• Write Buffers — The processor contains four write buffers to enhance the performance
consecutive writes to memory. The processor can continue internal operations after a
to these buffers, without waiting for the write to be completed on the external bus.

• Bus Backoff — If another bus master needs control of the bus during a processor-initia
bus cycle, the Intel486 processor floats its bus signals, then restarts the cycle when th
becomes available again.

• Instruction Restart — Programs can continue execution following an exception that is
generated by an unsuccessful attempt to access memory. This feature is important fo
supporting demand-paged virtual memory applications.
2-2

INTRODUCTION

e
re not

a
t
letely

)

 two
state

r core
state.

ore,
 a very

cy

wn

-
or

the

ero
• Dynamic Bus Sizing — External controllers can dynamically alter the effective width of th
data bus. Bus widths of 8, 16, or 32 bits can be used (the 8-bit and 32-bit bus widths a
available on the Ultra-Low Power Intel486 GX processor).

• Boundary Scan (JTAG) — Boundary Scan provides in-circuit testing of components on
printed circuit boards. The Intel Boundary Scan implementation conforms with the IEEE
Standard Test Access Port and Boundary Scan Architecture.

SL Technology provides the following features:

• Intel System Management Mode — A unique Intel architecture operating mode provides
dedicated special purpose interrupt and address space that can be used to implemen
intelligent power management and other enhanced functions in a manner that is comp
transparent to the operating system and applications software.

• I/O Restart — An I/O instruction interrupted by a System Management Interrupt (SMI#
can automatically be restarted following the execution of the RSM instruction.

• Stop Clock — The Intel486 processor has a stop clock control mechanism that provides
low-power states: a “fast wake-up” Stop Grant state and a “slow wake-up” Stop Clock
with CLK frequency at 0 MHz.

• Auto HALT Power Down — After the execution of a HALT instruction, the Intel486
processor issues a normal Halt bus cycle and the clock input to the Intel486 processo
is automatically stopped, causing the processor to enter the Auto HALT Power Down

• Upgrade Power Down Mode — When an Intel486 processor upgrade is installed, the
Upgrade Power Down Mode detects the presence of the upgrade, powers down the c
and three-states all outputs of the original processor, so the Intel486 processor enters
low current mode.

• Auto Idle Power Down — This function allows the processor to reduce the core frequen
to the bus frequency when both the core and bus are idle. Auto Idle Power Down is
software-transparent and does not affect processor performance. Auto Idle Power Do
provides an average power savings of 10% and is only applicable to clock-multiplied
processors.

Enhanced Bus Mode Features (for the Write-Back Enhanced IntelDX4 processor only):

• Write Back Internal Cache — The Write-Back Enhanced IntelDX4 processor adds write
back support to the unified cache. The on-chip cache is configurable to be write-back
write-through on a line-by-line basis. The internal cache implements a modified MESI
protocol, which is most applicable to single processor systems.

• Enhanced Bus Mode — The definitions of some signals have been changed to support
new Enhanced Bus Mode (Write-Back Mode).

• Write Bursting — Data written from the processor to memory can be burst to provide z
wait state transfers.
2-3

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
2.2 Intel486™ PROCESSOR PRODUCT FAMILY

Table 2-1 shows the Intel486 processors available by clock mode, supply voltage, maximum fre-
quency, and package. An individual product has either a 5 V supply voltage or a 3.3 V supply
voltage, but not both. Likewise, an individual product may have 1x, 2x, or 3x clock. Please con-
tact Intel for the latest product availability and specifications.

Table 2-1. Product Options

Intel486™ Processor
 VCC Processor

Frequency (MHz) 168-
Pin

PGA

208-
Lead
SQFP

196-
Lead
PQFP

176-
Lead
TQFPVCCP 16 20 25 33 40 50 66 75 100

1x Clock

Intel486 SX
Processor

3.3 V ✓ ✓ ✓

5 V ✓ ✓ ✓ ✓

Ultra-Low Power
Intel486 SX
Processor

2.4-3.3 ✓ ✓

2.7-3.3 ✓ ✓

Ultra-Low Power
Intel486 GX
Processor

2.0-3.3 ✓ ✓

2.2-3.3 ✓ ✓

2.4-3.3 ✓ ✓

2.7-3.3 ✓ ✓

2x Clock

IntelDX2™ Processor
3.3 ✓ ✓

5 ✓ ✓ ✓

3x Clock

Write-Back Enhanced
IntelDX4™ Processor

3.3 ✓ ✓ ✓ ✓
2-4

INTRODUCTION

This
 32-bit
e

or.
 16
efixes
cted

es of
n
r
n be

anism

ith
ffers

sly
s.
2.2.1 Operating Modes and Compatibility

The Intel486 processor can run in modes that give it object-code compatibility with software writ-
ten for the 8086, 80286, and Intel386 processor families. The operating mode is set in software
as one of the following:

• Real Mode: When the processor is powered up or reset, it is initialized in Real Mode.
mode has the same base architecture as the 8086 processor but allows access to the
register set of the Intel486 processor. The address mechanism, maximum memory siz
(1 Mbyte), and interrupt handling are identical to the Real Mode of the 80286 process
Nearly all Intel486 processor instructions are available, but the default operand size is
bits; in order to use the 32-bit registers and addressing modes, override instruction pr
must be used. The primary purpose of Real Mode is to set up the processor for Prote
Mode operation.

• Protected Mode (also called Protected Virtual Address Mode): The complete capabiliti
the Intel486 processor become available when programs are run in Protected Mode. I
addition to segmentation protection, paging can be used in Protected Mode. The linea
address space is four gigabytes and virtual memory programs of up to 64 terabytes ca
run. All existing 8086, 80286, and Intel386 processor software can be run under the
Intel486 processor’s hardware-assisted protection mechanism. The addressing mech
is more sophisticated in Protected Mode than in Real Mode.

• Virtual 8086 Mode, a sub-mode of Protected Mode, allows 8086 programs to be run w
the segmentation and paging protection mechanisms of Protected Mode. This mode o
more flexibility than the Real Mode for running 8086 programs. Using this mode, the
Intel486 processor can execute 8086 operating systems and applications simultaneou
with an Intel486 operating system and both 80286 and Intel486 processor application

The hardware offers additional modes, which are described in greater detail in the Embedded
Intel486™ Processor Family Developer’s Manual.

2.2.2 Memory Management

The memory management unit supports both segmentation and paging. Segmentation provides
several independent, protected address spaces. This security feature limits the damage a program
error can cause. For example, a program’s stack space should be prevented from growing into its
code space. The segmentation unit maps the separate address spaces seen by programmers into
one unsegmented, linear address space.

Paging provides access to data structures larger than the available memory space by keeping them
partly in memory and partly on disk. Paging breaks the linear address space into units of 4 Kbytes
called pages. When a program makes its first reference to a page, the program can be stopped, the
new page copied from disk, and the program restarted. Programs tend to use only a few pages at
a time, so a processor with paging can simulate a large address space in RAM using a small
amount of RAM plus storage on a disk.
2-5

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
2.2.3 On-chip Cache

A software-transparent 8-Kbyte cache (16-Kbyte on the IntelDX4 processor) stores recently ac-
cessed information on the processor. Both instructions and data can be cached. If the processor
needs to read data that is available in the cache, the cache responds, thereby avoiding a time-con-
suming external memory cycle. This allows the processor to complete transfers faster and reduces
traffic on the processor bus.

The internal cache on all members of the Intel486 processor family uses a write-through protocol.
The IntelDX4 processor can also be configured to implement a write-back protocol. With a write-
through protocol, all writes to the cache are immediately written to the external memory that the
cache represents. With a write-back protocol, writes to the cache are stored for future memory
updating. To reduce the impact of writes on performance, the processor can buffer its write cy-
cles; an operation that writes data to memory can finish before the write cycle is actually per-
formed on the processor bus.

The processor performs a cache line fill to place new information into the on-chip cache. This
operation reads four doublewords into a cache line, the smallest unit of storage that can be allo-
cated in the cache. Most read cycles on the processor bus result from cache misses, which cause
cache line fills.

The Intel486 processor provides mechanisms to maintain cache consistency between memory
and cached data in multiple bus master environments. These mechanisms protect the Intel486
processor from reading invalid data from its own internal cache or from external caches. For ex-
ample, when the Intel486 processor attempts to read an operand from memory that is also held in
the cache of another bus master, the other bus master is forced to write its cached data back to
memory before the Intel486 processor can complete its read from memory. This is done because
the cached version of the data may have been updated, and so may now be different from the ver-
sion stored in memory.

Most memory systems optimize the speed of access on a read cycle. This is because the large ma-
jority of all memory accesses in a typical system are read accesses. The Intel486 processor’s in-
ternal cache changes this ratio. Most read requests result in cache hits, so most memory accesses
on the processor bus are write cycles. Memory optimization should be done with this in mind.

2.2.4 Floating-Point Unit

The internal floating-point unit performs floating-point operations on the 32-, 64- and 80-bit
arithmetic formats as specified in IEEE Standard 754. Like the integer processing unit, the float-
ing-point unit architecture is binary-compatible with the 8087 and 80287 coprocessors. The ar-
chitecture is 100% compatible with the Intel387 DX and Intel387 SX coprocessors.

Floating-point instructions execute fastest when they are entirely internal to the processor. This
occurs when all operands are in the internal registers or cache. When data needs to be read from
or written to external locations, burst transfers minimize the time required and a bus locking
mechanism ensures that the bus is not relinquished to other bus masters during the transfer. Bus
signals are provided to monitor errors in floating-point operations and to control the processor’s
response to such errors.
2-6

INTRODUCTION

r Down
ctive

mpo-
ort and
andard

f the
uction
s. The
 cache

dware
e, see
2.2.5 Upgrade Power Down Mode

Upgrade Power Down Mode on the Intel486 processor is initiated by the Intel OverDrive® pro-
cessor using the UP# (Upgrade Present) pin. Upon sensing the presence of the Intel OverDrive
Processor, the Intel486 processor three-states its outputs and enters the “Upgrade Powe
Mode,” lowering its power consumption. The UP# pin of the Intel486 processor is driven a
(low) by the UP# pin of the Intel OverDrive processor. (In the embedded Intel486 processor fam-
ily, the UP# pin has been renamed Reserved, with no changes in functionality.)

2.3 SYSTEM COMPONENTS

Intel offers several chips that are highly compatible with the Intel486 processor. These co
nents can be used to design high-performance embedded systems with a minimum of eff
cost. For components not directly connectable to the Intel486 processor bus, industry-st
interfaces can be used.

The Intel486 processor provides all integer and floating-point CPU functions plus many o
peripheral functions required in a typical computer system. It executes the complete instr
set of the Intel386 processor and Intel387 DX numerics coprocessor, with some extension
processor eliminates the need for an external memory management unit, and the on-chip
minimizes the need for external cache and associated control logic.

The remaining chapters of this manual detail the Intel486 processor’s architecture, har
functions, and interfacing. For more information on the architecture and software interfac
the Embedded Intel486™ Processor Family Developer’s Manual and the Intel Architecture Soft-
ware Developer’s Manual, Volumes 1 and 2.

2.4 SYSTEM ARCHITECTURE

The Intel486 processor can be the foundation for single-processor or multi-processor embedded
systems. A single-processor system might be an embedded personal computer designed to use the
Intel486 processor. A system design of this type offers higher performance through the integra-
tion of floating-point processing, memory management, and caching. More complex embedded
systems may use multiple processors that provide, at chip-level, the equivalent of board-level
functions. Designs of this type are typically used in multi-user machines, scientific workstations,
and engineering workstations.

A typical Intel486 design is shown in Figure 2-1. This example uses a single Intel486 processor
with external cache. Other examples of system design are illustrated in the figures that follow.
2-7

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 2-1. A Typical Intel486™ Processor System

2.4.1 Single Processor System

In single-processor systems, the processor handles all peripheral resources and intelligent devic-
es, and executes all software. The Intel486 processor does this in a more efficient way and for a
wider range of task complexity than earlier processors. Single-processor systems offer small size
and low cost in exchange for flexibility in upgrading or expanding the system. Typical applica-
tions include personal computers, small desktop workstations, and embedded controllers. Such
applications are implemented as a single board, usually called a motherboard; the processor bus
does not extend beyond the board occupied by the Intel486 processor.

Figure 2-2 shows an example of such a system. In a single-processor system, devices that share
the processor bus must be selected carefully. All components must interact directly with the pro-
cessor bus or have interface logic that allows them to do so. The total bus bandwidth requirements

Intel486™
Processor

External Cache
Optional

Bus
Processor

Bus
Controller

LAN
Coprocessor

Memory

Processor Bus

System Bus

External Bus
2-8

INTRODUCTION
of other components should be no more than 50% of the available processor-bus bandwidth. Traf-
fic above 50% degrades performance of the processor.

Figure 2-2. Single-Processor System

Two basic design approaches are used to elaborate the single-processor system into a more com-
plex system. The first approach is to add more devices to the processor bus. This can be done up
to the limit mentioned above: no more than 50% of the processor-bus bandwidth should be used
by devices other than the Intel486 processor. The second design approach is to add more buses
to the system. By adding buses, greater bus bandwidth is created in the system as a whole, which
in turn allows more devices to be added to the system. The two approaches go hand-in-hand to
expand the capabilities of a system. The sections below give only a few examples of the great
variety of designs that are possible with Intel486 processor-compatible devices.

2.4.2 Loosely Coupled Multi-Processor System

Loosely coupled multi-processor systems include board-level products that communicate with
one another through a standard system bus. In this architecture, each board contains a processor
and associated logic. There is typically only one processor per board. Components within each
board communicate on either a processor bus or on the buffered system bus. The system bus usu-
ally provides extra bandwidth beyond the processor bus.

A typical system is shown in Figure 2-3. Such system-bus boards typically occur in higher-end
personal computers and embedded systems that allow for modular expansion. A typical design
would include a coprocessor or LAN interface board in a personal computer, or a network-inter-
face board in a file server or gateway. Systems built from these boards can contain a mix of pro-
cessor types. Devices attached to the processor bus on a given board make demands that may
affect system performance. For example, a typical system may use up to 3% of the bus bandwidth
to handle 10-Mbit/second Ethernet traffic.

Intel486™
Processor

DMA
Controller

Peripheral
Controller

Memory

Processor Bus

Level-2
Cache
2-9

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 2-3. Loosely Coupled Multi-processor System

2.4.3 External Cache

External cache allows a system to achieve maximum performance. This cache is essential in
tightly coupled multi-processor embedded systems. The external cache consists of cache memory
(usually fast SRAM) and cache control logic.

External cache systems typically provide access to the cache from both the processor and the sys-
tem buses. This is shown in Figure 2-4. These caches typically monitor processor memory ac-
cesses, processor access time, and consistency between cache and memory. The cache controller
is responsible for maintaining an optimal mix of data and instructions in cache.

Intel486™
Processor Memory

Processor Bus

I/O

Bus
Controller

System Bus

Intel486™
Processor I/O

Processor Bus

Memory

Bus
Controller
2-10

INTRODUCTION

g sec-
uld use
Sys-
Figure 2-4. External Cache

2.5 SYSTEMS APPLICATIONS

Most Intel486 processor systems can be grouped as one of these types:

• Embedded Personal Computer

• Embedded Controller

Each type of system has distinct design goals and constraints, as described in the followin
tions. Software running on the processor, even in stand-alone embedded applications, sho
a standard operating system such as DOS*, Windows 95*, Windows NT*, OS/2*, or UNIX
tem V/386*, to facilitate debugging, documentation, and transportability.

External

Cache

Controller

 A5131-01

Processor Bus

System Bus

i486™

Processor

DRAM

Controller

SRAM

DRAM

Array

Intel486™
Processor
2-11

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
2.5.1 Embedded Personal Computers

In single-processor embedded systems, the processor interacts directly with I/O devices and
DRAM memory. Other bus masters such as a LAN coprocessor typically reside on the system
bus; conventional personal computer architecture puts most peripherals on separate plug-in
boards. Expansion is typically limited to memory boards and I/O boards. A standard I/O archi-
tecture such as MCA or EISA is used. System cost and size are very important. Figure 2-5 shows
an example of an embedded personal computer or an embedded controller application.

Figure 2-5. Embedded Personal Computer and Embedded Controller Example

External cache is optional in such environments, particularly if system performance is not a crit-
ical parameter. Where an external cache is used, memory-access speeds improve only if the cache
is designed as a write-back system and memory access has zero to one wait states.

2.5.2 Embedded Controllers

Most embedded controllers perform real-time tasks. The performance of the Intel486 processor
and its compatibility with the extensive installed base of Intel386 processors are important factors
in its choice. Embedded controllers are usually implemented as stand-alone systems, with less ex-

Intel486™
Processor

Bus

Processor Bus

System Bus

Optional Local
MemoryLevel-2 Cache

Local
Peripheral
Controller

Controller

Other
Peripheral

“Slow”
Memory
2-12

INTRODUCTION
pansion capability than other applications because they are tailored specifically to a single envi-
ronment.

If code must be stored in EPROM, ROM, or Flash for non-volatility, but performance is also a
critical issue, then the code should be copied into RAM provided specifically for this purpose.
Frequently used routines and variables, such as interrupt handlers and interrupt stacks, can be
locked in the processor’s internal cache so they are always available quickly.

Embedded controllers usually require less memory than other applications, and control programs
are usually tightly written machine-level routines that need optimal performance in a limited va-
riety of tasks. The processor typically interacts directly with I/O devices and DRAM memory.
Other peripherals connect to the system bus.
2-13

3
Internal Architecture

Chapter Contents

3.1 Instruction Pipelining .. 3-6

3.2 Bus Interface Unit ... 3-7

3.3 Cache Unit...3-10

3.4 Instruction Prefetch unit ..3-13

3.5 Instruction Decode Unit ..3-14

3.6 Control Unit ..3-14

3.7 Integer (Datapath) Unit ...3-14

3.8 Floating-Point Unit ...3-15

3.9 Segmentation Unit...3-15

3.10 Paging Unit ...3-16

nt and

mory
 and

us size

add a
, the
wer

t the
r.

ors.
CHAPTER 3
INTERNAL ARCHITECTURE

The Intel486™ SX processor has a 32-bit architecture with on-chip memory manageme
level-1 cache.

The IntelDX2™ and IntelDX4™ processors also have a 32-bit architecture with on-chip me
management and cache, but add clock multiplier and floating-point units. The Intel486 SX
Intel486 DX processors support dynamic bus sizing for the external data bus; that is, the b
can be specified as 8-, 16-, or 32-bits wide.

Internally, the ultra-low power processors are similar to the Intel486 SX processor, but
clock control unit. Although the Ultra-Low Power Intel486 SX supports dynamic bus sizing
Ultra-Low Power Intel486 GX supports only a 16-bit external data bus. The Ultra-Low Po
Intel486 GX also has advanced power management features.

Table 3-1 lists the functional units of the embedded Intel486 processors.

Figure 3-1 is a block diagram of the embedded IntelDX2 and IntelDX4 processors. Note tha
cache unit is 8-Kbytes for the IntelDX2 processor and 16 Kbytes for the IntelDX4 processo

Figure 3-2 is a block diagram of the embedded Intel486 SX processor and Figure 3-3 is a block
diagram of the Ultra-Low Power Intel486 SX and the Ultra-Low Power Intel486 GX process

Table 3-1. Intel486™ Processor Family Functional Units

Functional Unit IntelDX2™ and
IntelDX4™ Processors

Intel486™ SX
Processor

Ultra-Low Power
Intel486 SX and
Ultra-Low Power

Intel486 GX Processors

Bus Interface ✓ ✓ ✓

Cache (L1) ✓ ✓ ✓

Instruction Prefetch ✓ ✓ ✓

Instruction Decode ✓ ✓ ✓

Control ✓ ✓ ✓

Integer and Datapath ✓ ✓ ✓

Segmentation ✓ ✓ ✓

Paging ✓ ✓ ✓

Floating-Point ✓

Clock Multiplier ✓

Clock Control ✓
3-1

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 3-1. IntelDX2™ and IntelDX4™ Processors Block Diagram

Paging

Unit

Prefetcher

32-Byte Code

Queue

2x16 Bytes

Code

Stream

Floating

Point Unit

Barrel

Shifter

24

Cache Unit

Burst Bus

Control

Bus Control

Write Buffers

4 x 32

64-Bit Interunit Transfer Bus

Register

File

ALU

Segmentation

Unit

Descriptor

Registers

Limit and

Attribute PLA

32

Base/

Index

Bus

Translation

Lookaside

Buffer

20

8 Kbyte Cache

(DX2)

16 Kbyte Cache

(DX4)

Clock

Multiplier

Floating

Point

Register File

Control &

Protection

Test Unit

Control

ROM

Address

Drivers

CLK
Core

Clock

32

32

Data Bus

Transceivers32

Request

Sequencer

Bus Size

Control

Cache

Control

Parity

Generation

and Control

Boundary

Scan

Control

Bus Interface

D31-D0

A31-A2

BE3#- BE0#

ADS# W/R# D/C# M/IO#

PCD PWT RDY# LOCK#

PLOCK# BOFF# A20M#

BREQ HOLD HLDA

RESET SRESET INTR

NMI SMI# SMIACT#

FERR# IGNNE#

STPCLK#

A5439-01

BRDY# BLAST#

BS16# BS8#

KEN# FLUSH#

AHOLD EADS#

DP3-DP0 PCHK#

TCK TMS

TDI TD0

12
8

Instruction

Decode

32

Decoded

Instruction

Path

PCD

PWT

2

Physical

Address

32-Bit Data Bus

32-Bit Data Bus

Linear Address

Micro-

Instruction

Displacement Bus

32
3-2

INTERNAL ARCHITECTURE
Figure 3-2. Intel486™ SX Processor Block Diagram

Paging

Unit

Prefetcher

32-Byte Code

Queue

2x16 Bytes

Code

Stream

Barrel

Shifter

24

Cache Unit

Burst Bus

Control

Bus Control

Write Buffers

4 x 32

64-Bit Interunit Transfer Bus

Register

File

ALU

Segmentation

Unit

Descriptor

Registers

Limit and

Attribute PLA

32

Base/

Index

Bus

Translation

Lookaside

Buffer

20

8 Kbyte

Cache

Control &

Protection

Test Unit

Control

ROM

Address

Drivers

32

32

Data Bus

Transceivers32

Request

Sequencer

Bus Size

Control

Cache

Control

Parity

Generation

and Control

Boundary

Scan

Control

Bus Interface

D31-D0

A31-A2

BE3#- BE0#

ADS# W/R# D/C# M/IO#

PCD PWT RDY# LOCK#

PLOCK# BOFF# A20M#

BREQ HOLD HLDA

RESET SRESET INTR

NMI SMI# SMIACT#

FERR# IGNNE#

STPCLK#

A5443-01

BRDY# BLAST#

BS16# BS8#

KEN# FLUSH#

AHOLD EADS#

DP3-DP0 PCHK#

TCK TMS

TDI TD0

12
8

Instruction

Decode

32

Decoded

Instruction

Path

PCD

PWT

2

Physical

Address

32-Bit Data Bus

32-Bit Data Bus

Linear Address

Micro-

Instruction

Displacement Bus

32
3-3

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 3-3. Ultra-Low Power Intel486™ SX and Ultra-Low Power Intel486 GX Processors
Block Diagram

Signals from the external 32-bit processor bus reach the internal units through the bus interface
unit. On the internal side, the bus interface unit and cache unit pass addresses bi-directionally
through a 32-bit bus. Data is passed from the cache to the bus interface unit on a 32-bit data bus.
The closely coupled cache and instruction prefetch units simultaneously receive instruction
prefetches from the bus interface unit over a shared 32-bit data bus, which the cache also uses to
receive operands and other types of data. Instructions in the cache are accessible to the instruction
prefetch unit, which contains a 32-byte queue of instructions waiting to be executed.

The on-chip cache is 16 Kbytes for the IntelDX4 processor and 8 Kbytes for all other members
of the Intel486 processor family. It is 4-way set associative and follows a write-through policy.
The Write-Back Enhanced IntelDX4 processor can be set to use an on-chip write-back cache pol-

Paging

Unit

Prefetcher

32-Byte Code

Queue

2x16 Bytes

Code

Stream

Barrel

Shifter

24

Cache Unit

Burst Bus

Control

Bus Control

Write Buffers

4 x 32

64-Bit Interunit Transfer Bus

Register

File

ALU

Segmentation

Unit

Descriptor

Registers

Limit and

Attribute PLA

32

Base/

Index

Bus

Translation

Lookaside

Buffer

20

8 Kbyte

Cache

Clock

Control

Control &

Protection

Test Unit

Control

ROM

Address

Drivers

CLK
Core

Clock

32

32

Data Bus

Transceivers32

Request

Sequencer

Bus Size

Control (on

ULP486 SX

only)

Cache

Control

Parity

Generation

and Control

Boundary

Scan

Control

Bus Interface

D31-D0 on ULP486™ SX

D15-D0 on ULP486™ GX

A31-A2

BE3#- BE0#

ADS# W/R# D/C# M/IO#

PCD PWT RDY# LOCK#

PLOCK# BOFF# A20M#

BREQ HOLD HLDA

RESET SRESET INTR

NMI SMI# SMIACT#

FERR# IGNNE#

STPCLK#

A5440-01

BRDY# BLAST#

BS16# BS8# (not present

on ULP486 GX)

KEN# FLUSH#

AHOLD EADS#

DP3-DP0 PCHK# on

ULP486 SX

DP1-DP0 PCHK# on

ULP486 GX

TCK TMS

TDI TD0

12
8

Instruction

Decode

32

Decoded

Instruction

Path

PCD

PWT

2

Physical

Address

32-Bit Data Bus

32-Bit Data Bus

Linear Address

Micro-

Instruction

Displacement Bus

32
3-4

INTERNAL ARCHITECTURE

ion set
emory
ous
n.

bytes
, type
sor can
task has

tions
design
icy. The on-chip cache includes features to provide flexibility in external memory system design.
Individual pages can be designated as cacheable or non-cacheable by software or hardware. The
cache can also be enabled and disabled by software or hardware.

Internal cache memory allows frequently used data and code to be stored on-chip, reducing ac-
cesses to the external bus. RISC design techniques reduce instruction cycle times. A burst bus
feature enables fast cache fills.

When internal requests for data or instructions can be satisfied from the cache, time-consuming
cycles on the external processor bus are avoided. The bus interface unit is only involved when an
operation needs access to the processor bus. Many internal operations are therefore transparent
to the external system.

The instruction decode unit translates instructions into low-level control signals and microcode
entry points. The control unit executes microcode and controls the integer, floating-point, and
segmentation units. Computation results are placed in internal registers within the integer or
floating-point units, or in the cache. Internal storage locations (datapaths) are kept in the integer
unit.

The cache shares two 32-bit data buses with the segmentation, integer, and floating-point units.
These two buses can be used together as a 64-bit inter-unit transfer bus. When 64-bit segment
descriptors are passed from the cache to the segmentation unit, 32 bits are passed directly over
one data bus and the other 32 bits are passed through the integer unit, so that all 64 bits reach the
segmentation unit simultaneously.

The memory management unit (MMU) consists of a segmentation unit and a paging unit which
perform address generation. The segmentation unit translates logical addresses and passes them
to the paging and cache units on a 32-bit linear address bus. Segmentation allows management
of the logical address space by providing easy relocation of data and code and efficient sharing
of global resources.

The paging mechanism operates beneath segmentation and is transparent to the segmentation
process. The paging unit translates linear addresses into physical addresses, which are passed to
the cache on a 20-bit bus. Paging is optional and can be disabled by system software. To imple-
ment a virtual memory system, the Intel486 processor supports full restartability for all page and
segment faults.

The Intel486 processor instruction set includes the complete Intel386™ processor instruct
along with extensions to serve new applications and increase performance. The on-chip m
MMU is completely compatible with the Intel386 processor MMU. Software written for previ
members of the Intel architecture family runs on the Intel486 processor without modificatio

Memory is organized into one or more variable length segments, each up to four G
(232 bytes). A segment can have attributes associated with it that include its location, size
(i.e., stack, code, or data), and protection characteristics. Each task on an Intel486 proces
have a maximum of 16,381 segments and each are up to four Gbytes in size. Thus, each
a maximum of 64 terabytes (trillion bytes) of virtual memory.

The segmentation unit provides four levels of protection for isolating and protecting applica
and the operating system from each other. The hardware-enforced protection allows the
of systems with a high degree of software integrity.
3-5

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
The Intel486 processor has four modes of operation: Real Address Mode (Real Mode), Protected
Mode, Virtual Mode (within Protected Mode), and System Management Mode (SMM). In Real
Mode the Intel486 processor operates as a very fast 8086. Real Mode is required primarily to set
up the Intel486 processor for Protected Mode operation.

Protected Mode provides access to the sophisticated memory management paging and privilege
capabilities of the processor. Within Protected Mode, software can perform a task switch to enter
into tasks designated as Virtual 8086 Mode tasks. Each Virtual 8086 task behaves with 8086 se-
mantics, allowing 8086 processor software (an application program or an entire operating sys-
tem) to execute.

System Management Mode (SMM) provides system designers with a means of adding new soft-
ware-controlled features to their computer products that always operate transparently to the op-
erating system (OS) and software applications. SMM is intended for use only by system
firmware, not by applications software or general purpose systems software.

The Intel486 processor also has features that facilitate high-performance hardware designs. The
1X bus clock input eases high-frequency board-level designs. The clock multiplier on IntelDX2
and IntelDX4 processors improves execution performance without increasing board design com-
plexity. The clock multiplier enhances all operations operating out of the cache that are not
blocked by external bus accesses. The burst bus feature enables fast cache fills.

3.1 INSTRUCTION PIPELINING

Not every instruction involves all internal units. When an instruction needs the participation of
several units, each unit operates in parallel with others on instructions at different stages of exe-
cution. Although each instruction is processed sequentially, several instructions are at varying
stages of execution in the processor at any given time. This is called instruction pipelining. In-
struction prefetch, instruction decode, microcode execution, integer operations, floating-point
operations, segmentation, paging, cache management, and bus interface operations are all per-
formed simultaneously. Figure 3-4 shows some of this parallelism for a single instruction: the in-
struction fetch, two-stage decode, execution, and register write-back of the execution result. Each
stage in this pipeline can occur in one clock cycle.
3-6

INTERNAL ARCHITECTURE
Figure 3-4. Internal Pipelining

The internal pipelining on the Intel486 processor offers an important performance advantage over
many single-clock RISC processors: in the Intel486 processor, data can be loaded from the cache
with one instruction and used by the next instruction in the next clock. This performance advan-
tage results from the stage-1 decode step, which initiates memory accesses before the execution
cycle. Because most compilers and application programs follow load instructions with instruc-
tions that operate on the loaded data, this method optimizes the execution of existing binary code.

The method has a performance trade-off: an instruction sequence that changes register contents
and then uses that register in the next instruction to access memory takes three clocks rather than
two. This trade-off is only a minor disadvantage, however, since most instructions that access
memory use the stable contents of the stack pointer or frame pointer, and the additional clock is
not used very often. Compilers often place an unrelated instruction between one that changes an
addressing register and one that uses the register. Such code is compatible with the Intel386 pro-
cessor, and the Intel486 processor provides special stack increment/decrement hardware and an
extra register port to execute back-to-back stack push/pop instructions in a single clock.

3.2 BUS INTERFACE UNIT

The bus interface unit prioritizes and coordinates data transfers, instruction prefetches, and con-
trol functions between the processor’s internal units and the outside system. Internally, the bus
interface unit communicates with the cache and the instruction prefetch units through three 32-
bit buses, as shown in Figure 3-1. Externally, the bus interface unit provides the processor bus
signals, described in Chapter 3. Except for cycle definition signals, all external bus cycles, mem-
ory reads, instruction prefetches, cache line fills, etc., look like conventional microprocessor cy-
cles to external hardware, with all cycles having the same bus timing.

 A5140-01

CLK

Instruction

Fetch

Stage-1

Decode

Stage-2

Decode

Execution

Register

Write-back
3-7

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

e

 the
rise

ide.
 on a

or

re
us
king,

output

nd

uts
 unit.
e.

nds, in-
n cache
ites the
passed

s and
it may

rs to
es are
mory
The bus interface unit contains the following architectural features:

• Address Transceivers and Drivers — The A31–A2 address signals are driven on the
processor bus, together with their corresponding byte-enable signals, BE3#–BE0#. Th
high-order 28 address signals are bidirectional, allowing external logic to drive cache
invalidation addresses into the processor.

• Data Bus Transceivers — The D31–D0 data signals are driven onto and received from
processor bus (for the Ultra-Low Power Intel486 GX processor, signals D15–D0 comp
the data bus transceivers).

• Bus Size Control — Three sizes of external data bus can be used: 32, 16, and 8 bits w
Two inputs from external logic specify the width to be used. Bus size can be changed
cycle-by-cycle basis. The Ultra-Low Power Intel486 GX does not support dynamic bus
sizing; its external data bus is 16 bits wide.

• Write Buffering — Up to four write requests can be buffered, allowing many internal
operations to continue without waiting for write cycles to be completed on the process
bus.

• Bus Cycles and Bus Control — A large selection of bus cycles and control functions a
supported, including burst transfers, non-burst transfers (single- and multiple-cycle), b
arbitration (bus request, bus hold, bus hold acknowledge, bus locking, bus pseudo-loc
and bus backoff), floating-point error signalling, interrupts, and reset. Two software-
controlled outputs enable page caching on a cycle-by-cycle basis. One input and one
are provided for controlling burst read transfers.

• Parity Generation and Control — Even parity is generated on writes to the processor a
checked on reads. An error signal indicates a read parity error.

• Cache Control — Cache control and consistency operations are supported. Three inp
allow the external system to control the consistency of data stored in the internal cache
Two special bus cycles allow the processor to control the consistency of external cach

3.2.1 Data Transfers

To support the cache, the bus interface unit reads 16-byte cacheable transfers of opera
structions, and other data on the processor bus and passes them to the cache unit. Whe
contents are updated from an internal source, such as a register, the bus interface unit wr
updated cache information to the external system. Non-cacheable read transfers are
through the cache to the integer or floating-point units.

During instruction prefetch, the bus interface unit reads instructions on the processor bu
passes them to both the instruction prefetch unit and the cache. The instruction prefetch un
then obtain its inputs directly from the cache.

3.2.2 Write Buffers

The bus interface unit has temporary storage for buffering up to four 32-bit write transfe
memory. Addresses, data, or control information can be buffered. Single I/O-mapped writ
not buffered, although multiple I/O writes may be buffered. The buffers can accept me
3-8

INTERNAL ARCHITECTURE

ory.
eading
writes as fast as one per clock. Once a write request is buffered, the internal unit that generated
the request is free to continue processing. If no higher-priority request is pending and the bus is
free, the transfer is propagated as an immediate write cycle to the processor bus. When all four
write buffers are full, any subsequent write transfer stalls inside the processor until a write buffer
becomes available.

The bus interface unit can re-order pending reads in front of buffered writes. This is done because
pending reads can prevent an internal unit from continuing, whereas buffered writes need not
have a detrimental effect on processing speed.

Writes are propagated to the processor bus in the first-in-first-out order in which they are received
from the internal unit. However, a subsequently generated read request (data or instruction) may
be re-ordered in front of buffered writes. As a protection against reading invalid data, this re-or-
dering of reads in front of buffered writes occurs only if all buffered writes are cache hits. Be-
cause an external read is generated only for a cache miss, and is re-ordered in front of buffered
writes only if all such buffered writes are cache hits, any read generated on the external bus with
this protection never reads a location that is about to be written by a buffered write. This re-or-
dering can only happen once for a given set of buffered writes, because the data returned by the
read cycle could otherwise replace data about to be written from the write buffers.

To ensure that no more than one such re-ordering is done for a given set of buffered writes, all
buffered writes are re-flagged as cache misses when a read request is re-ordered ahead of them.
Buffered writes thus marked are propagated to the processor bus before the next read request is
acted upon. Invalidation of data in the internal cache also causes all pending writes to be flagged
as cache misses. Disabling the cache unit disables the write buffers, which eliminates any possi-
bility of re-ordering bus cycles.

3.2.3 Locked Cycles

The processor can generate signals to lock a contiguous series of bus cycles. These cycles can
then be performed without interference from other bus masters, if external logic observes these
lock signals. One example of a locked operation is a semaphor read-modify-write update, where
a resource control register is updated. No other operations should be allowed on the bus until the
entire locked semaphor update is completed.

When a locked read cycle is generated, the internal cache is not read. All pending writes in the
buffer are completed first. Only then is the read part of the locked operation performed, the data
modified, the result placed in a write buffer, and a write cycle performed on the processor bus.
This sequence of operations ensures that all writes are performed in the order in which they were
generated.

3.2.4 I/O Transfers

Transfers to and from I/O locations have some restrictions to ensure data integrity:

• Caching — I/O reads are never cached.

• Read Re-ordering — I/O reads are never re-ordered ahead of buffered writes to mem
This ensures that the processor has completed updating all memory locations before r
status from a device.
3-9

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

ask

s

oces-
serting
fetch
 is not
 and re-
plicitly
sor does

the pro-
le is re-
ss, the
 cache
ons if
assed

 write
ory up-

a 20-bit
ctions
tion in

ddresses,
nd the
.

tions to
e speed
iative

on-
che line
ivisible
• Writes — Single I/O writes are never buffered. When processing an OUT instruction,
internal execution stops until all buffered writes and the I/O write are completed on the
processor bus. This allows time for external logic to drive a cache invalidate cycle or m
interrupts before the processor executes the next instruction. The processor complete
updating all memory locations before writing to the I/O location. Repeated OUT
instructions may be buffered.

The write buffers and the cache unit determine I/O device recovery time. In the Intel386 pr
sor, back-to-back write recovery time could be guaranteed to exceed a certain value by in
a jump to the next instruction that writes to the I/O device. This forced an instruction pre
cycle that could only be performed after the preceding write was completed. This technique
used in the Intel486 processor because a prefetch can be satisfied internally by the cache
covery time may be too short. The same effect is achieved in the Intel486 processor by ex
generating a read to an area of memory that is not cacheable. Because the Intel486 proces
not buffer single I/O writes, such a read is not done until the I/O write is completed.

3.3 CACHE UNIT

The cache unit stores copies of recently read instructions, operands, and other data. When
cessor requests information already in the cache, called a cache hit, no processor-bus cyc
quired. When the processor requests information not in the cache, called a cache mi
information is read into the cache in one or more 16-byte cacheable data transfers, called
line fills. An internal write request to an area currently in the cache causes two distinct acti
the cache is using a write-through policy: the cache is updated, and the write is also p
through the cache to memory. If the cache is using a write-back policy, then the internal
request only causes the cache to be updated and the write is stored for future main mem
dating.

The cache transfers data to other units on two 32-bit buses, as shown in Figure 3-1. The cache
receives linear addresses on a 32-bit bus and the corresponding physical addresses on
bus. The cache and instruction prefetch units are closely coupled. 16-Byte blocks of instru
in the cache can be passed quickly to the instruction prefetch unit. Both units read informa
16-byte blocks.

The cache can be accessed as often as once each clock. The cache acts on physical a
which minimizes the number of times the cache must be flushed. When both the cache a
cache write-through functions are disabled, the cache may be used as a high-speed RAM

3.3.1 Cache Structure

The cache has a four-way set associative organization. There are four possible cache loca
store data from a given area of memory. Four-way association is a compromise between th
of a direct-mapped cache during cache hits and the high cache-hit ratio of a fully assoc
cache. As shown in Figure 3-5, the 8-Kbyte data block is divided into four data ways, each c
taining 128 16-byte sets, or cache lines (the DX4 processor has 256 16-byte sets). Each ca
holds data from 16 successive byte addresses in memory, beginning with an address d
by 16.
3-10

INTERNAL ARCHITECTURE
Figure 3-5. Cache Organization

Cache addressing is performed by dividing the high-order 28 bits of the physical address into
three parts, as shown in Figure 3-5. The 7 bits of the index field specify the set number, one of
128, within the cache. The high-order 21 bits (20 on the IntelDX4 processor) are the tag field;
these bits are compared with tags for each cache line in the indexed set, and they indicate whether
a 16-byte cache line is stored for that physical address. The low-order 4 bits of the physical ad-
dress select the byte within the cache line. Finally, a 4-bit valid field, one for each way within a
given set, indicates whether the cached data at that physical address is currently valid.

Way 3Way 2Way 1

Data

Block

Way 0Way 3Way 2Way 1

Tag

Block

 A5141-02

Valid/LRU

Block

Way 0

Set N

Set 127

Set 126

Set 2

Set 1

Set 0

ValidLRU Data - 16 bytesTag - 21 bits†

xxxxIndex FieldTag Field

31 011 4

Physical Address

X 1 X X

line is valid

Index

is N

Match Selects

byte

† 20 bits for the IntelDX4™ processor
3-11

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

t-

an be
 read
 write-
 but is
emory.
mory
 unit,
hen the
write
f main

. This

so has
che is
 filled,

 line
t are

oces-
alidated
 flush

gister
 write-
3.3.2 Cache Updating

When a cache miss occurs on a read, the 16-byte block containing the requested information is
written into the cache. Data in the neighborhood of the required data is also read into the cache,
but the exact position of data within the cache line depends on its location in memory with respect
to addresses divisible by 16.

Any area of memory can be cacheable, but any page of memory can be declared not cacheable
by setting a bit in its page table entry. The I/O region of memory is non-cacheable. When a read
from memory is initiated on the bus, external logic can indicate whether the data may be placed
in cache, as discussed in Chapter 4, “Bus Operation.” If the read is cacheable, the processor a
tempts to read an entire 16-byte cache line.

The cache unit follows a write-through cache policy. The unit on the IntelDX4 processor c
configured to be a write-through or write-back cache. Cache line fills are performed only for
misses, never for write misses. When the processor is enabled for normal caching and
through operation, every internal write to the cache (cache hit) not only updates the cache
also passed along to the bus interface unit and propagated through the processor bus to m
The only conditions under which data in the cache differs from the corresponding data in me
occur when a processor write cycle to memory is delayed by buffering in the bus interface
or when an external bus master alters the memory area mapped to the internal cache. W
IntelDX4 processor is enabled for normal caching and write-back operation, an internal
only causes the cache to be updated. The modified data is stored for the future update o
memory and is not immediately written to memory.

3.3.3 Cache Replacement

Replacement in the cache is handled by a pseudo-LRU (least recently used) mechanism
mechanism maintains three bits for each set in the valid/LRU block, as shown in Figure 3-5. The
LRU bits are updated on each cache hit or cache line fill. Each cache line (four per set) al
an associated valid bit that indicates whether the line contains valid data. When the ca
flushed or the processor is reset, all of the valid bits are cleared. When a cache line is to be
a location for the fill is selected by simply finding any cache line that is invalid. If no cache
is invalid, the LRU bits select the line to be overwritten. Valid bits are not set for lines tha
only partially valid.

Cache lines can be invalidated individually by a cache line invalidation operation on the pr
sor bus. When such an operation is initiated, the cache unit compares the address to be inv
with tags for the lines currently in cache and clears the valid bit if a match is found. A cache
operation is also available. This invalidates the entire contents of the internal cache unit.

3.3.4 Cache Configuration

Configuration of the cache unit is controlled by two bits in the processor’s machine status re
(CR0). One of these bits enables caching (cache line fills). The other bit enables memory
through. Table 3-2 shows the four configuration options. Chapter 4, “Bus Operation,” gives de-
tails.
3-12

INTERNAL ARCHITECTURE

uction
efore

he pro-

rically
n (not
tched
e in the
e, the
place-
ps are
When caching is enabled, memory reads and instruction prefetches are cacheable. These transfers
are cached if external logic asserts the cache enable input in that bus cycle, and if the current page
table entry allows caching. During cycles in which caching is disabled, cache lines are not filled
on cache misses. However, the cache remains active even though it is disabled for further filling.
Data already in the cache is used if it is still valid. When all data in the cache is flagged invalid,
as happens in a cache flush, all internal read requests are propagated as bus cycles to the external
system.

When cache write-through is enabled, all writes, including those that are cache hits, are written
through to memory. Invalidation operations remove a line from cache if the invalidate address
maps to a cache line. When cache write-throughs are disabled, an internal write request that is a
cache hit does not cause a write-through to memory, and cache invalidation operations are dis-
abled. With both caching and cache write-through disabled, the cache can be used as a high-speed
static RAM. In this configuration, the only write cycles that are propagated to the processor bus
are cache misses, and cache invalidation operations are ignored.

The IntelDX4 processor can also be configured to use a write-back cache policy. For detailed in-
formation on the Intel486 processor cache feature, and on the Write-Back Enhanced IntelDX4
processor, refer to Chapter 6, “Cache Subsystem.”

3.4 INSTRUCTION PREFETCH UNIT

When the bus interface unit is not performing bus cycles to execute an instruction, the instr
prefetch unit uses the bus interface unit to prefetch instructions. By reading instructions b
they are needed, the processor rarely needs to wait for an instruction prefetch cycle on t
cessor bus.

Instruction prefetch cycles read 16-byte blocks of instructions, starting at addresses nume
greater than the last-fetched instruction. The prefetch unit, which has a direct connectio
shown in Figure 3-1) to the paging unit, generates the starting address. The 16-byte prefe
blocks are read into both the prefetch and cache units simultaneously. The prefetch queu
prefetch unit stores 32 bytes of instructions. As each instruction is fetched from the queu
code part is sent to the instruction decode unit and (depending on the instruction) the dis
ment part is sent to the segmentation unit, where it is used for address calculation. If loo

Table 3-2. Cache Configuration Options

Cache Enabled Write-through
Enabled Operating Mode

no no Cache line fills, cache write-throughs, and cache invalidations are
disabled. This configuration allows the internal cache to be used as
high-speed static RAM.

no yes Cache line fills are disabled, and cache write-throughs and cache
invalidations are enabled. This configuration allows software to
disable the cache for a short time, then re-enable it without flushing
the original contents.

yes no INVALID

yes yes Cache line fills, cache write-throughs, and cache invalidations are
enabled. This is the normal operating configuration.
3-13

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
encountered in the program being executed, the prefetch unit gets copies of previously executed
instructions from the cache.

The prefetch unit has the lowest priority for processor bus access. Assuming zero wait-state mem-
ory access, prefetch activity never delays execution. However, if there is no pending data transfer,
prefetching may use bus cycles that would otherwise be idle. The prefetch unit is flushed when-
ever the next instruction needed is not in numerical sequence with the previous instruction; for
example, during jumps, task switches, exceptions, and interrupts.

The prefetch unit never accesses beyond the end of a code segment and it never accesses a page
that is not present. However, prefetching may cause problems for some hardware mechanisms.
For example, prefetching may cause an interrupt when program execution nears the end of mem-
ory. To keep prefetching from reading past a given address, instructions should come no closer
to that address than one byte plus one aligned 16-byte block.

3.5 INSTRUCTION DECODE UNIT

The instruction decode unit receives instructions from the instruction prefetch unit and translates
them in a two-stage process into low-level control signals and microcode entry points, as shown
in Figure 3-1. Most instructions can be decoded at a rate of one per clock. Stage 1 of the decode,
shown in Figure 3-4, initiates a memory access. This allows execution of a two-instruction se-
quence that loads and operates on data in just two clocks, as described in Section 3.2.

The decode unit simultaneously processes instruction prefix bytes, opcodes, modR/M bytes, and
displacements. The outputs include hardwired microinstructions to the segmentation, integer, and
floating-point units. The instruction decode unit is flushed whenever the instruction prefetch unit
is flushed.

3.6 CONTROL UNIT

The control unit interprets the instruction word and microcode entry points received from the in-
struction decode unit. The control unit has outputs with which it controls the integer and floating-
point processing units. It also controls segmentation because segment selection may be specified
by instructions.

The control unit contains the processor’s microcode. Many instructions have only one line of mi-
crocode, so they can execute in an average of one clock cycle. Figure 3-4 shows how execution
fits into the internal pipelining mechanism.

3.7 INTEGER (DATAPATH) UNIT

The integer and datapath unit identifies where data is stored and performs all of the arithmetic
and logical operations available in the Intel386 processor’s instruction set, plus a few new instruc-
tions. It has eight 32-bit general-purpose registers, several specialized registers, an ALU, and a
barrel shifter. Single load, store, addition, subtraction, logic, and shift instructions execute in one
clock.

Two 32-bit bidirectional buses connect the integer and floating-point units. These buses are used
together for transferring 64-bit operands. The same buses also connect the processing units with
3-14

INTERNAL ARCHITECTURE
the cache unit. The contents of the general purpose registers are sent to the segmentation unit on
a separate 32-bit bus for generation of effective addresses.

3.8 FLOATING-POINT UNIT

The floating-point unit executes the same instruction set as the 387 math coprocessor. The unit
contains a push-down register stack and dedicated hardware for interpreting the 32-, 64-, and 80-
bit formats as specified in IEEE Standard 754. An output signal passed through to the processor
bus indicates floating-point errors to the external system, which in turn can assert an input to the
processor indicating that the processor should ignore these errors and continue normal operations.

3.8.1 IntelDX2™ and IntelDX4™ Processor On-Chip Floating-Point Unit

The IntelDX2 and IntelDX4 processors incorporate the basic Intel486 processor 32-bit architec-
ture, with on-chip memory management and cache memory units. They also have an on-chip
floating-point unit (FPU) that operates in parallel with the arithmetic and logic unit. The FPU pro-
vides arithmetic instructions for a variety of numeric data types and executes numerous built-in
transcendental functions (e.g., tangent, sine, cosine, and log functions). The floating-point unit
fully conforms to the ANSI/IEEE standard 754-1985 for floating-point arithmetic.

All software written for the Intel386 processor, Intel387 math coprocessor and previous members
of the 86/87 architectural family runs on these processors without modifications.

3.9 SEGMENTATION UNIT

A segment is a protected, independent address space. Segmentation is used to enforce isolation
among application programs, to invoke recovery procedures, and to isolate the effects of pro-
gramming errors.

The segmentation unit translates a segmented address issued by a program, called a logical ad-
dress, into an unsegmented address, called a linear address. The locations of segments in the lin-
ear address space are stored in data structures called segment descriptors. The segmentation unit
performs its address calculations using segment descriptors and displacements (offsets) extracted
from instructions. Linear addresses are sent to the paging and cache units. When a segment is ac-
cessed for the first time, its segment descriptor is copied into a processor register. A program can
have as many as 16,383 segments. Up to six segment descriptors can be held in processor regis-
ters at a time. Figure 3-6 shows the relationships between logical, linear, and physical addresses.
3-15

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 3-6. Segmentation and Paging Address Formats

3.10 PAGING UNIT

The paging unit allows access to data structures larger than the available memory space by keep-
ing them partly in memory and partly on disk. Paging divides the linear address space into
4-Kbyte blocks called pages. Paging uses data structures in memory called page tables for map-
ping a linear address to a physical address. The cache uses physical addresses and puts them on
the processor bus. The paging unit also identifies problems, such as accesses to a page that is not
resident in memory, and raises exceptions called page faults. When a page fault occurs, the oper-
ating system has a chance to bring the required page into memory from disk. If necessary, it can
free space in memory by sending another page out to disk. If paging is not enabled, the physical
address is identical to the linear address.

The paging unit includes a translation lookaside buffer (TLB) that stores the 32 most recently
used page table entries. Figure 3-7 shows the TLB data structures. The paging unit looks up linear
addresses in the TLB. If the paging unit does not find a linear address in the TLB, the unit gen-
erates requests to fill the TLB with the correct physical address contained in a page table in mem-
ory. Only when the correct page table entry is in the TLB does the bus cycle take place. When the
paging unit maps a page in the linear address space to a page in physical memory, it maps only
the upper 20 bits of the linear address. The lowest 12 bits of the physical address come unchanged
from the linear address.

 A5142-01

Segment

Selector

Segment

Offset

047 32 31

Logical Address

Page OffsetPage Directory

Offset

Page Table

Offset

02122

11

111231

Linear Address

Page OffsetPage Base Address

Translated by the segmentation unit

01231

Physical Address

Translated by the paging unit
3-16

INTERNAL ARCHITECTURE
Figure 3-7. Translation Lookaside Buffer

Most programs access only a small number of pages during any short span of time. When this is
true, the pages stay in memory and the address translation information stays in the TLB. In typical
systems, the TLB satisfies 99% of the requests to access the page tables. The TLB uses a pseudo-
LRU algorithm, similar to the cache, as a content-replacement strategy.

The TLB is flushed whenever the page directory base register (CR3) is loaded. Page faults can
occur during either a page directory read or a page table read. The cache can be used to supply
data for the TLB, although this may not be desirable when external logic monitors TLB updates.

Unlike segmentation, paging is invisible to application programs and does not provide the same
kind of protection against programs altering data outside a restricted part of memory. Paging is
visible to the operating system, which uses it to satisfy application program memory require-
ments. For more information on paging and segmentation, see the Embedded Intel486™ Devel-
oper’s Manual.

Way 3Way 2Way 1

Data

Block

Way 0Way 3Way 2Way 1

Valid Attribute

and Tag Block

 A5174-01

LRU

Block

Way 0

Set 7

Set 6

Set 5

Set 4

Set 3

Set 2

Set 1

Set 0

Physical Address

20 Bits

Data

3 Bits

TagAttribute

17 Bits3 Bits1 Bit

Valid

31 1231 121514

Linear Address

Set Select
3-17

4
Bus Operation

Chapter Contents

4.1 Data Transfer Mechanism... 4-1

4.2 Bus Arbitration Logic ...4-12

4.3 Bus Functional Description...4-15

4.4 Enhanced Bus Mode Operation (Write-Back Mode)
for the Write-Back Enhanced IntelDX4™ Processor4-50

he in-
back

rite-
bedded

, word
ment.
aligned

bits are
er ad-

with the
able

cessary.
e
als are
-

tem can
 from
CHAPTER 4
BUS OPERATION

All Intel486™ processors operate in Standard Bus (write-through) mode. However, when t
ternal cache of the Write-Back Enhanced IntelDX4™ processor is configured in write-
mode, the processor bus operates in the Enhanced Bus mode, which is described in Section 4.4.
When the internal cache of the Write-Back Enhanced IntelDX4 processor is configured in w
through mode, the processor bus operates in Standard Bus mode, identical to the other em
Intel486 processors.

4.1 DATA TRANSFER MECHANISM

All data transfers occur as a result of one or more bus cycles. Logical data operands of byte
and doubleword lengths may be transferred without restrictions on physical address align
Data may be accessed at any byte boundary but two or three cycles may be required for un
data transfers. (See Section 4.1.2, “Dynamic Data Bus Sizing,” and Section 4.1.5, “Operand
Alignment.”)

The Intel486 processor address signals are split into two components. High-order address
provided by the address lines, A31–A2. The byte enables, BE3#–BE0#, form the low-ord
dress and provide linear selects for the four bytes of the 32-bit address bus.

The byte enable outputs are asserted when their associated data bus bytes are involved
present bus cycle, as listed in Table 4-1. Byte enable patterns that have a deasserted byte en
separating two or three asserted byte enables never occur (see Table 4-5 on page 4-7). All other
byte enable patterns are possible.

Address bits A0 and A1 of the physical operand's base address can be created when ne
Use of the byte enables to create A0 and A1 is shown in Table 4-2. The byte enables can also b
decoded to generate BLE# (byte low enable) and BHE# (byte high enable). These sign
needed to address 16-bit memory systems. (See Section 4.1.3, “Interfacing with 8-, 16-, and 32
Bit Memories.”)

4.1.1 Memory and I/O Spaces

Bus cycles may access physical memory space or I/O space. Peripheral devices in the sys
be either memory-mapped, I/O-mapped, or both. Physical memory addresses range

Table 4-1. Byte Enables and Associated Data and Operand Bytes

Byte Enable Signal Associated Data Bus Signals

BE0# D7–D0 (byte 0–least significant)

BE1# D15–D8 (byte 1)

BE2# D23–D16 (byte 2)

BE3# D31–D24 (byte 3–most significant)
4-1

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

emory
00000000H to FFFFFFFFH (4 gigabytes). I/O addresses range from 00000000H to 0000FFFFH
(64 Kbytes) for programmed I/O. (See Figure 4-1.)

Figure 4-1. Physical Memory and I/O Spaces

4.1.1.1 Memory and I/O Space Organization

The Intel486 processor datapath to memory and input/output (I/O) spaces can be 32, 16, or 8 bits
wide. The byte enable signals, BE3#–BE0#, allow byte granularity when addressing any m
or I/O structure, whether 8, 16, or 32 bits wide.

Table 4-2. Generating A31–A0 from BE3#–BE0# and A31–A2

Intel486™ Processor Address Signals

A31 through A2
BE3# BE2# BE1# BE0#

Physical Address

A31 ... A2 A1 A0

A31 ... A2 0 0 X X X 0

A31 ... A2 0 1 X X 0 1

A31 ... A2 1 0 X 0 1 1

A31 ... A2 1 1 0 1 1 1

Physical

Memory

4 Gbyte

Not
Accessible

64 Kbyte

{Accessible
Programmed
I/O Space

0000FFFFH

00000000H00000000H

Physical Memory
Space

I/O Space

FFFFFFFFH

Not
Accessible
4-2

BUS OPERATION

st-ad-

dresses
to ad-

d from
g logic
-

 buses
he Ul-
- or 8-
. Ad-
uring
The Intel486 processor includes bus control pins, BS16# and BS8#, which allow direct connec-
tion to 16- and 8-bit memories and I/O devices. Cycles of 32-, 16- and 8-bits may occur in any
sequence, since the BS8# and BS16# signals are sampled during each bus cycle.

NOTE
The Ultra-Low Power Intel486 GX processor has a 16-bit external data bus.
All data transfers are done on the low order data bits (D15-D0) and parity is
generated and checked on pins DP0 and DP1. For this reason, dynamic data
bus sizing (using pins BS16# and BS8#) is not supported.

Memory and I/O spaces that are 32-bit wide are organized as arrays of four bytes each. Each four
bytes consists of four individually addressable bytes at consecutive byte addresses (see
Figure 4-2). The lowest addressed byte is associated with data signals D7–D0; the highe
dressed byte with D31–D24. Each 4 bytes begin at an address that is divisible by four.

Figure 4-2. Physical Memory and I/O Space Organization

16-bit memories are organized as arrays of two bytes each. Each two bytes begins at ad
divisible by two. The byte enables BE3#–BE0#, must be decoded to A1, BLE# and BHE#
dress 16-bit memories.

To address 8-bit memories, the two low order address bits A0 and A1 must be decode
BE3#–BE0#. The same logic can be used for 8- and 16-bit memories, because the decodin
for BLE# and A0 are the same. (See Section 4.1.3, “Interfacing with 8-, 16-, and 32-Bit Memo
ries.”)

4.1.2 Dynamic Data Bus Sizing

Dynamic data bus sizing is a feature that allows processor connection to 32-, 16- or 8-bit
for memory or I/O. The Intel486 processors can connect to all three bus sizes, except for t
tra-Low Power Intel486 GX processor, uses a 16-bit data bus. Transfers to or from 32-, 16
bit devices are supported by dynamically determining the bus width during each bus cycle
dress decoding circuitry may assert BS16# for 16-bit devices or BS8# for 8-bit devices d

32-Bit Wide Organization

FFFFFFFFH FFFFFFFCH

16-Bit Wide Organization

FFFFFFFFH FFFFFFFEH

00000001H 00000000H

{ { { {
BE3# BE2# BE1# BE0#

{ {

BHE# BLE#

00000003H 00000000H
4-3

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

e byte

of the
t data
 32-bit
ust be
tes on
. The
BS16#

ite data
es-
ptions.
each bus cycle. BS8# and BS16# must be deasserted when addressing 32-bit devices. An 8-bit
bus width is selected if both BS16# and BS8# are asserted.

BS16# and BS8# force the Intel486 processor to run additional bus cycles to complete requests
larger than 16 or 8 bits. A 32-bit transfer is converted into two 16-bit transfers (or 3 transfers if
the data is misaligned) when BS16# is asserted. Asserting BS8# converts a 32-bit transfer into
four 8-bit transfers.

Extra cycles forced by BS16# or BS8# should be viewed as independent bus cycles. BS16# or
BS8# must be asserted during each of the extra cycles unless the addressed device has the ability
to change the number of bytes it can return between cycles.

The Intel486 processor drives the byte enables appropriately during extra cycles forced by BS8#
and BS16#. A31–A2 does not change if accesses are to a 32-bit aligned area. Table 4-3 shows the
set of byte enables that is generated on the next cycle for each of the valid possibilities of th
enables on the current cycle.

The dynamic bus sizing feature of the Intel486 processor is significantly different than that
Intel386™ processor. Unlike the Intel386 processor, the Intel486 processor requires tha
bytes be driven on the addressed data pins. The simplest example of this function is a
aligned, BS16# read. When the Intel486 processor reads the two high order bytes, they m
driven on the data bus pins D31–D16. The Intel486 processor expects the two low order by
D15–D0. The Intel386 processor expects both the high and low order bytes on D15–D0
Intel386 processor always reads or writes data on the lower 16 bits of the data bus when
is asserted.

The external system must contain buffers to enable the Intel486 processor to read and wr
on the appropriate data bus pins. Table 4-4 shows the data bus lines to which the Intel486 proc
sor expects data to be returned for each valid combination of byte enables and bus sizing o

Table 4-3. Next Byte Enable Values for BSx# Cycles

Current Next with Next with BS16#

BE3# BE2# BE1# BE0# BE3# BE2# BE1# BE0# BE3# BE2# BE1# BE0#

1 1 1 0 N N N N N N N N

1 1 0 0 1 1 0 1 N N N N

1 0 0 0 1 0 0 1 1 0 1 1

0 0 0 0 0 0 0 1 0 0 1 1

1 1 0 1 N N N N N N N N

1 0 0 1 1 0 1 1 1 0 1 1

0 0 0 1 0 0 1 1 0 0 1 1

1 0 1 1 N N N N N N N N

0 0 1 1 0 1 1 1 N N N N

0 1 1 1 N N N N N N N N

NOTE: “N” means that another bus cycle is not required to satisfy the request.
4-4

BUS OPERATION

0# se-
ycles

priate
ixed

S8#.
Valid data is only driven onto data bus pins corresponding to asserted byte enables during write
cycles. Other pins in the data bus are driven but they contain no valid data. Unlike the Intel386
processor, the Intel486 processor does not duplicate write data onto parts of the data bus for
which the corresponding byte enable is deasserted.

4.1.3 Interfacing with 8-, 16-, and 32-Bit Memories

In 32-bit physical memories, such as the one shown in Figure 4-3, each 4-byte word begins at a
byte address that is a multiple of four. A31–A2 are used as a 4-byte word select. BE3#–BE
lect individual bytes within the 4-byte word. BS8# and BS16# are deasserted for all bus c
involving the 32-bit array.

For 16- and 8-bit memories, byte swapping logic is required for routing data to the appro
data lines and logic is required for generating BHE#, BLE# and A1. In systems where m
memory widths are used, extra address decoding logic is necessary to assert BS16# or B

Figure 4-3. Intel486™ Processor with 32-Bit Memory

Table 4-4. Data Pins Read with Different Bus Sizes

BE3# BE2# BE1# BE0# w/o BS8#/BS16# w BS8# w BS16#

1 1 1 0 D7–D0 D7–D0 D7–D0

1 1 0 0 D15–D0 D7–D0 D15–D0

1 0 0 0 D23–D0 D7–D0 D15–D0

0 0 0 0 D31–D0 D7–D0 D15–D0

1 1 0 1 D15–D8 D15–D8 D15–D8

1 0 0 1 D23–D8 D15–D8 D15–D8

0 0 0 1 D31–D8 D15–D8 D15–D8

1 0 1 1 D23–D16 D23–D16 D23–D16

0 0 1 1 D31–D16 D23–D16 D31–D16

0 1 1 1 D31–D24 D31–D24 D31–D24

Intel486™
Processor

32-Bit
Memory

Data Bus (D31–D0)32

Address Bus
(BE3#–BE0#, A31–A2)

BS8# BS16#

“HIGH” “HIGH”
4-5

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

te
Figure 4-4 shows the Intel486 processor address bus interface to 32-, 16- and 8-bit memories. To
address 16-bit memories the byte enables must be decoded to produce A1, BHE# and BLE# (A0).
For 8-bit wide memories the byte enables must be decoded to produce A0 and A1. The same byte
select logic can be used in 16- and 8-bit systems, because BLE# is exactly the same as A0 (see
Table 4-5).

Figure 4-4. Addressing 16- and 8-Bit Memories

BE3#–BE0# can be decoded as shown in Table 4-5. The byte select logic necessary to genera
BHE# and BLE# is shown in Figure 4-5.

Intel486™
Processor

BS16#BS8#

Address Bus (A31–A2, BE3#–BE0#)

A31–A2

BE3#–BE0#

BHE#, BLE#, A1

A0 (BLE#), A1
A31–A2 8-Bit Memory

16-Bit Memory

32-Bit Memory

Byte
Select Logic

Address
Decode
4-6

BUS OPERATION
Table 4-5. Generating A1, BHE# and BLE# for Addressing 16-Bit Devices

Intel486™ Processor 8-, 16-Bit Bus Signals
Comments

BE3# BE2# BE1# BE0# A1 3 BHE#2 BLE# (A0) 1

1† 1† 1† 1† x x x x–no asserted bytes

1 1 1 0 0 1 0

1 1 0 1 0 0 1

1 1 0 0 0 0 0

1 0 1 1 1 1 0

1† 0† 1† 0† x x x x–not contiguous bytes

1 0 0 1 0 0 1

1 0 0 0 0 0 0

0 1 1 1 1 0 1

0† 1† 1† 0† x x x x–not contiguous bytes

0† 1† 0† 1† x x x x–not contiguous bytes

0† 1† 0† 0† x x x x–not contiguous bytes

0 1 1 1 0 0

0† 0† 1† 0† x x x x–not contiguous bytes

0 0 0 1 0 0 1

0 0 0 0 0 0 0

NOTES:
1. BLE# asserted when D7–D0 of 16-bit bus is asserted.
2. BHE# asserted when D15–D8 of 16-bit bus is asserted.
3. A1 low for all even words; A1 high for all odd words.

KEY:

x = don't care
† = a non-occurring pattern of byte enables; either none are asserted or the pattern has byte
 enables asserted for non-contiguous bytes
4-7

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

te en-
n't care”
 to its

s. Ex-
ed from

Figure 4-5. Logic to Generate A1, BHE# and BLE# for 16-Bit Buses

Combinations of BE3#–BE0# that never occur are those in which two or three asserted by
ables are separated by one or more deasserted byte enables. These combinations are “do
conditions in the decoder. A decoder can use the non-occurring BE3#–BE0# combinations
best advantage.

Figure 4-6 shows an Intel486 processor data bus interface to 16- and 8-bit wide memorie
ternal byte swapping logic is needed on the data lines so that data is supplied to and receiv
the Intel486 processor on the correct data pins (see Table 4-4).

240950–42

240950–43

240950–44
4-8

BUS OPERATION

r dur-
Figure 4-6. Data Bus Interface to 16- and 8-Bit Memories

4.1.4 Dynamic Bus Sizing During Cache Line Fills

BS8# and BS16# can be driven during cache line fills. The Intel486 processor generates enough
8- or 16-bit cycles to fill the cache line. This can be up to sixteen 8-bit cycles.

The external system should assume that all byte enables are asserted for the first cycle of a cache
line fill. The Intel486 processor generates proper byte enables for subsequent cycles in the line
fill. Table 4-6 shows the appropriate A0 (BLE#), A1 and BHE# for the various combinations of
the Intel486 processor byte enables on both the first and subsequent cycles of the cache line fill.
The “†” marks all combinations of byte enables that are generated by the Intel486 processo
ing a cache line fill.

Intel486™
Processor

BS16#

BS8#

Address
Decode

32-Bit
Memory

16-Bit Memory

8-Bit Memory
Byte Swap
Logic

Byte Swap
Logic

16

8

8

8
8
8

D7–D0

D15–D8
D23–D16
D31–D24

(A31–A2, BE3#–BE0#)
4-9

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
4.1.5 Operand Alignment

Physical 4-byte words begin at addresses that are multiples of four. It is possible to transfer a log-
ical operand that spans more than one physical 4-byte word of memory or I/O at the expense of
extra cycles. Examples are 4-byte operands beginning at addresses that are not evenly divisible
by 4, or 2-byte words split between two physical 4-byte words. These are referred to as unaligned
transfers.

Operand alignment and data bus size dictate when multiple bus cycles are required. Table 4-7 de-
scribes the transfer cycles generated for all combinations of logical operand lengths, alignment,
and data bus sizing. When multiple cycles are required to transfer a multibyte logical operand,
the highest-order bytes are transferred first. For example, when the processor executes a 4-byte
unaligned read beginning at byte location 11 in the 4-byte aligned space, the three high-order
bytes are read in the first bus cycle. The low byte is read in a subsequent bus cycle.

Table 4-6. Generating A0, A1 and BHE# from the Intel486™ Processor Byte Enables

 BE3# BE2# BE1# BE0#
First Cache Fill Cycle Any Other Cycle

A0 A1 BHE# A0 A1 BHE#

1 1 1 0 0 0 0 0 0 1

1 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0
†0 0 0 0 0 0 0 0 0 0

1 1 0 1 0 0 0 1 0 0

1 0 0 1 0 0 0 1 0 0
†0 0 0 1 0 0 0 1 0 0

1 0 1 1 0 0 0 0 1 1
†0 0 1 1 0 0 0 0 1 0
†0 1 1 1 0 0 0 1 1 0

KEY:
† = a non-occurring pattern of Byte Enables; either none are asserted or the pattern has byte
 enables asserted for non-contiguous bytes
4-10

BUS OPERATION
The function of unaligned transfers with dynamic bus sizing is not obvious. When the external
systems asserts BS16# or BS8#, forcing extra cycles, low-order bytes or words are transferred
first (opposite to the example above). When the Intel486 processor requests a 4-byte read and the
external system asserts BS16#, the lower two bytes are read first followed by the upper two bytes.

In the unaligned transfer described above, the processor requested three bytes on the first cycle.
When the external system asserts BS16# during this 3-byte transfer, the lower word is transferred
first followed by the upper byte. In the final cycle, the lower byte of the 4-byte operand is trans-
ferred, as shown in the 32-bit example above.

Table 4-7. Transfer Bus Cycles for Bytes, Words and Dwords

Byte-Length of Logical Operand

1 2 4

Physical Byte Address in
Memory (Low Order Bits)

xx 00 01 10 11 00 01 10 11

Transfer Cycles over 32-Bit
Bus

b w w w hb
lb

d hb
l3

hw
lw

h3
lb

Transfer Cycles over 16-Bit
Bus
(† = BS#16 asserted)

b w lb †

hb †
w hb

lb
lw †

hw †
hb
lb †

mw †

hw
lw

mw †

hb †

lb

Transfer Cycles over 8-Bit
Bus
(‡ = BS8# Asserted)

b lb ‡

hb ‡
lb ‡

hb‡
lb ‡

hb ‡
hb
lb

lb ‡

mlb ‡

mhb ‡

hb ‡

hb
lb ‡

mlb ‡

mhb ‡

mhb ‡

hb ‡

lb ‡

mlb ‡

mlb ‡

mhb ‡

hb ‡

lb

KEY:

b = byte transfer h = high-order portion 4-Byte Operand
w = 2-byte transfer l = low-order portion
3 = 3-byte transfer m = mid-order portion
d = 4-byte transfer

lb mlb mhb hb

↑ byte with
lowest address

↑byte with
highest address
4-11

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
4.2 BUS ARBITRATION LOGIC

Bus arbitration logic is needed with multiple bus masters. Hardware implementations range from
single-master designs to those with multiple masters and DMA devices.

Figure 4-7 shows a simple system in which only one master controls the bus and accesses the
memory and I/O devices. Here, no arbitration is required.

Figure 4-7. Single Master Intel486™ Processor System

Intel486™
Processor

I/O MEM

Control Bus

Data Bus

Address Bus
4-12

BUS OPERATION
Figure 4-8 shows a single processor and a DMA device. Here, arbitration is required to determine
whether the processor, which acts as a master most of the time, or a DMA controller has control
of the bus. When the DMA wants control of the bus, it asserts the HOLD request to the processor.
The processor then responds with a HLDA output when it is ready to relinquish bus control to the
DMA device. Once the DMA device completes its bus activity cycles, it negates the HOLD signal
to relinquish the bus and return control to the processor.

Figure 4-8. Single Intel486™ Processor with DMA

Intel486™
Processor DMA

MEMI/O

Address Bus

Data Bus

Control Bus
4-13

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 4-9 shows more than one primary bus master and two secondary masters, and the arbitra-
tion logic is more complex. The arbitration logic resolves bus contention by ensuring that all de-
vice requests are serviced one at a time using either a fixed or a rotating scheme. The arbitration
logic then passes information to the Intel486 processor, which ultimately releases the bus. The
arbitration logic receives bus control status information via the HOLD and HLDA signals and re-
lays it to the requesting devices.

Figure 4-9. Single Intel486™ Processor with Multiple Secondary Masters

As systems become more complex and include multiple bus masters, hardware must be added to
arbitrate and assign the management of bus time to each master. The second master may be a
DMA controller that requires bus time to perform memory transfers or it may be a second pro-
cessor that requires the bus to perform memory or I/O cycles. Any of these devices may act as a
bus master. The arbitration logic must assign only one bus master at a time so that there is no con-
tention between devices when accessing main memory.

Intel486™
Processor DMA

MEMI/O

Arbitration
Logic

ACQ

ACKHLDA 0

HOLD 0

DRQ

DACK

Address Bus

Data Bus

Control Bus

BDCKBREQ
4-14

BUS OPERATION

us to

signing
ential
le cases
 to the
tration
s the

scheme
 the bus.
 imple-

the ar-
HOLD
e bus.
ssert-

ss, data,
internal

-

perfor-
heable
ed cy-

 multi-

 bus

ks long
clock.
ns one

ia-
The arbitration logic may be implemented in several different ways. The first technique is to
“round-robin” or to “time slice” each master. Each master is given a block of time on the b
match their priority and need for the bus.

Another method of arbitration is to assign the bus to a master when the bus is needed. As
the bus requires the arbitration logic to sample the BREQ or HOLD outputs from the pot
masters and to assign the bus to the requestor. A priority scheme must be included to hand
where more than one device is requesting the bus. The arbitration logic must assert HOLD
device that must relinquish the bus. Once HLDA is asserted by all of these devices, the arbi
logic may assert HLDA or BACK# to the device requesting the bus. The requestor remain
bus master until another device needs the bus.

These two arbitration techniques can be combined to create a more elaborate arbitration
that is driven by a device that needs the bus but guarantees that every device gets time on
It is important that an arbitration scheme be selected to best fit the needs of each system's
mentation.

The Intel486 processor asserts BREQ when it requires control of the bus. BREQ notifies
bitration logic that the processor has pending bus activity and requests the bus. When its
input is inactive and its HLDA signal is deasserted, the Intel486 processor can acquire th
Otherwise if HOLD is asserted, then the Intel486 processor has to wait for HOLD to be dea
ed before acquiring the bus. If the Intel486 processor does not have the bus, then its addre
and status pins are 3-stated. However, the processor can execute instructions out of the
cache or instruction queue, and does not need control of the bus to remain active.

The address buses shown in Figure 4-8 and Figure 4-9 are bidirectional to allow cache invalida
tions to the processors during memory writes on the bus.

4.3 BUS FUNCTIONAL DESCRIPTION

The Intel486 processor supports a wide variety of bus transfers to meet the needs of high
mance systems. Bus transfers can be single cycle or multiple cycle, burst or non-burst, cac
or non-cacheable, 8-, 16- or 32-bit, and pseudo-locked. Cache invalidation cycles and lock
cles provide support for multiprocessor systems.

This section explains basic non-cacheable, non-burst single cycle transfers. It also details
ple cycle transfers and introduces the burst mode. Cacheability is introduced in Section 4.3.3,
“Cacheable Cycles.” The remaining sections describe locked, pseudo-locked, invalidate,
hold, and interrupt cycles.

Bus cycles and data cycles are discussed in this section. A bus cycle is at least two cloc
and begins with ADS# asserted in the first clock and RDY# or BRDY# asserted in the last
Data is transferred to or from the Intel486 processor during a data cycle. A bus cycle contai
or more data cycles.

Refer to Section 4.3.13, “Bus States,” for a description of the bus states shown in the timing d
grams.
4-15

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

o reads
led “2-

k. The
e def-

RDY#
o a read

lete if
clock

cond
-

4.3.1 Non-Cacheable Non-Burst Single Cycle

4.3.1.1 No Wait States

The fastest non-burst bus cycle that the Intel486 processor supports is two clocks. These cycles
are called 2-2 cycles because reads and writes take two cycles each. The first “2” refers t
and the second “2” to writes. If a wait state needs to be added to the write, the cycle is cal
3.”

Basic two-clock read and write cycles are shown in Figure 4-10. The Intel486 processor initiates
a cycle by asserting the address status signal (ADS#) at the rising edge of the first cloc
ADS# output indicates that a valid bus cycle definition and address is available on the cycl
inition lines and address bus.

Figure 4-10. Basic 2-2 Bus Cycle

The non-burst ready input (RDY#) is asserted by the external system in the second clock.
indicates that the external system has presented valid data on the data pins in response t
or the external system has accepted data in response to a write.

The Intel486 processor samples RDY# at the end of the second clock. The cycle is comp
RDY# is asserted (LOW) when sampled. Note that RDY# is ignored at the end of the first
of the bus cycle.

The burst last signal (BLAST#) is asserted (LOW) by the Intel486 processor during the se
clock of the first cycle in all bus transfers illustrated in Figure 4-10. This indicates that each trans

CLK

ADS#

A31–A2
M/IO#
D/C#

BE3#–BE0#

W/R#

RDY#

BLAST#

DATA

PCHK#

Ti T1 T2 T1 T2 T1 T2 T1 T2 Ti

Read Write Read Write

To Processor
From Processor‡

†

† † ‡‡

242202-031
4-16

BUS OPERATION

in-
 signal
 to the

the end

 can be

sserted

r or by
n one

ine fill
fer is complete after a single cycle. The Intel486 processor asserts BLAST# in the last cycle,
“T2”, of a bus transfer.

The timing of the parity check output (PCHK#) is shown in Figure 4-10. The Intel486 processor
drives the PCHK# output one clock after RDY# or BRDY# terminates a read cycle. PCHK
dicates the parity status for the data sampled at the end of the previous clock. The PCHK#
can be used by the external system. The Intel486 processor does nothing in response
PCHK# output.

4.3.1.2 Inserting Wait States

The external system can insert wait states into the basic 2-2 cycle by deasserting RDY# at
of the second clock. RDY# must be deasserted to insert a wait state. Figure 4-11 illustrates a sim-
ple non-burst, non-cacheable signal with one wait state added. Any number of wait states
added to an Intel486 processor bus cycle by maintaining RDY# deasserted.

Figure 4-11. Basic 3-3 Bus Cycle

The burst ready input (BRDY#) must be deasserted on all clock edges where RDY# is dea
for proper operation of these simple non-burst cycles.

4.3.2 Multiple and Burst Cycle Bus Transfers

Multiple cycle bus transfers can be caused by internal requests from the Intel486 processo
the external memory system. An internal request for a 128-bit pre-fetch requires more tha
cycle. Internal requests for unaligned data may also require multiple bus cycles. A cache l
requires multiple cycles to complete.

CLK

ADS#

A31–A2
M/IO#
D/C#

BE3#–BE0#

W/R#

RDY#

BLAST#

DATA

Ti T1 T2 Ti

Read Write

To Processor
From Processor

T2 T1 T2 T2

‡
†

† ‡

242202-032
4-17

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

ust

 a single
y clock
clocks

rites
t write
r can-

 in the
form a
cycle.
 signal

a (cor-
cation
,
iven

nt trans-
essor

l486
ber of

anced

rath-
burst,
nored
evices
The external system can cause a multiple cycle transfer when it can only supply 8- or 16-bits per
cycle.

Only multiple cycle transfers caused by internal requests are considered in this section. Cache-
able cycles and 8- and 16-bit transfers are covered in Section 4.3.3, “Cacheable Cycles,” and Sec-
tion 4.3.5, “8- and 16-Bit Cycles.”

Internal Requests from IntelDX2 and IntelDX4 Processors

An internal request by an IntelDX2 or IntelDX4 processor for a 64-bit floating-point load m
take more than one internal cycle.

4.3.2.1 Burst Cycles

The Intel486 processor can accept burst cycles for any bus requests that require more than
data cycle. During burst cycles, a new data item is strobed into the Intel486 processor ever
rather than every other clock as in non-burst cycles. The fastest burst cycle requires two
for the first data item, with subsequent data items returned every clock.

The Intel486 processor is capable of bursting a maximum of 32 bits during a write. Burst w
can only occur if BS8# or BS16# is asserted. For example, the Intel486 processor can burs
four 8-bit operands or two 16-bit operands in a single burst cycle. But the Intel486 processo
not burst multiple 32-bit writes in a single burst cycle.

Burst cycles begin with the Intel486 processor driving out an address and asserting ADS#
same manner as non-burst cycles. The Intel486 processor indicates that it is willing to per
burst cycle by holding the burst last signal (BLAST#) deasserted in the second clock of the
The external system indicates its willingness to do a burst cycle by asserting the burst ready
(BRDY#).

The addresses of the data items in a burst cycle all fall within the same 16-byte aligned are
responding to an internal Intel486 processor cache line). A 16-byte aligned area begins at lo
XXXXXXX0 and ends at location XXXXXXXF. During a burst cycle, only BE3#–BE0#, A2
and A3 may change. A31–A4, M/IO#, D/C#, and W/R# remain stable throughout a burst. G
the first address in a burst, external hardware can easily calculate the address of subseque
fers in advance. An external memory system can be designed to quickly fill the Intel486 proc
internal cache lines.

Burst cycles are not limited to cache line fills. Any multiple cycle read request by the Inte
processor can be converted into a burst cycle. The Intel486 processor only bursts the num
bytes needed to complete a transfer. For example, the IntelDX2 and Write-Back Enh
IntelDX4 processors burst eight bytes for a 64-bit floating-point non-cacheable read.

The external system converts a multiple cycle request into a burst cycle by asserting BRDY
er than RDY# (non-burst ready) in the first cycle of a transfer. For cycles that cannot be
such as interrupt acknowledge and halt, BRDY# has the same effect as RDY#. BRDY# is ig
if both BRDY# and RDY# are asserted in the same clock. Memory areas and peripheral d
that cannot perform bursting must terminate cycles with RDY#.
4-18

BUS OPERATION
4.3.2.2 Terminating Multiple and Burst Cycle Transfers

The Intel486 processor deasserts BLAST# for all but the last cycle in a multiple cycle transfer.
BLAST# is deasserted in the first cycle to inform the external system that the transfer could take
additional cycles. BLAST# is asserted in the last cycle of the transfer to indicate that the next time
BRDY# or RDY# is asserted the transfer is complete.

BLAST# is not valid in the first clock of a bus cycle. It should be sampled only in the second and
subsequent clocks when RDY# or BRDY# is asserted.

The number of cycles in a transfer is a function of several factors including the number of bytes
the Intel486 processor needs to complete an internal request (1, 2, 4, 8, or 16), the state of the bus
size inputs (BS8# and BS16#), the state of the cache enable input (KEN#) and the alignment of
the data to be transferred.

When the Intel486 processor initiates a request, it knows how many bytes are transferred and if
the data is aligned. The external system must indicate whether the data is cacheable (if the transfer
is a read) and the width of the bus by returning the state of the KEN#, BS8# and BS16# inputs
one clock before RDY# or BRDY# is asserted. The Intel486 processor determines how many cy-
cles a transfer will take based on its internal information and inputs from the external system.

BLAST# is not valid in the first clock of a bus cycle because the Intel486 processor cannot de-
termine the number of cycles a transfer will take until the external system asserts KEN#, BS8#
and BS16#. BLAST# should only be sampled in the second T2 state and subsequent T2 states of
a cycle when the external system asserts RDY# or BRDY#.

The system may terminate a burst cycle by asserting RDY# instead of BRDY#. BLAST# remains
deasserted until the last transfer. However, any transfers required to complete a cache line fill fol-
low the burst order; for example, if burst order was 4, 0, C, 8 and RDY# was asserted after 0, the
next transfers are from C and 8.

4.3.2.3 Non-Cacheable, Non-Burst, Multiple Cycle Transfers

Figure 4-12 illustrates a two-cycle, non-burst, non-cacheable read. This transfer is simply a se-
quence of two single cycle transfers. The Intel486 processor indicates to the external system that
this is a multiple cycle transfer by deasserting BLAST# during the second clock of the first cycle.
The external system asserts RDY# to indicate that it will not burst the data. The external system
also indicates that the data is not cacheable by deasserting KEN# one clock before it asserts
RDY#. When the Intel486 processor samples RDY# asserted, it ignores BRDY#.
4-19

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 4-12. Non-Cacheable, Non-Burst, Multiple-Cycle Transfers

Each cycle in the transfer begins when ADS# is asserted and the cycle is complete when the ex-
ternal system asserts RDY#.

The Intel486 processor indicates the last cycle of the transfer by asserting BLAST#. The next
RDY# asserted by the external system terminates the transfer.

4.3.2.4 Non-Cacheable Burst Cycles

The external system converts a multiple cycle request into a burst cycle by asserting BRDY# rath-
er than RDY# in the first cycle of the transfer. This is illustrated in Figure 4-13.

There are several features to note in the burst read. ADS# is asserted only during the first cycle
of the transfer. RDY# must be deasserted when BRDY# is asserted.

BLAST# behaves exactly as it does in the non-burst read. BLAST# is deasserted in the second
clock of the first cycle of the transfer, indicating more cycles to follow. In the last cycle, BLAST#
is asserted, prompting the external memory system to end the burst after asserting the next
BRDY#.

CLK

ADS#

A31–A2
M/IO#
D/C#
W/R#

BE3#–BE0#

RDY#

BRDY#

BLAST#

DATA

To Processor†

KEN#

2nd Data

TiT2T1T2T1Ti

1st Data

††

242202-033
4-20

BUS OPERATION
Figure 4-13. Non-Cacheable Burst Cycle

4.3.3 Cacheable Cycles

Any memory read can become a cache fill operation. The external memory system can allow a
read request to fill a cache line by asserting KEN# one clock before RDY# or BRDY# during the
first cycle of the transfer on the external bus. Once KEN# is asserted and the remaining three re-
quirements described below are met, the Intel486 processor fetches an entire cache line regard-
less of the state of KEN#. KEN# must be asserted in the last cycle of the transfer for the data to
be written into the internal cache. The Intel486 processor converts only memory reads or
prefetches into a cache fill.

KEN# is ignored during write or I/O cycles. Memory writes are stored only in the on-chip cache
if there is a cache hit. I/O space is never cached in the internal cache.

To transform a read or a prefetch into a cache line fill, the following conditions must be met:

1. The KEN# pin must be asserted one clock prior to RDY# or BRDY# being asserted for the
first data cycle.

2. The cycle must be of a type that can be internally cached. (Locked reads, I/O reads, and
interrupt acknowledge cycles are never cached.)

3. The page table entry must have the page cache disable bit (PCD) set to 0. To cache a page
table entry, the page directory must have PCD=0. To cache reads or prefetches when

CLK

ADS#

A31–A2
M/IO#
D/C#
W/R#

BE3#–BE0#

RDY#

BRDY#

BLAST#

DATA

KEN#

TiT2T1T2T1Ti

To Processor†

† †

242202-034
4-21

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

, the
dware

ache-
r code

cle of
are as-
. Sim-

es in the
 item
paging is disabled, or to cache the page directory entry, control register 3 (CR3) must have
PCD=0.

4. The cache disable (CD) bit in control register 0 (CR0) must be clear.

External hardware can determine when the Intel486 processor has transformed a read or prefetch
into a cache fill by examining the KEN#, M/IO#, D/C#, W/R#, LOCK#, and PCD pins. These
pins convey to the system the outcome of conditions 1–3 in the above list. In addition
Intel486 processor drives PCD high whenever the CD bit in CR0 is set, so that external har
can evaluate condition 4.

Cacheable cycles can be burst or non-burst.

4.3.3.1 Byte Enables during a Cache Line Fill

For the first cycle in the line fill, the state of the byte enables should be ignored. In a non-c
able memory read, the byte enables indicate the bytes actually required by the memory o
fetch.

The Intel486 processor expects to receive valid data on its entire bus (32 bits) in the first cy
a cache line fill. Data should be returned with the assumption that all the byte enable pins
serted. However if BS8# is asserted, only one byte should be returned on data lines D7–D0
ilarly if BS16# is asserted, two bytes should be returned on D15–D0.

The Intel486 processor generates the addresses and byte enables for all subsequent cycl
line fill. The order in which data is read during a line fill depends on the address of the first
read. Byte ordering is discussed in Section 4.3.4, “Burst Mode Details.”
4-22

BUS OPERATION
4.3.3.2 Non-Burst Cacheable Cycles

Figure 4-14 shows a non-burst cacheable cycle. The cycle becomes a cache fill when the Intel486
processor samples KEN# asserted at the end of the first clock. The Intel486 processor deasserts
BLAST# in the second clock in response to KEN#. BLAST# is deasserted because a cache fill
requires three additional cycles to complete. BLAST# remains deasserted until the last transfer
in the cache line fill. KEN# must be asserted in the last cycle of the transfer for the data to be
written into the internal cache.

Note that this cycle would be a single bus cycle if KEN# was not sampled asserted at the end of
the first clock. The subsequent three reads would not have happened since a cache fill was not
requested.

The BLAST# output is invalid in the first clock of a cycle. BLAST# may be asserted during the
first clock due to earlier inputs. Ignore BLAST# until the second clock.

During the first cycle of the cache line fill the external system should treat the byte enables as if
they are all asserted. In subsequent cycles in the burst, the Intel486 processor drives the address
lines and byte enables. (See Section 4.3.4.2, “Burst and Cache Line Fill Order.”)

Figure 4-14. Non-Burst, Cacheable Cycles

CLK

ADS#

A31–A2
M/IO#
D/C#
W/R#

BE3#–BE0#

KEN#

RDY#

BLAST#

DATA

Ti T1 T2 T1 T2 T1 T2 T1 T2 Ti

† To Processor

BRDY#

† † ††

242202-035
4-23

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
4.3.3.3 Burst Cacheable Cycles

Figure 4-15 illustrates a burst mode cache fill. As in Figure 4-14, the transfer becomes a cache
line fill when the external system asserts KEN# at the end of the first clock in the cycle.

The external system informs the Intel486 processor that it will burst the line in by asserting
BRDY# at the end of the first cycle in the transfer.

Note that during a burst cycle, ADS# is only driven with the first address.

Figure 4-15. Burst Cacheable Cycle

242202-036

CLK

ADS#

A31–A4
M/IO#
D/C#
W/R#

A3–A2
BE3#–BE0#

RDY#

BLAST#

DATA

PCHK#

Ti

To Processor

T1 T2 T2 T2 T2 Ti

KEN#

BRDY#

†

††† †
4-24

BUS OPERATION
4.3.3.4 Effect of Changing KEN# during a Cache Line Fill

KEN# can change multiple times as long as it arrives at its final value in the clock before RDY#
or BRDY# is asserted. This is illustrated in Figure 4-16. Note that the timing of BLAST# follows
that of KEN# by one clock. The Intel486 processor samples KEN# every clock and uses the value
returned in the clock before BRDY# or RDY# to determine if a bus cycle would be a cache line
fill. Similarly, it uses the value of KEN# in the last cycle before early RDY# to load the line just
retrieved from memory into the cache. KEN# is sampled every clock and it must satisfy setup and
hold times.

KEN# can also change multiple times before a burst cycle, as long as it arrives at its final value
one clock before BRDY# or RDY# is asserted.

Figure 4-16. Effect of Changing KEN#

242202-037

CLK

ADS#

A31–A2
M/IO#
D/C#
W/R#

RDY#

BLAST#

DATA

Ti T1 T2 T2

To Processor

T2 T2 T1 T2

A3–A2
BE3#–BE0#

KEN#

†

††
4-25

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
4.3.4 Burst Mode Details

4.3.4.1 Adding Wait States to Burst Cycles

Burst cycles need not return data on every clock. The Intel486 processor strobes data into the chip
only when either RDY# or BRDY# is asserted. Deasserting BRDY# and RDY# adds a wait state
to the transfer. A burst cycle where two clocks are required for every burst item is shown in
Figure 4-17.

Figure 4-17. Slow Burst Cycle

242202-038

CLK

ADS#

A31–A2
M/IO#
D/C#
W/R#

KEN#

RDY#

BLAST#

DATA

Ti T1 T2 T2 T2 T2 T2 T2 T2 T2

To Processor

BRDY#

A3–A2
BE3#–BE0#

†

† †††
4-26

BUS OPERATION
4.3.4.2 Burst and Cache Line Fill Order

The burst order used by the Intel486 processor is shown in Table 4-8. This burst order is followed
by any burst cycle (cache or not), cache line fill (burst or not) or code prefetch.

The Intel486 processor presents each request for data in an order determined by the first address
in the transfer. For example, if the first address was 104 the next three addresses in the burst will
be 100, 10C and 108. An example of burst address sequencing is shown in Figure 4-18.

Figure 4-18. Burst Cycle Showing Order of Addresses

The sequences shown in Table 4-8 accommodate systems with 64-bit buses as well as systems
with 32-bit data buses. The sequence applies to all bursts, regardless of whether the purpose of
the burst is to fill a cache line, perform a 64-bit read, or perform a pre-fetch. If either BS8# or
BS16# is asserted, the Intel486 processor completes the transfer of the current 32-bit word before

Table 4-8. Burst Order (Both Read and Write Bursts)

First Address Second Address Third Address Fourth Address

0 4 8 C

4 0 C 8

8 C 0 4

C 8 4 0

242202-039

CLK

ADS#

A31–A2

RDY#

BLAST#

DATA

Ti

To Processor

T1 T2 T2 T2 T2 Ti

KEN#

BRDY#

104 100 10C 108

†

† †††
4-27

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
progressing to the next 32-bit word. For example, a BS16# burst to address 4 has the following
order: 4-6-0-2-C-E-8-A.

4.3.4.3 Interrupted Burst Cycles

Some memory systems may not be able to respond with burst cycles in the order defined in Table
4-8. To support these systems, the Intel486 processor allows a burst cycle to be interrupted at any
time. The Intel486 processor automatically generates another normal bus cycle after being inter-
rupted to complete the data transfer. This is called an interrupted burst cycle. The external system
can respond to an interrupted burst cycle with another burst cycle.

The external system can interrupt a burst cycle by asserting RDY# instead of BRDY#. RDY# can
be asserted after any number of data cycles terminated with BRDY#.

An example of an interrupted burst cycle is shown in Figure 4-19. The Intel486 processor imme-
diately asserts ADS# to initiate a new bus cycle after RDY# is asserted. BLAST# is deasserted
one clock after ADS# begins the second bus cycle, indicating that the transfer is not complete.

Figure 4-19. Interrupted Burst Cycle

KEN# need not be asserted in the first data cycle of the second part of the transfer shown in
Figure 4-20. The cycle had been converted to a cache fill in the first part of the transfer and the
Intel486 processor expects the cache fill to be completed. Note that the first half and second half
of the transfer in Figure 4-19 are both two-cycle burst transfers.

242202-067

CLK

ADS#

A31–A2

BRDY#

BLAST#

DATA

Ti T1 T2 Ti

To Processor

T2 T1 T2 T2

KEN#

RDY#

104 100 10C 108

†

† † ††
4-28

BUS OPERATION
The order in which the Intel486 processor requests operands during an interrupted burst transfer
is shown by Table 4-7 on page 4-11. Mixing RDY# and BRDY# does not change the order in
which operand addresses are requested by the Intel486 processor.

An example of the order in which the Intel486 processor requests operands during a cycle in
which the external system mixes RDY# and BRDY# is shown in Figure 4-20. The Intel486 pro-
cessor initially requests a transfer beginning at location 104. The transfer becomes a cache line
fill when the external system asserts KEN#. The first cycle of the cache fill transfers the contents
of location 104 and is terminated with RDY#. The Intel486 processor drives out a new request
(by asserting ADS#) to address 100. If the external system terminates the second cycle with
BRDY#, the Intel486 processor next requests/expects address 10C. The correct order is deter-
mined by the first cycle in the transfer, which may not be the first cycle in the burst if the system
mixes RDY# with BRDY#.

Figure 4-20. Interrupted Burst Cycle with Non-Obvious Order of Addresses

4.3.5 8- and 16-Bit Cycles

The Intel486 processor supports both 16- and 8-bit external buses through the BS16# and BS8#
inputs. BS16# and BS8# allow the external system to specify, on a cycle-by-cycle basis, whether
the addressed component can supply 8, 16 or 32 bits. BS16# and BS8# can be used in burst cycles
as well as non-burst cycles. If both BS16# and BS8# are asserted for any bus cycle, the Intel486
processor responds as if only BS8# is asserted.

242202-068

CLK

ADS#

A31–A2

BRDY#

BLAST#

DATA

Ti T1 T2 Ti

To Processor

T1 T2 T2 T2

KEN#

RDY#

104 100 10C 108

†

† † † †
4-29

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

8#

les. For
ur 8-bit
cles.
The timing of BS16# and BS8# is the same as that of KEN#. BS16# and BS8# must be asserted
before the first RDY# or BRDY# is asserted. Asserting BS16# and BS8# can force the Intel486
processor to run additional cycles to complete what would have been only a single 32-bit cycle.
BS8# and BS16# may change the state of BLAST# when they force subsequent cycles from the
transfer.

Figure 4-21 shows an example in which BS8# forces the Intel486 processor to run two extra cy-
cles to complete a transfer. The Intel486 processor issues a request for 24 bits of information. The
external system asserts BS8#, indicating that only eight bits of data can be supplied per cycle. The
Intel486 processor issues two extra cycles to complete the transfer.

Figure 4-21. 8-Bit Bus Size Cycle

Extra cycles forced by BS16# and BS8# signals should be viewed as independent bus cycles.
BS16# and BS8# should be asserted for each additional cycle unless the addressed device can
change the number of bytes it can return between cycles. The Intel486 processor deasserts
BLAST# until the last cycle before the transfer is complete.

Refer to Section 4.1.2, “Dynamic Data Bus Sizing,” for the sequencing of addresses when BS
or BS16# are asserted.

During burst cycles, BS8# and BS16# operate in the same manner as during non-burst cyc
example, a single non-cacheable read could be transferred by the Intel486 processor as fo
burst data cycles. Similarly, a single 32-bit write could be written as four 8-bit burst data cy
An example of a burst write is shown in Figure 4-22. Burst writes can only occur if BS8# or
BS16# is asserted.

242202-069

CLK

ADS#

A31–A2
M/IO#
D/C#
W/R#

RDY#

BLAST#

DATA

Ti T1 T2 Ti

To Processor

T1 T2 T1 T2

BS8#

BE3#–BE0#

†

† † †
4-30

BUS OPERATION
Figure 4-22. Burst Write as a Result of BS8# or BS16#

4.3.6 Locked Cycles

Locked cycles are generated in software for any instruction that performs a read-modify-write op-
eration. During a read-modify-write operation, the Intel486 processor can read and modify a vari-
able in external memory and ensure that the variable is not accessed between the read and write.

Locked cycles are automatically generated during certain bus transfers. The XCHG (exchange)
instruction generates a locked cycle when one of its operands is memory-based. Locked cycles
are generated when a segment or page table entry is updated and during interrupt acknowledge
cycles. Locked cycles are also generated when the LOCK instruction prefix is used with selected
instructions.

Locked cycles are implemented in hardware with the LOCK# pin. When LOCK# is asserted, the
Intel486 processor is performing a read-modify-write operation and the external bus should not
be relinquished until the cycle is complete. Multiple reads or writes can be locked. A locked cycle
is shown in Figure 4-23. LOCK# is asserted with the address and bus definition pins at the begin-
ning of the first read cycle and remains asserted until RDY# is asserted for the last write cycle.
For unaligned 32-bit read-modify-write operations, the LOCK# remains asserted for the entire
duration of the multiple cycle. It deasserts when RDY# is asserted for the last write cycle.

242202–143

CLK

ADS#

BE3#–BE0#

RDY#

BLAST#

DATA

Ti

From Processor

T1 T2 T2 T2 T2 Ti

BS8#

BRDY#

ADDR
SPEC

‡

‡

4-31

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
When LOCK# is asserted, the Intel486 processor recognizes address hold and backoff but does
not recognize bus hold. It is left to the external system to properly arbitrate a central bus when the
Intel486 processor generates LOCK#.

Figure 4-23. Locked Bus Cycle

4.3.7 Pseudo-Locked Cycles

Pseudo-locked cycles assure that no other master is given control of the bus during operand trans-
fers that take more than one bus cycle.

For the Intel486 processor, examples include 64-bit description loads and cache line fills.

Pseudo-locked transfers are indicated by the PLOCK# pin. The memory operands must be
aligned for correct operation of a pseudo-locked cycle.

PLOCK# need not be examined during burst reads. A 64-bit aligned operand can be retrieved in
one burst (note that this is only valid in systems that do not interrupt bursts).

The system must examine PLOCK# during 64-bit writes since the Intel486 processor cannot
burst write more than 32 bits. However, burst can be used within each 32-bit write cycle if BS8#
or BS16# is asserted. BLAST is de-asserted in response to BS8# or BS16#. A 64-bit write is driv-
en out as two non-burst bus cycles. BLAST# is asserted during both 32-bit writes, because a burst
is not possible. PLOCK# is asserted during the first write to indicate that another write follows.
This behavior is shown in Figure 4-24.

242202-080

TiT2T1T2T1Ti

CLK

ADS#

A31–A2
M/IO#
D/C#

BE3#–BE0#

W/R#

RDY#

DATA

LOCK#

To Processor
From Processor

Read Write

‡
†

† ‡
4-32

BUS OPERATION
The first cycle of a 64-bit floating-point write is the only case in which both PLOCK# and
BLAST# are asserted. Normally PLOCK# and BLAST# are the inverse of each other.

During all of the cycles in which PLOCK# is asserted, HOLD is not acknowledged until the cycle
completes. This results in a large HOLD latency, especially when BS8# or BS16# is asserted. To
reduce the HOLD latency during these cycles, windows are available between transfers to allow
HOLD to be acknowledged during non-cacheable code prefetches. PLOCK# is asserted because
BLAST# is deasserted, but PLOCK# is ignored and HOLD is recognized during the prefetch.

PLOCK# can change several times during a cycle, settling to its final value in the clock in which
RDY# is asserted.

4.3.7.1 Floating-Point Read and Write Cycles

For IntelDX2 and Write-Back Enhanced IntelDX4 processors, 64-bit floating-point read and
write cycles are also examples of operand transfers that take more than one bus cycle.

Figure 4-24. Pseudo Lock Timing

4.3.8 Invalidate Cycles

Invalidate cycles keep the Intel486 processor internal cache contents consistent with external
memory. The Intel486 processor contains a mechanism for monitoring writes by other devices to
external memory. When the Intel486 processor finds a write to a section of external memory con-
tained in its internal cache, the Intel486 processor’s internal copy is invalidated.

TiT2T1T2T1Ti

CLK

ADS#

A31–A2
M/IO#
D/C#

BE3#–BE0#

W/R#

RDY#

BLAST#

From Processor

DATA

PLOCK#

Write Write

‡

‡ ‡

242202-144
4-33

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Invalidations use two pins, address hold request (AHOLD) and valid external address (EADS#).
There are two steps in an invalidation cycle. First, the external system asserts the AHOLD input
forcing the Intel486 processor to immediately relinquish its address bus. Next, the external sys-
tem asserts EADS#, indicating that a valid address is on the Intel486 processor address bus.
Figure 4-25 shows the fastest possible invalidation cycle. The Intel486 processor recognizes
AHOLD on one CLK edge and floats the address bus in response. To allow the address bus to
float and avoid contention, EADS# and the invalidation address should not be driven until the
following CLK edge. The Intel486 processor reads the address over its address lines. If the
Intel486 processor finds this address in its internal cache, the cache entry is invalidated. Note that
the Intel486 processor address bus is input/output, unlike the Intel386 processor’s bus, which is
output only.

Figure 4-25. Fast Internal Cache Invalidation Cycle

242202-091

CLK

ADS#

ADDR

BREQ

DATA

Ti T1 T2 Ti

To Processor†

Ti Ti T1 T2

EADS#

AHOLD

RDY#

† †

†

4-34

BUS OPERATION

Figure 4-26. Typical Internal Cache Invalidation Cycle

4.3.8.1 Rate of Invalidate Cycles

The Intel486 processor can accept one invalidate per clock except in the last clock of a line fill.
One invalidate per clock is possible as long as EADS# is deasserted in ONE or BOTH of the fol-
lowing cases:

1. In the clock in which RDY# or BRDY# is asserted for the last time.

2. In the clock following the clock in which RDY# or BRDY# is asserted for the last time.

This definition allows two system designs. Simple designs can restrict invalidates to one every
other clock. The simple design need not track bus activity. Alternatively, systems can request one
invalidate per clock provided that the bus is monitored.

4.3.8.2 Running Invalidate Cycles Concurrently with Line Fills

Precautions are necessary to avoid caching stale data in the Intel486 processor cache in a system
with a second-level cache. An example of a system with a second-level cache is shown in
Figure 4-27.

An external device can write to main memory over the system bus while the Intel486 processor
is retrieving data from the second-level cache. The Intel486 processor must invalidate a line in its
internal cache if the external device is writing to a main memory address that is also contained in
the Intel486 processor cache.

242202-092

CLK

ADS#

ADDR

RDY#

BREQ

DATA

Ti T1 T2 T2

To Processor

Ti Ti T1 T1

EADS#

AHOLD

†

†

†

4-35

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
A potential problem exists if the external device is writing to an address in external memory, and
at the same time the Intel486 processor is reading data from the same address in the second-level
cache. The system must force an invalidation cycle to invalidate the data that the Intel486 pro-
cessor has requested during the line fill.

Figure 4-27. System with Second-Level Cache

Intel486™

Processor

Second-Level
Cache

System Bus

External
Memory

External Bus
Master

Address, Data and
Control Bus

Address, Data and
Control Bus
4-36

BUS OPERATION

ed (in
e fill)

cache.
If the system asserts EADS# before the first data in the line fill is returned to the Intel486 proces-
sor, the system must return data consistent with the new data in the external memory upon re-
sumption of the line fill after the invalidation cycle. This is illustrated by the asserted EADS#
signal labeled “1” in Figure 4-28.

If the system asserts EADS# at the same time or after the first data in the line fill is return
the same clock that the first RDY# or BRDY# is asserted or any subsequent clock in the lin
the data is read into the Intel486 processor input buffers but it is not stored in the on-chip
This is illustrated by asserted EADS# signal labeled “2” in Figure 4-28. The stale data is used to
satisfy the request that initiated the cache fill cycle.

Figure 4-28. Cache Invalidation Cycle Concurrent with Line Fill

242202-093

NOTES:
1. Data returned must be consistent if its address equals the invalidation address in this clock.
2. Data returned is not cached if its address equals the invalidation address in this clock.

CLK

ADS#

ADDR

AHOLD

RDY#

DATA

Ti T1 T2 T2 T2 T2 T2 T2 Ti

To Processor

EADS#

1 2

BRDY#

KEN#

†

† †††

††
4-37

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
4.3.9 Bus Hold

The Intel486 processor provides a bus hold, hold acknowledge protocol using the bus hold re-
quest (HOLD) and bus hold acknowledge (HLDA) pins. Asserting the HOLD input indicates that
another bus master has requested control of the Intel486 processor bus. The Intel486 processor
responds by floating its bus and asserting HLDA when the current bus cycle, or sequence of
locked cycles, is complete. An example of a HOLD/HLDA transaction is shown in Figure 4-29.
Unlike the Intel386 processor, the Intel486 processor can respond to HOLD by floating its bus
and asserting HLDA while RESET is asserted.

Figure 4-29. HOLD/HLDA Cycles

Note that HOLD is recognized during un-aligned writes (less than or equal to 32 bits) with
BLAST# being asserted for each write. For a write greater than 32-bits or an un-aligned write,
HOLD# recognition is prevented by PLOCK# getting asserted. However, HOLD is recognized
during non-cacheable, non-burstable code prefetches even though PLOCK# is asserted.

242202-146

CLK

ADS#

A31–A2
M/IO#
D/C#
W/R#

BE3#–BE0#

RDY#

DATA

HLDA

Ti

From Processor

Ti T1 T2 Ti Ti T1

‡

HOLD

‡

4-38

BUS OPERATION

K#,
For cacheable and non-burst or burst cycles, HOLD is acknowledged during backoff only if
HOLD and BOFF# are asserted during an active bus cycle (after ADS# asserted) and before the
first RDY# or BRDY# has been asserted (see Figure 4-30). The order in which HOLD and
BOFF# are asserted is unimportant (as long as both are asserted prior to the first RDY#/BRDY#
asserted by the system). Figure 4-30 shows the case where HOLD is asserted first; HOLD could
be asserted simultaneously or after BOFF# and still be acknowledged.

The pins floated during bus hold are: BE3#–BE0#, PCD, PWT, W/R#, D/C#, M/O#, LOC
PLOCK#, ADS#, BLAST#, D31–D0, A31–A2, and DP3–DP0.

Figure 4-30. HOLD Request Acknowledged during BOFF#

242202-095

CLK

ADS#

M/IO#

D/C#

KEN#

BRDY#

RDY#

W/R#

HOLD

HLDA

BOFF#

Ti Ti Ti Ti Ti T1 T2 Ti Ti Ti Ti
4-39

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

1#
e is 0

 RDY#
 pro-

ow for
4.3.10 Interrupt Acknowledge

The Intel486 processor generates interrupt acknowledge cycles in response to maskable interrupt
requests that are generated on the interrupt request input (INTR) pin. Interrupt acknowledge cy-
cles have a unique cycle type generated on the cycle type pins.

An example of an interrupt acknowledge transaction is shown in Figure 4-31. Interrupt acknowl-
edge cycles are generated in locked pairs. Data returned during the first cycle is ignored. The in-
terrupt vector is returned during the second cycle on the lower 8 bits of the data bus. The Intel486
processor has 256 possible interrupt vectors.

The state of A2 distinguishes the first and second interrupt acknowledge cycles. The byte address
driven during the first interrupt acknowledge cycle is 4 (A31–A3 low, A2 high, BE3#–BE
high, and BE0# low). The address driven during the second interrupt acknowledge cycl
(A31–A2 low, BE3#–BE1# high, BE0# low).

Each of the interrupt acknowledge cycles is terminated when the external system asserts
or BRDY#. Wait states can be added by holding RDY# or BRDY# deasserted. The Intel486
cessor automatically generates four idle clocks between the first and second cycles to all
8259A recovery time.

Figure 4-31. Interrupt Acknowledge Cycles

CLK

ADS#

ADDR

RDY#

DATA

Ti T1 T2 Ti Ti T1 T2 Ti

To Processor†

LOCK#

4 Clocks

†

04 00

242202-096
4-40

BUS OPERATION

D31–

I, or

cess a
ntered
 spe-

CLK#
 the
0010H
DY# or
s been

Data
4.3.11 Special Bus Cycles

The Intel486 processor provides special bus cycles to indicate that certain instructions have been
executed, or certain conditions have occurred internally. The special bus cycles are identified by
the status of the pins shown in Table 4-9.

During these cycles the address bus is driven low while the data bus is undefined.

Two of the special cycles indicate halt or shutdown. Another special cycle is generated when the
Intel486 processor executes an INVD (invalidate data cache) instruction and could be used to
flush an external cache. The Write Back cycle is generated when the Intel486 processor executes
the WBINVD (write-back invalidate data cache) instruction and could be used to synchronize an
external write-back cache.

The external hardware must acknowledge these special bus cycles by asserting RDY# or
BRDY#.

4.3.11.1 HALT Indication Cycle

The Intel486 processor halts as a result of executing a HALT instruction. A HALT indication cy-
cle is performed to signal that the processor has entered into the HALT state. The HALT indica-
tion cycle is identified by the bus definition signals in special bus cycle state and by a byte address
of 2. BE0# and BE2# are the only signals that distinguish HALT indication from shutdown indi-
cation, which drives an address of 0. During the HALT cycle, undefined data is driven on
D0. The HALT indication cycle must be acknowledged by RDY# asserted.

A halted Intel486 processor resumes execution when INTR (if interrupts are enabled), NM
RESET is asserted.

4.3.11.2 Shutdown Indication Cycle

The Intel486 processor shuts down as a result of a protection fault while attempting to pro
double fault. A shutdown indication cycle is performed to indicate that the processor has e
a shutdown state. The shutdown indication cycle is identified by the bus definition signals in
cial bus cycle state and a byte address of 0.

4.3.11.3 Stop Grant Indication Cycle

A special Stop Grant bus cycle is driven to the bus after the processor recognizes the STP
interrupt. The definition of this bus cycle is the same as the HALT cycle definition for
Intel486 processor, with the exception that the Stop Grant bus cycle drives the value 0000
on the address pins. The system hardware must acknowledge this cycle by asserting R
BRDY#. The processor does not enter the Stop Grant state until either RDY# or BRDY# ha
asserted. (See Figure 4-32.)

The Stop Grant Bus Cycle is defined as follows:

M/IO# = 0, D/C# = 0, W/R# = 1, Address Bus = 0000 0010H (A4 = 1), BE3#–BE0# = 1011,
bus = undefined.
4-41

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
The latency between a STPCLK# request and the Stop Grant bus cycle is dependent on the cur-
rent instruction, the amount of data in the processor write buffers, and the system memory per-
formance.

Figure 4-32. Stop Grant Bus Cycle

Table 4-9. Special Bus Cycle Encoding

Cycle Name M/IO# D/C# W/R# BE3#–BE0# A4-A2

Write-Back† 0 0 1 0111 000

First Flush Ack Cycle† 0 0 1 0111 001

Flush† 0 0 1 1101 000

Second Flush Ack Cycle† 0 0 1 1101 001

Shutdown 0 0 1 1110 000

HALT 0 0 1 1011 000

Stop Grant Ack Cycle 0 0 1 1011 100
† These cycles are specific to the Write-Back Enhanced IntelDX4™ processor. The FLUSH# cycle is

applicable to all Intel486™ processors. See appropriate sections for details.

STPCLK#

CLK

A4401-01

Stop Grant Cycle

BRDY# or RDY#

ADDR Data

ThdTsu
4-42

BUS OPERATION
4.3.12 Bus Cycle Restart

In a multi-master system, another bus master may require the use of the bus to enable the Intel486
processor to complete its current bus request. In this situation, the Intel486 processor must restart
its bus cycle after the other bus master has completed its bus transaction.

A bus cycle may be restarted if the external system asserts the backoff (BOFF#) input. The
Intel486 processor samples the BOFF# pin every clock cycle. When BOFF# is asserted, the
Intel486 processor floats its address, data, and status pins in the next clock (see Figures 4-33 and
4-34). Any bus cycle in progress when BOFF# is asserted is aborted and any data returned to the
processor is ignored. The pins that are floated in response to BOFF# are the same as those that
are floated in response to HOLD. HLDA is not generated in response to BOFF#. BOFF# has
higher priority than RDY# or BRDY#. If either RDY# or BRDY# are asserted in the same clock
as BOFF#, BOFF# takes effect.

Figure 4-33. Restarted Read Cycle

242202-097

CLK

Ti T1 T2 Tb Tb T1b T2 T2 T2 T2 T2

ADS#

A31–A2
M/IO#
D/C#

BE3#–BE0#

KEN#

RDY#

BLAST#

DATA

To Processor†

BRDY#

BOFF#

100 100 104 108 10C

† † † †
4-43

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

lock
Figure 4-34. Restarted Write Cycle

The device asserting BOFF# is free to run cycles while the Intel486 processor bus is in its high
impedance state. If backoff is requested after the Intel486 processor has started a cycle, the new
master should wait for memory to assert RDY# or BRDY# before assuming control of the bus.
Waiting for RDY# or BRDY# provides a handshake to ensure that the memory system is ready
to accept a new cycle. If the bus is idle when BOFF# is asserted, the new master can start its cycle
two clocks after issuing BOFF#.

The external memory can view BOFF# in the same manner as BLAST#. Asserting BOFF# tells
the external memory system that the current cycle is the last cycle in a transfer.

The bus remains in the high impedance state until BOFF# is deasserted. Upon negation, the
Intel486 processor restarts its bus cycle by driving out the address and status and asserting ADS#.
The bus cycle then continues as usual.

Asserting BOFF# during a burst, BS8#, or BS16# cycle forces the Intel486 processor to ignore
data returned for that cycle only. Data from previous cycles is still valid. For example, if BOFF#
is asserted on the third BRDY# of a burst, the Intel486 processor assumes the data returned with
the first and second BRDY# is correct and restarts the burst beginning with the third item. The
same rule applies to transfers broken into multiple cycles by BS8# or BS16#.

Asserting BOFF# in the same clock as ADS# causes the Intel486 processor to float its bus in the
next clock and leave ADS# floating low. Because ADS# is floating low, a peripheral may think
that a new bus cycle has begun even though the cycle was aborted. There are two possible solu-
tions to this problem. The first is to have all devices recognize this condition and ignore ADS#
until RDY# is asserted. The second approach is to use a “two clock” backoff: in the first c

242202-147

CLK

ADS#

ADDR
SPEC

BRDY#

DATA

Ti T1 T2 Ti

From Processor‡

Tb Tb T1b T2

BOFF#

RDY#

100 100

‡ ‡
4-44

BUS OPERATION
AHOLD is asserted, and in the second clock BOFF# is asserted. This guarantees that ADS# is
not floating low. This is necessary only in systems where BOFF# may be asserted in the same
clock as ADS#.

4.3.13 Bus States

A bus state diagram is shown in Figure 4-35. A description of the signals used in the diagram is
given in Table 4-10.

Figure 4-35. Bus State Diagram

240950–069

Ti T1 T2

T1bTb

Request Pending ·
HOLD Deasserted ·
AHOLD Deasserted ·
BOFF# Deasserted

(BRDY# · BLAST#) Asserted) ·

HOLD Deasserted · AHOLD Deasserted · BOFF# Deasserted

AHOLD Deasserted ·
BOFF# Deasserted ·
(HOLD) Deasserted†

(RDY# Asserted + (BRDY# · BLAST#) Asserted) ·

(HOLD + AHOLD + No Request) · BOFF# Deasserted

Request Pending · (RDY# Asserted +

BOFF# Asserted

BOFF#
Deasserted

BOFF#
Asserted

BOFF# Deasserted

BOFF# Asserted

† HOLD is only factored into this state transition if Tb was
entered while a non-cacheable. non-burst, code prefetch was
in progress. Otherwise, ignore HOLD.
4-45

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

. How-

 and in
g upon

curs

,

next
4.3.14 Floating-Point Error Handling for the IntelDX2™ and IntelDX4™
Processors

The IntelDX2 and IntelDX4 processors provide two options for reporting floating-point errors.
The simplest method is to raise interrupt 16 whenever an unmasked floating-point error occurs.
This option may be enabled by setting the NE bit in control register 0 (CR0).

The IntelDX2 and IntelDX4 processors also provide the option of allowing external hardware to
determine how floating-point errors are reported. This option is necessary for compatibility with
the error reporting scheme used in DOS-based systems. The NE bit must be cleared in CR0 to
enable user-defined error reporting. User-defined error reporting is the default condition because
the NE bit is cleared on reset.

Two pins, floating-point error (FERR#, an output) and ignore numeric error (IGNNE#, an input)
are provided to direct the actions of hardware if user-defined error reporting is used. The
IntelDX2 and IntelDX4 processors assert the FERR# output to indicate that a floating-point error
has occurred. FERR# corresponds to the ERROR# pin on the Intel387™ math coprocessor
ever, there is a difference in the behavior of the two.

In some cases FERR# is asserted when the next floating-point instruction is encountered,
other cases it is asserted before the next floating-point instruction is encountered, dependin
the execution state of the instruction causing the exception.

4.3.14.1 Floating-Point Exceptions

The following class of floating-point exceptions drive FERR# at the time the exception oc
(i.e., before encountering the next floating-point instruction).

1. The stack fault, invalid operation, and denormal exceptions on all transcendental
instructions, integer arithmetic instructions, FSQRT, FSEALE, FPREM(1), FXTRACT
FBLD, and FBSTP.

2. Any exceptions on store instructions (including integer store instructions).

The following class of floating-point exceptions drive FERR# only after encountering the
floating-point instruction.

Table 4-10. Bus State Description

State Means

Ti Bus is idle. Address and status signals may be driven to undefined values, or the bus may be floated
to a high impedance state.

T1 First clock cycle of a bus cycle. Valid address and status are driven and ADS# is asserted.

T2 Second and subsequent clock cycles of a bus cycle. Data is driven if the cycle is a write, or data is
expected if the cycle is a read. RDY# and BRDY# are sampled.

T1b First clock cycle of a restarted bus cycle. Valid address and status are driven and ADS# is asserted.

Tb Second and subsequent clock cycles of an aborted bus cycle.
4-46

BUS OPERATION
3. Exceptions other than on all transcendental instructions, integer arithmetic instructions,
FSQRT, FSCALE, FPREM(1), FXTRACT, FBLD, and FBSTP.

4. Any exception on all basic arithmetic, load, compare, and control instructions (i.e., all
other instructions).

For both sets of exceptions above, the Intel387 math coprocessor asserts ERROR# when the error
occurs and does not wait for the next floating-point instruction to be encountered.

IGNNE# is an input to the IntelDX2 and IntelDX4 processors. When the NE bit in CR0 is cleared,
and IGNNE# is asserted, the IntelDX2 and IntelDX4 processors ignore user floating-point errors
and continue executing floating-point instructions. When IGNNE# is deasserted, the IGNNE# is
an input to these processors that freeze on floating-point instructions that get errors (except for
the control instructions FNCLEX, FNINIT, FNSAVE, FNSTENV, FNSTCW, FNSTSW,
FNSTSW AX, FNENI, FNDISI and FNSETPM). IGNNE# may be asynchronous to the IntelDX2
and IntelDX4 processor clock.

In systems with user-defined error reporting, the FERR# pin is connected to the interrupt control-
ler. When an unmasked floating-point error occurs, an interrupt is raised. If IGNNE# is high at
the time of this interrupt, the IntelDX2 and IntelDX4 processors freeze (disallowing execution of
a subsequent floating-point instruction) until the interrupt handler is invoked. By driving the
IGNNE# pin low (when clearing the interrupt request), the interrupt handler can allow execution
of a floating-point instruction, within the interrupt handler, before the error condition is cleared
(by FNCLEX, FNINIT, FNSAVE or FNSTENV). If execution of a non-control floating-point in-
struction, within the floating-point interrupt handler, is not needed, the IGNNE# pin can be tied
high.

4.3.15 IntelDX2™ and IntelDX4™ Processors Floating-Point Error Handling in
AT-Compatible Systems

The IntelDX2 and IntelDX4 processors provide special features to allow the implementation of
an AT-compatible numerics error reporting scheme. These features DO NOT replace the external
circuit. Logic is still required that decodes the OUT F0 instruction and latches the FERR# signal.
The use of these Intel Processor features is described below.

• The NE bit in the Machine Status Register

• The IGNNE# pin

• The FERR# pin

The NE bit determines the action taken by the IntelDX2 and IntelDX4 processors when a numer-
ics error is detected. When set, this bit signals that non-DOS compatible error handling is imple-
mented. In this mode the IntelDX2 and IntelDX4 processors take a software exception (16) if a
numerics error is detected.

If the NE bit is reset, the IntelDX2 and IntelDX4 processors use the IGNNE# pin to allow an ex-
ternal circuit to control the time at which non-control numerics instructions are allowed to exe-
cute. Note that floating-point control instructions such as FNINIT and FNSAVE can be executed
during a floating-point error condition regardless of the state of IGNNE#.
4-47

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
To process a floating-point error in the DOS environment, the following sequence must take
place:

1. The error is detected by the IntelDX2 and IntelDX4 processor that activates the FERR#
pin.

2. FERR# is latched so that it can be cleared by the OUT F0 instruction.

3. The latched FERR# signal activates an interrupt at the interrupt controller. This interrupt
is usually handled on IRQ13.

4. The Interrupt Service Routine (ISR) handles the error and then clears the interrupt by
executing an OUT instruction to port F0. The address F0 is decoded externally to clear the
FERR# latch. The IGNNE# signal is also activated by the decoder output.

5. Usually the ISR then executes an FNINIT instruction or other control instruction before
restarting the program. FNINIT clears the FERR# output.

Figure 4-36 illustrates a sample circuit that performs the function described above. Note that this
circuit has not been tested and is included as an example of required error handling logic.

Note that the IGNNE# input allows non-control instructions to be executed prior to the time the
FERR# signal is reset by the IntelDX2 and IntelDX4 processors. This function is implemented
to allow exact compatibility with the AT implementation. Most programs re-initialize the Float-
ing-Point Unit (FPU) before continuing after an error is detected. The FPU can be re-initialized
using one of the following four instructions: FCLEX, FINIT, FSAVE and FSTENV.
4-48

BUS OPERATION

Figure 4-36. DOS-Compatible Numerics Error Circuit

RESET

VCC

5V

VCC

VCC

I/O Port 0F0H
Address decoder

Processor Bus

FERR#

Intel486™
Processor

IGNNE#

INTR

8259A
Programmable
Interrupt
ControllerIRQ13

Q

Q

Q

Q
CLR

CLR
D

D

PR

PR
4-49

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

he in-
ode,

te-Back
e inter-

des. In

les

 the

is
ck in
 “slow
4.4 ENHANCED BUS MODE OPERATION (WRITE-BACK MODE) FOR THE
WRITE-BACK ENHANCED IntelDX4™ PROCESSOR

All Intel486™ processors operate in Standard Bus (write-through) mode. However, when t
ternal cache of the Write-Back Enhanced IntelDX4 processor is configured in write-back m
the processor bus operates in the Enhanced Bus mode. This section describes how the Wri
Enhanced Intel486 processor bus operation changes for the Enhanced Bus mode when th
nal cache is configured in write-back mode.

4.4.1 Summary of Bus Differences

The following is a list of the differences between the Enhanced Bus and Standard Bus mo
Enhanced Bus mode:

1. Burst write capability is extended to four doubleword burst cycles (for write-back cyc
only).

2. Four new signals: INV, WB/WT#, HITM#, and CACHE#, have been added to support
write-back operation of the internal cache. These signals function the same as the
equivalent signals on the Pentium® OverDrive® processor pins.

3. The SRESET signal has been modified so that it does not write back, invalidate, or disable
the cache. Special test modes are also not initiated through SRESET.

4. The FLUSH# signal behaves the same as the WBINVD instruction. Upon assertion,
FLUSH# writes back all modified lines, invalidates the cache, and issues two special bus
cycles.

5. The PLOCK# signal remains deasserted.

4.4.2 Burst Cycles

Figure 4-37 shows a basic burst read cycle of the Write-Back Enhanced IntelDX4 processor. In
the Enhanced Bus mode, both PCD and CACHE# are asserted if the cycle is internally cacheable.
The Write-Back Enhanced IntelDX4 processor samples KEN# in the clock before the first
BRDY#. If KEN# is asserted by the system, this cycle is transformed into a multiple-transfer cy-
cle. With each data item returned from external memory, the data is “cached” only if KEN
asserted again in the clock before the last BRDY# signal. Data is sampled only in the clo
which BRDY# is asserted. If the data is not sent to the processor every clock, it causes a
burst” cycle.
4-50

BUS OPERATION
Figure 4-37. Basic Burst Read Cycle

4.4.2.1 Non-Cacheable Burst Operation

When CACHE# is asserted on a read cycle, the processor follows with BLAST# high when
KEN# is asserted. However, the converse is not true. The Write-Back Enhanced IntelDX4 pro-
cessor may elect to read burst data that are identified as non-cacheable by either CACHE# or
KEN#. In this case, BLAST# is also high in the same cycle as the first BRDY# (in clock four).
To improve performance, the memory controller should try to complete the cycle as a burst cycle.

The assertion of CACHE# on a write cycle signifies a replacement or snoop write-back cycle.
These cycles consist of four doubleword transfers (either bursts or non-burst). The signals KEN#
and WB/WT# are not sampled during write-back cycles because the processor does not attempt
to redefine the cacheability of the line.

4.4.2.2 Burst Cycle Signal Protocol

The signals from ADS# through BLAST#, which are shown in Figure 4-37, have the same func-
tion and timing in both Standard Bus and Enhanced Bus modes. Burst cycles can be up to 16-
bytes long (four aligned doublewords) and can start with any one of the four doublewords. The
sequence of the addresses is determined by the first address and the sequence follows the order

242202-149

CLK

ADS#

A31–A4
M/IO#
D/C#
W/R#

A3–A2

BLAST#

CACHE#

BRDY#

WB/WT#

1 2 3 4 5 6 7 8 9 10 11 12 13

PCD

KEN#

0 4 8 C
4-51

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

/R#.
Y#
e as
ted by
cles.
 or
hanced

the

formed

 inval-
essor
icular
dicate
4 pro-
ovided
line
e also

it for
under
g the
shown in Table 4-8 on page 4-27. The burst order for reads is the same as the burst order for
writes. (See Section 4.3.4.2, “Burst and Cache Line Fill Order.”)

An attempted line fill caused by a read miss is indicated by the assertion of CACHE# and W
For a line fill to occur, the system must assert KEN# twice: one clock prior to the first BRD
and one clock prior to last BRDY#. It takes only one deassertion of KEN# to mark the lin
non-cacheable. A write-back cycle of a cache line, due to replacement or snoop, is indica
the assertion of CACHE# low and W/R# high. KEN# has no effect during write-back cy
CACHE# is valid from the assertion of ADS# through the clock in which the first RDY#
BRDY# is asserted. CACHE# is deasserted at all other times. PCD behaves the same in En
Bus mode as in Standard Bus mode, except that it is low during write-back cycles.

The Write-Back Enhanced IntelDX4 processor samples WB/WT# once, in the same clock as the
first BRDY#. This sampled value of WB/WT# is combined with PWT to bring the line into
internal cache, either as a write-back line or write-through line.

4.4.3 Cache Consistency Cycles

The system performs snooping to maintain cache consistency. Snoop cycles can be per
under AHOLD, BOFF#, or HOLD, as described in Table 4-11.

The snoop cycle begins by checking whether a particular cache line has been “cached” and
idates the line based on the state of the INV pin. If the Write-Back Enhanced IntelDX4 proc
is configured in Enhanced Bus mode, the system must drive INV high to invalidate a part
cache line. The Write-Back Enhanced IntelDX4 processor does not have an output pin to in
a snoop hit to an S-state line or an E-state line. However, the Write-Back Enhanced IntelDX
cessor invalidates the line if the system snoop hits an S-state, E-state, or M-state line, pr
INV was driven high during snooping. If INV is driven low during a snoop cycle, a modified
is written back to memory and remains in the cache as a write-back line; a write-through lin
remains in the cache as a write-through line.

After asserting AHOLD or BOFF#, the external bus master driving the snoop cycle must wa
two clocks before driving the snoop address and asserting EADS#. If snooping is done
HOLD, the master performing the snoop must wait for at least one clock cycle before drivin

Table 4-11. Snoop Cycles under AHOLD, BOFF#, or HOLD

AHOLD

Floats the address bus. ADS# is asserted under AHOLD only to initiate a snoop write-back cycle.
An ongoing burst cycle is completed under AHOLD. For non-burst cycles, a specific non-burst
transfer (ADS#-RDY# transfer) is completed under AHOLD and fractured before the next
assertion of ADS#. A snoop write-back cycle is reordered ahead of a fractured non-burst cycle
and the non-burst cycle is completed only after the snoop write-back cycle is completed,
provided there are no other snoop write-back cycles scheduled.

BOFF#
Overrides AHOLD and takes effect in the next clock. On-going bus cycles will stop in the clock
following the assertion of BOFF# and resume when BOFF# is de-asserted. The snoop write-back
cycle begins after BOFF# is de-asserted followed by the backed-off cycle.

HOLD

HOLD is acknowledged only between bus cycles, except for a non-cacheable, non-burst code
prefetch cycle. In a non-cacheable, non-burst code prefetch cycle, HOLD is acknowledged after
the system asserts RDY#. Once HOLD is asserted, the processor blocks all bus activities until
the system releases the bus (by de-asserting HOLD).
4-52

BUS OPERATION
snoop addresses and asserting EADS#. INV should be driven low during read operations to min-
imize invalidations, and INV should be driven high to invalidate a cache line during write oper-
ations. The Write-Back Enhanced IntelDX4 processor asserts HITM# if the cycle hits a modified
line in the cache. This output signal becomes valid two clock periods after EADS# is valid on the
bus. HITM# remains asserted until the modified line is written back and remains asserted until
the RDY# or BRDY# of the snoop cycle is asserted. Snoop operations could interrupt an ongoing
bus operation in both the Standard Bus and Enhanced Bus modes. The Write-Back Enhanced
IntelDX4 processor can accept EADS# in every clock period while in Standard Bus mode. In En-
hanced Bus mode, the Write-Back Enhanced IntelDX4 processor can accept EADS# every other
clock period or until a snoop hits an M-state line. The Write-Back Enhanced IntelDX4 processor
does not accept any further snoop cycles inputs until the previous snoop write-back operation is
completed.

All write-back cycles adhere to the burst address sequence of 0-4-8-C. The CACHE#, PWT, and
PCD output pins are asserted and the KEN# and WB/WT# input pins are ignored. Write-back cy-
cles can be either burst or non-burst. All write-back operations write 16 bytes of data to memory
corresponding to the modified line that hit during the snoop.

NOTE
Note that the Write-Back Enhanced IntelDX4 processor accepts BS8# and
BS16# line-fill cycles, but not on replacement or snoop-forced write-back
cycles.
4-53

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
4.4.3.1 Snoop Collision with a Current Cache Line Operation

The system can also perform snooping concurrent with a cache access and may collide with a cur-
rent cache bus cycle. Table 4-12 lists some scenarios and the results of a snoop operation collid-
ing with an on-going cache fill or replacement cycle.

4.4.3.2 Snoop under AHOLD

Snooping under AHOLD begins by asserting AHOLD to force the Write-Back Enhanced
IntelDX4 processor to float the address bus, as shown in Figure 4-38. The ADS# for the write-
back cycle is guaranteed to occur no sooner than the second clock following the assertion of
HITM# (i.e., there is a dead clock between the assertion of HITM# and the first ADS# of the
snoop write-back cycle).

Table 4-12. Various Scenarios of a Snoop Write-Back Cycle Colliding with an On-Going
Cache Fill or Replacement Cycle

Arbi-
tration
Control

Snoop to the Line
That Is Being Filled

Snoop to a Different
Line than the Line

Being Filled

Snoop to the Line
That Is Being

Replaced

Snoop to a Different
Line than the Line
Being Replaced

AHOLD Read all line fill data
into cache line buffer.

Update cache only if
snoop occurred with
INV = 0

No write-back cycle
because the line has
not been modified
yet.

Complete fill if the
cycle is burst. Start
snoop write-back.

If the cycle is non-
burst, the snoop write-
back is reordered
ahead of the line fill.

After the snoop write-
back cycle is
completed, continue
with line fill.

Complete replacement
write-back if the cycle
is burst. Processor
does not initiate a
snoop write-back, but
asserts HITM# until
the replacement write-
back is completed.

If the replacement
cycle is non-burst, the
snoop write-back is re-
ordered ahead of the
replacement write-
back cycle. The
processor does not
continue with the
replacement write-
back cycle.

Complete replacement
write-back if it is a burst
cycle. Initiate snoop
write-back.

If the replacement write-
back is a non-burst cycle,
the snoop write-back
cycle is re-ordered in
front of the replacement
cycle. After the snoop
write-back, the
replacement write-back
is continued from the
interrupt point.

BOFF# Stop reading line fill
data

Wait for BOFF# to be
deasserted.
Continue read from
backed off point

Update cache only if
snoop occurred with
INV = ’0’.

Stop fill

Wait for BOFF# to be
deasserted.

Do snoop write-back

Continue fill from
interrupt point.

Stop replacement
write-back

Wait for BOFF# to be
deasserted.

Initiate snoop write-
back

Processor does not
continue replacement
write-back.

Stop replacement write-
back

Wait for BOFF# to be de-
asserted

Initiate snoop write-back

Continue replacement
write-back from point of
interrupt.

HOLD HOLD is not acknowledged until the current bus cycle (i.e., the line operation) is completed,
except for a non-cacheable, non-burst code prefetch cycle. Consequently there can be no
collision with the snoop cycles using HOLD, except as mentioned earlier. In this case the snoop
write-back is re-ordered ahead of an on-going non-burst, non-cached code prefetch cycle. After
the write-back cycle is completed, the code prefetch cycle continues from the point of interrupt.
4-54

BUS OPERATION
When a line is written back, KEN#, WB/WT#, BS8#, and BS16# are ignored, and PWT and PCD
are always low during write-back cycles.

Figure 4-38. Snoop Cycle Invalidating a Modified Line

The next ADS# for a new cycle can occur immediately after the last RDY# or BRDY# of the
write-back cycle. The Write-Back Enhanced IntelDX4 processor does not guarantee a dead clock
between cycles unless the second cycle is a snoop-forced write-back cycle. This allows snoop-
forced write-backs to be backed off (BOFF#) when snooping under AHOLD.

HITM# is guaranteed to remain asserted until the RDY# or BRDY# signals corresponding to the
last doubleword of the write-back cycle is returned. HITM# is de-asserted from the clock edge in
which the last BRDY# or RDY# for the snoop write-back cycle is asserted. The write-back cycle
could be a burst or non-burst cycle. In either case, 16 bytes of data corresponding to the modified
line that has a snoop hit is written back.

 242202-150

CLK

AHOLD

EADS#

INV

HITM#

BRDY#

CACHE#

1 2 3 4 5 6 7 8 9 10 11 12 13

BLAST#

A31–A4 * * *

A3–A2 0 4 8 C

ADS#

W/R#

To Processor
Write-back from Processor

*
**
4-55

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Snoop under AHOLD Overlaying a Line-Fill Cycle

The assertion of AHOLD during a line fill is allowed on the Write-Back Enhanced IntelDX4 pro-
cessor. In this case, when a snoop cycle is overlaid by an on-going line-fill cycle, the chipset must
generate the burst addresses internally for the line fill to complete, because the address bus has
the valid snoop address. The write-back mode is more complex compared to the write-through
mode because of the possibility of a line being written back. Figure 4-39 shows a snoop cycle
overlaying a line-fill cycle, when the snooped line is not the same as the line being filled.

In Figure 4-39, the snoop to an M-state line causes a snoop write-back cycle. The Write-Back En-
hanced IntelDX4 processor asserts HITM# two clocks after the EADS#, but delays the snoop
write-back cycle until the line fill is completed, because the line fill shown in Figure 4-39 is a
burst cycle. In this figure, AHOLD is asserted one clock after ADS#. In the clock after AHOLD
is asserted, the Write-Back Enhanced IntelDX4 processor floats the address bus (not the Byte En-
ables). Hence, the memory controller must determine burst addresses in this period. The chipset
must comprehend the special ordering required by all burst sequences of the Write-Back En-
hanced IntelDX4 processor. HITM# is guaranteed to remain asserted until the write-back cycle
completes.

If AHOLD continues to be asserted over the forced write-back cycle, the memory controller also
must supply the write-back addresses to the memory. The Write-Back Enhanced IntelDX4 pro-
cessor always runs the write-back with an address sequence of 0-4-8-C.

In general, if the snoop cycle overlays any burst cycle (not necessarily a line-fill cycle) the snoop
write-back is delayed because of the on-going burst cycle. First, the burst cycle goes to comple-
tion and only then does the snoop write-back cycle start.
4-56

BUS OPERATION
Figure 4-39. Snoop Cycle Overlaying a Line-Fill Cycle

242202-151

CLK

AHOLD

EADS#

INV

HITM#

BRDY#

CACHE#

1 2 3 4 5 6 7 8 9 10 11 12 13

BLAST#

A31–A4

A3–A2 0 4 8 C

ADS#

W/R#

To Processor
Write-back from Processor

Fill

0

Fill

‡
†

† ‡
4-57

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
AHOLD Snoop Overlaying a Non-Burst Cycle

When AHOLD overlays a non-burst cycle, snooping is based on the completion of the current
non-burst transfer (ADS#-RDY# transfer). Figure 4-40 shows a snoop cycle under AHOLD over-
laying a non-burst line-fill cycle. HITM# is asserted two clocks after EADS#, and the non-burst
cycle is fractured after the RDY# for a specific single transfer is asserted. The snoop write-back
cycle is re-ordered ahead of an ongoing non-burst cycle. After the write-back cycle is completed,
the fractured non-burst cycle continues. The snoop write-back ALWAYS precedes the comple-
tion of a fractured cycle, regardless of the point at which AHOLD is de-asserted, and AHOLD
must be de-asserted before the fractured non-burst cycle can complete.

Figure 4-40. Snoop Cycle Overlaying a Non-Burst Cycle

242202-152

CLK

AHOLD

EADS#

INV

HITM#

ADS#

A31–A4

BLAST#

To Processor
Write-back from Processor

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

A3–A2 0 0 4 8 C 4 8 C

RDY#

CACHE#

W/R#

Fill Fill Cont.‡

†

†

‡

4-58

BUS OPERATION

 fill

he.

 deter-

writ-
ess, it
AHOLD Snoop to the Same Line that is being Filled

A system snoop does not cause a write-back cycle to occur if the snoop hits a line while the line
is being filled. The processor does not allow a line to be modified until the fill is completed (and
a snoop only produces a write-back cycle for a modified line). Although a snoop to a line that is
being filled does not produce a write-back cycle, the snoop still has an effect based on the follow-
ing rules:

1. The processor always snoops the line being filled.

2. In all cases, the processor uses the operand that triggered the line fill.

3. If the snoop occurs when INV = “1”, the processor never updates the cache with the
data.

4. If the snoop occurs when INV = “0”, the processor loads the line into the internal cac

4.4.3.3 Snoop During Replacement Write-Back

If the cache contains valid data during a line fill, one of the cache lines may be replaced as
mined by the Least Recently Used (LRU) algorithm. Refer to Chapter 6, “Cache Subsystem” for
a detailed discussion of the LRU algorithm. If the line being replaced is modified, this line is
ten back to maintain cache coherency. When a replacement write-back cycle is in progr
might be necessary to snoop the line that is being written back. (See Figure 4-41.)
4-59

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 4-41. Snoop to the Line that is Being Replaced

If the replacement write-back cycle is burst and there is a snoop hit to the same line as the line
that is being replaced, the on-going replacement cycle runs to completion. HITM# is asserted un-
til the line is written back and the snoop write-back is not initiated. In this case, the replacement
write-back is converted to the snoop write-back, and HITM# is asserted and de-asserted without
a specific ADS# to initiate the write-back cycle.

If there is a snoop hit to a different line from the line being replaced, and if the replacement write-
back cycle is burst, the replacement cycle goes to completion. Only then is the snoop write-back
cycle initiated.

If the replacement write-back cycle is a non-burst cycle, and if there is a snoop hit to the same
line as the line being replaced, it fractures the replacement write-back cycle after RDY# is assert-
ed for the current non-burst transfer. The snoop write-back cycle is reordered in front of the frac-

242202-153

CLK

AHOLD

EADS#

INV

HITM#

A31–A4

A3–A2

ADS#

1 2 3 4 5 6 7 8 9 10 11

W/R#

To Processor

BRDY#

CACHE#

BLAST#

0 8 C

Replace

0 4 8 C

Replace

†

†

4-60

BUS OPERATION
tured replacement write-back cycle and is completed under HITM#. However, after AHOLD is
deasserted, the replacement write-back cycle is not completed.

If there is a snoop hit to a line that is different from the one being replaced, the non-burst replace-
ment write-back cycle is fractured, and the snoop write-back cycle is reordered ahead of the re-
placement write-back cycle. After the snoop write-back is completed, the replacement write-back
cycle continues.

4.4.3.4 Snoop under BOFF#

BOFF# is capable of fracturing any transfer, burst or non-burst. The output pins (see Table 4-8
and Table 4-12) of the Write-Back Enhanced IntelDX4 processor are floated in the clock period
following the assertion of BOFF#. If the system snoop hits a modified line using BOFF#, the
snoop write-back cycle is reordered ahead of the current cycle. BOFF# must be de-asserted for
the processor to perform a snoop write-back cycle and resume the fractured cycle. The fractured
cycle resumes with a new ADS# and begins with the first uncompleted transfer. Snoops are per-
mitted under BOFF#, but write-back cycles are not started until BOFF# is de-asserted. Conse-
quently, multiple snoop cycles can occur under a continuously asserted BOFF#, but only up to
the first asserted HITM#.

Snoop under BOFF# during Cache Line Fill

As shown in Figure 4-42, BOFF# fractures the second transfer of a non-burst cache line-fill cycle.
The system begins snooping by driving EADS# and INV in clock six. The assertion of HITM#
in clock eight indicates that the snoop cycle hit a modified line and the cache line is written back
to memory. The assertion of HITM# in clock eight and CACHE# and ADS# in clock ten identi-
fies the beginning of the snoop write-back cycle. ADS# is guaranteed to be asserted no sooner
than two clock periods after the assertion of HITM#. Write-back cycles always use the four-dou-
bleword address sequence of 0-4-8-C (burst or non-burst). The snoop write-back cycle begins
upon the de-assertion of BOFF# with HITM# asserted throughout the duration of the snoop write-
back cycle.

If the snoop cycle hits a line that is different from the line being filled, the cache line fill resumes
after the snoop write-back cycle completes, as shown in Figure 4-42.
4-61

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 4-42. Snoop under BOFF# during a Cache Line-Fill Cycle

An ADS# is always issued when a cycle resumes after being fractured by BOFF#. The address
of the fractured data transfer is reissued under this ADS#, and CACHE# is not issued unless the
fractured operation resumes from the first transfer (e.g., first doubleword). If the system asserts
BOFF# and RDY# simultaneously, as shown in clock four on Figure 4-42, BOFF# dominates and
RDY# is ignored. Consequently, the Write-Back Enhanced IntelDX4 processor accepts only up
to the x4h doubleword, and the line fill resumes with the x0h doubleword. ADS# initiates the re-
sumption of the line-fill operation in clock period 15. HITM# is de-asserted in the clock period
following the clock period in which the last RDY# or BRDY# of the write-back cycle is asserted.
Hence, HITM# is guaranteed to be de-asserted before the ADS# of the next cycle.

242202-154

CLK

BOFF#

EADS#

INV

HITM#

ADS#

BLAST#

To Processor

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

A31–A4

A3–A2

RDY#

CACHE#

W/R#

BRDY#

Linefill Write Back Cycle Line Fill Cycle Cont.

4 0 0 4 C 8 0 C 8

†

†

4-62

BUS OPERATION
Figure 4-42 also shows the system asserting RDY# to indicate a non-burst line-fill cycle. Burst
cache line-fill cycles behave similarly to non-burst cache line-fill cycles when snooping using
BOFF#. If the system snoop hits the same line as the line being filled (burst or non-burst), the
Write-Back Enhanced IntelDX4 processor does not assert HITM# and does not issue a snoop
write-back cycle, because the line was not modified, and the line fill resumes upon the de-asser-
tion of BOFF#. However, the line fill is cached only if INV is driven low during the snoop cycle.

Snoop under BOFF# during Replacement Write-Back

If the system snoop under BOFF# hits the line that is currently being replaced (burst or non-
burst), the entire line is written back as a snoop write-back line, and the replacement write-back
cycle is not continued. However, if the system snoop hits a different line than the one currently
being replaced, the replacement write-back cycle continues after the snoop write-back cycle has
been completed. Figure 4-43 shows a system snoop hit to the same line as the one being replaced
(non-burst).

Figure 4-43. Snoop under BOFF# to the Line that is Being Replaced

CLK

BOFF#

EADS#

INV

HITM#

A31–A4

A3–A2

ADS#

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

BLAST#

CACHE#

RDY#

BRDY#

To Processor

W/R#

0 4 8 C

Repl Wb

Repl Wb

Write Back Cycle

†

†

4-63

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
4.4.3.5 Snoop under HOLD

HOLD can only fracture a non-cacheable, non-burst code prefetch cycle. For all other cycles, the
Write-Back Enhanced IntelDX4 processor does not assert HLDA until the entire current cycle is
completed. If the system snoop hits a modified line under HLDA during a non-cacheable, non-
burstable code prefetch, the snoop write-back cycle is reordered ahead of the fractured cycle. The
fractured non-cacheable, non-burst code prefetch resumes with an ADS# and begins with the first
uncompleted transfer. Snoops are permitted under HLDA, but write-back cycles do not occur un-
til HOLD is de-asserted. Consequently, multiple snoop cycles are permitted under a continuously
asserted HLDA only up to the first asserted HITM#.

Snoop under HOLD during Cache Line Fill

As shown in Figure 4-44, HOLD (asserted in clock two) does not fracture the burst cache line-
fill cycle until the line fill is completed (in clock five). Upon completing the line fill in clock five,
the Write-Back Enhanced IntelDX4 processor asserts HLDA and the system begins snooping by
driving EADS# and INV in the following clock period. The assertion of HITM# in clock nine
indicates that the snoop cycle has hit a modified line and the cache line is written back to memory.
The assertion of HITM# in clock nine and CACHE# and ADS# in clock 11 identifies the begin-
ning of the snoop write-back cycle. The snoop write-back cycle begins upon the de-assertion of
HOLD, and HITM# is asserted throughout the duration of the snoop write-back cycle.
4-64

BUS OPERATION
Figure 4-44. Snoop under HOLD during Line Fill

If HOLD is asserted during a non-cacheable, non-burst code prefetch cycle, as shown in
Figure 4-45, the Write-Back Enhanced IntelDX4 processor issues HLDA in clock seven (which
is the clock period in which the next RDY# is asserted). If the system snoop hits a modified line,
the snoop write-back cycle begins after HOLD is released. After the snoop write-back cycle is
completed, an ADS# is issued and the code prefetch cycle resumes.

242202-156

CLK

HOLD

HLDA

INV

HITM#

A31–A4

A3–A2

ADS#

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

BLAST#

CACHE#

BRDY#

To Processor

W/R#

0 4 8 C

EADS#

0 4 8 C

Linefill

†

†

4-65

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 4-45. Snoop using HOLD during a Non-Cacheable, Non-Burstable Code Prefetch

4.4.3.6 Snoop under HOLD during Replacement Write-Back

Collision of snoop cycles under a HOLD during the replacement write-back cycle can never oc-
cur, because HLDA is asserted only after the replacement write-back cycle (burst or non-burst)
is completed.

242202-157

CLK

HOLD

EADS#

HITM#

A31–A4

A3–A2

ADS#

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

BLAST#

CACHE#

To Processor

W/R#

0 4 8 C

INV

RDY#

BRDY#

HLDA

C0 4 8

Prefetch Cycle Write Back Cycle Prefetch
Cont.

†

†

4-66

BUS OPERATION
4.4.4 Locked Cycles

In both Standard and Enhanced Bus modes, the Write-Back Enhanced IntelDX4 processor archi-
tecture supports atomic memory access. A programmer can modify the contents of a memory
variable and be assured that the variable is not accessed by another bus master between the read
of the variable and the update of that variable. This function is provided for instructions that con-
tain a LOCK prefix, and also for instructions that implicitly perform locked read modify write
cycles. In hardware, the LOCK function is implemented through the LOCK# pin, which indicates
to the system that the processor is performing this sequence of cycles, and that the processor
should be allowed atomic access for the location accessed during the first locked cycle.

A locked operation is a combination of one or more read cycles followed by one or more write
cycles with the LOCK# pin asserted. Before a locked read cycle is run, the processor first deter-
mines if the corresponding line is in the cache. If the line is present in the cache, and is in an E or
S state, it is invalidated. If the line is in the M state, the processor does a write-back and then in-
validates the line. A locked cycle to an M, S, or E state line is always forced out to the bus. If the
operand is misaligned across cache lines, the processor could potentially run two write back cy-
cles before starting the first locked read. In this case the sequence of bus cycles is: write back,
write back, locked read, locked read, locked write and the final locked write. Note that although
a total of six cycles are generated, the LOCK# pin is asserted only during the last four cycles, as
shown in Figure 4-46.

LOCK# is not deasserted if AHOLD is asserted in the middle of a locked cycle. LOCK# remains
asserted even if there is a snoop write-back during a locked cycle. LOCK# is floated if BOFF# is
asserted in the middle of a locked cycle. However, it is driven LOW again when the cycle restarts
after BOFF#. Locked read cycles are never transformed into line fills, even if KEN# is asserted.
If there are back-to-back locked cycles, the Write-Back Enhanced IntelDX4 processor does not
insert a dead clock between these two cycles. HOLD is recognized if there are two back-to-back
locked cycles, and LOCK# floats when HLDA is asserted.
4-67

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 4-46. Locked Cycles (Back-to-Back)

4.4.4.1 Snoop/Lock Collision

If there is a snoop cycle overlaying a locked cycle, the snoop write-back cycle fractures the
locked cycle. As shown in Figure 4-47, after the read portion of the locked cycle is completed,
the snoop write-back starts under HITM#. After the write-back is completed, the locked cycle
continues. But during all this time (including the write-back cycle), the LOCK# signal remains
asserted.

Because HOLD is not acknowledged if LOCK# is asserted, snoop-lock collisions are restricted
to AHOLD and BOFF# snooping.

242202-158

CLK

ADS#

DATA

Ti T1 T2 T1 T2 T1 T2 T1 T2 T1

To Processor
From Processor

RDY#
BRDY#

ADDR

CACHE#

LOCK#

W/R#

Rd1 Wt1 Rd2 Wt2

†

‡

‡ † ‡

†

4-68

BUS OPERATION
Figure 4-47. Snoop Cycle Overlaying a Locked Cycle

4.4.5 Flush Operation

The Write-Back Enhanced IntelDX4 processor executes a flush operation when the FLUSH# pin
is asserted, and no outstanding bus cycles, such as a line fill or write back, are being processed.
In the Enhanced Bus mode, the processor first writes back all the modified lines to external mem-
ory. After the write-back is completed, two special cycles are generated, indicating to the external
system that the write-back is done. All lines in the internal cache are invalidated after all the
write-back cycles are done. Depending on the number of modified lines in the cache, the flush
could take a minimum of 1280 bus clocks (2560 processor clocks) and up to a maximum of 5000+
bus clocks to scan the cache, perform the write backs, invalidate the cache, and run the flush ac-
knowledge cycles. FLUSH# is implemented as an interrupt in the Enhanced Bus mode, and is rec-
ognized only on an instruction boundary. Write-back system designs should look for the flush
acknowledge cycles to recognize the end of the flush operation. Figure 4-48 shows the flush op-
eration of the Write-Back Enhanced IntelDX4 processor when configured in the Enhanced Bus
mode.

242202-159

CLK

ADS#

RDY#
BRDY#

AHOLD

ADDR

EADS#

HITM#

W/R#

To Processor
From Processor

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Write

0 4 8 C

CACHE#

LOCK#

WB1 WB2 WB3 WB4

WriteRead WB

†

‡

‡ † ‡
4-69

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
If the processor is in Standard Bus mode, the processor does not issue special acknowledge cycles
in response to the FLUSH# input, although the internal cache is invalidated. The invalidation of
the cache in this case, takes only two bus clocks.

Figure 4-48. Flush Cycle

4.4.6 Pseudo Locked Cycles

In Enhanced Bus mode, PLOCK# is always deasserted for both burst and non-burst cycles.
Hence, it is possible for other bus masters to gain control of the bus during operand transfers that
take more than one bus cycle. A 64-bit aligned operand can be read in one burst cycle or two non-
burst cycles if BS8# and BS16# are not asserted. Figure 4-49 shows a 64-bit floating-point oper-
and or Segment Descriptor read cycle, which is burst by the system asserting BRDY#.

4.4.6.1 Snoop under AHOLD during Pseudo-Locked Cycles

AHOLD can fracture a 64-bit transfer if it is a non-burst cycle. If the 64-bit cycle is burst, as
shown in Figure 4-49, the entire transfer goes to completion and only then does the snoop write-
back cycle start.

242202-160

CLK

ADS#

RDY#
BRDY#

FLUSH#

ADDR
M/IO#
D/C#

W/R#,
BE3–0#

CACHE#

BLAST#

DATA

T1 T1 T2 T2 T2 T2 T1 T1 T2 T1 T2 T1 T1

Write-Back 1st Flush
Acknowledge

2nd Flush
Acknowledge
4-70

BUS OPERATION
Figure 4-49. Snoop under AHOLD Overlaying Pseudo-Locked Cycle

4.4.6.2 Snoop under Hold during Pseudo-Locked Cycles

As shown in Figure 4-50, HOLD does not fracture the 64-bit burst transfer. The Write-Back En-
hanced IntelDX4 processor does not issue HLDA until clock four. After the 64-bit transfer is
completed, the Write-Back Enhanced IntelDX4 processor writes back the modified line to mem-
ory (if snoop hits a modified line). If the 64-bit transfer is non-burst, the Write-Back Enhanced
IntelDX4 processor can issue HLDA in between bus cycles for a 64-bit transfer.

242202-161

CLK

AHOLD

EADS#

HITM#

A31–A4

A3–A2

ADS#

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

BLAST#

CACHE#

To Processor†

W/R#

0 4 8 C

INV

PLOCK#

BRDY#

Write Back Cycle†
4-71

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

Figure 4-50. Snoop under HOLD Overlaying Pseudo-Locked Cycle

4.4.6.3 Snoop under BOFF# Overlaying a Pseudo-Locked Cycle

BOFF# is capable of fracturing any bus operation. In Figure 4-51, BOFF# fractured a current 64-
bit read cycle in clock four. If there is a snoop hit under BOFF#, the snoop write-back operation
begins after BOFF# is deasserted. The 64-bit write cycle resumes after the snoop write-back op-
eration completes.

242202-162

CLK

HOLD

EADS#

HITM#

A31–A4

A3–A2

ADS#

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

BLAST#

CACHE#

To Processor

W/R#

0 4 8 C

INV

PLOCK#

BRDY#

HLDA

64-Bit
Read Cycle Write Back Cycle

†

†

4-72

BUS OPERATION
Figure 4-51. Snoop under BOFF# Overlaying a Pseudo-Locked Cycle

CLK

AHOLD

EADS#

HITM#

A31–A4

A3–A2

ADS#

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

BLAST#

CACHE#

To Processor†

W/R#

0 4 8 C

INV

PLOCK#

BRDY#

Write Back Cycle†

242202-163
4-73

5
Memory Subsystem
Design

Chapter Contents

5.1 Introduction ... 5-1

5.2 Processor and Cache Feature Overview................................ 5-1

ly suc-
 access
e same
as also
e inter-
rted to
e ex-
e at-

sed de-
itching
nce of

rface.
mance
 variety
verse.

sign. It
ry sub-

an any
e L2

of the
e CPU
nd, the
rst cy-
CHAPTER 5
MEMORY SUBSYSTEM DESIGN

5.1 INTRODUCTION

The Intel486™ processor contains several improvements over its predecessor, the high
cessful Intel386™ processor. One of the most important of these is the processor's data
rate. The Intel486 processor can access instructions and data from its on-chip cache in th
clock cycle. To support the processor's redesigned internal data path, the external bus h
been optimized and can access external memory at twice the rate of the Intel386 CPU. Th
nal cache requires rapid access to entire cache lines. Invalidation cycles must be suppo
maintain consistency with external memory. All of these functions must be supported by th
ternal memory system. Without them, the full performance potential of the CPU cannot b
tained.

The requirements of multi-tasking and multiprocessor operating systems also place increa
mand on the external memory system. OS support functions such as paging and context sw
can degrade reference locality. Without efficient access to external memory, the performa
these functions is degraded.

Second-level (also known as L2) caching is a technique used to improve the memory inte
Some applications, such as multi-user office computers, require this feature to meet perfor
goals. Single-user systems, on the other hand, may not warrant the extra cost. Due to the
of applications incorporating the Intel486 processor, memory system architecture is very di

5.2 PROCESSOR AND CACHE FEATURE OVERVIEW

The improvements made to the processor bus interface impact the memory subsystem de
is important to understand the impact of these features before attempting to define a memo
system. This section reviews the bus features that affect the memory interface.

NOTE
The Ultra-Low Power Intel486 GX processor supports only a 16-bit external
data bus. The other Intel486 processors discussed in this manual feature
dynamic bus sizing to accommodate 32-, 16-, and 8-bit devices.

5.2.1 The Burst Cycle

The Intel486 processor's burst bus cycle feature has more impact on the memory logic th
other feature. A large portion of the control logic is dedicated to supporting this feature. Th
cache control is also primarily dedicated to supporting burst cycles.

To understand why the logic is designed this way, we must first understand the function
burst cycle. Burst cycles are generated by the CPU only when two events occur. First, th
must request a cycle which is longer in bytes than the data bus can accommodate. Seco
BRDY# signal must be activated to terminate the cycle. When these two events occur a bu
5-1

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

les of
ase

sferred
other

lement
r does
at use

cycles.
inate
stem
inate

 Only
ected by

 two
DY#

CPU

nitiated
before
 unit.
.

is type
essor’s
cle takes place. Note that this cycle occurs regardless of the state of the KEN# input. The KEN#
input’s function is discussed in the next section.

With this definition we see that several cases are included as “burstable.” Some examp
burstable cycles are listed in Table 5-1. These cycle lengths are shown in bytes to clarify the c
listed.

The last two cases show that write cycles are burstable. In the last case a write cycle is tran
on an 8- or 16-bit bus. If BRDY# is returned to terminate this cycle, the CPU generates an
write cycle without activating ADS#.

Using the burst write feature has debatable performance benefit. Some systems may imp
special functions that benefit from the use of burst writes. However, the Intel486 processo
not write cache lines. Therefore, all write cycles are 4 bytes long. Most of the devices th
dynamic bus sizing are read-only. This fact further reduces the utility of burst writes.

Due to these facts, a memory subsystem design normally does not implement burst write
The BRDY# input is asserted only during main memory read cycles. RDY# is used to term
all memory write cycles. RDY# is also used for all cycles that are not in the memory subsy
or are not capable of supporting burst cycles. The RDY# input is used, for example, to term
an EPROM or I/O cycle.

5.2.2 The KEN# Input

The primary purpose of the KEN# input is to determine whether a cycle is to be cached.
read data and code cycles can be cached. Therefore, these cycles are the only cycles aff
the KEN# input.

Figure 5-1 shows a typical burst cycle. In this sequence, the value of KEN# is important in
different places. First, to begin a cacheable cycle, KEN# must be active the clock before BR
is returned. Second, KEN# is sampled the clock before BLAST# is active. At this time the
determines whether this line is written to the cache.

The state of KEN# also determines when read cycles can be burst. Most read cycles are i
as 4 bytes long from the processor’s cache unit. When KEN# is sampled active, the clock
BRDY# or RDY# is asserted, the cycle is converted to a 16-byte cache line fill by the bus
This way, a cycle which would not have been burst can now be burst by activating BRDY#

Some read cycles can be burst without activating KEN#. The most prevalent example of th
of read cycle is a code fetch. All code fetches are generated as 16-byte cycles from the proc

Table 5-1. Access Length of Typical CPU Functions

Bus Cycle Size (Bytes)

All code fetches 16

Descriptor loads 8

Cacheable reads 16

Floating-point operand loads 8

Bus size 8 (16) writes 4 (Max)
5-2

MEMORY SUBSYSTEM DESIGN

ation,
, four
rned

ycle,
nd syn-
s out
d the
cache unit. So, regardless of the state of KEN#, code fetches are always burstable. In addition,
several types of data read cycles are generated as 8-byte cycles. These cycles, mentioned previ-
ously, are descriptor loads and floating-point operand loads. These cycles can be burst at any
time.

The use of the KEN# input affects performance. The design example used in Figure 5-1 illustrates
one way to use this signal effectively.

Figure 5-1. Typical Burst Cycle

The primary concern when using KEN# is generating it in time for zero wait state read cycles.
Most main memory cycles are zero wait state if an L2 cache is implemented. The access to main
memory is one wait state during most read cycles. Any cache access takes place with zero wait
states. KEN# must, therefore, be valid during the first T2 of any read cycle.

Once this requirement is established, a problem arises. Decode functions are inherently asynchro-
nous. Therefore, the decoded output that generates KEN# must be synchronized. If it is not, the
CPU’s setup and hold times are violated and internal metastability results. With synchroniz
the delay required to generate KEN# will be at least three clocks. In the example shown
clocks are required. In either case the KEN# signal will not be valid before BRDY# is retu
for zero or one wait state cycles.

This problem is resolved if KEN# is made active. Figure 5-2 illustrates this function. In this dia-
gram KEN# is active during the first two clocks of the burst cycle. If this is a data read c
KEN# being active at this time causes it to be converted to a 16-byte length. The decode a
chronization of KEN# takes place during the first two T2 states of the cycle. If the cycle turn
to be non-cacheable, KEN# is deactivated in the third T2. Otherwise KEN# is left active an
retrieved data is written to the cache.

BLAST#

KEN#

DATA

BRDY#

T1

A5242-02

T2 T2 T2 T2

Sampled

here

Sampled

here

1 2 3 4
5-3

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

Figure 5-2. Burst Cycle: KEN# Normally Active

Some memory devices may be slow enough that 16-byte cycles are undesirable. In this case more
than three wait states exist. The KEN# signal can be deactivated prior to returning RDY# or
BRDY# if three or more wait states are present. As a result, these slow cycles are not converted
to 16-byte cache line fills.

5.2.3 Bus Characteristics

The internal cache causes other effects that impact the memory subsystem design. Perhaps the
most obvious of these is the effect on bus traffic. The fact that the internal cache uses the write-
through policy dramatically increases the number of write bus cycles. Figure 5-3 illustrates this
effect. The chart on the left shows the bus cycle mix for an application executed with the
Intel386 DX CPU. The chart on the right shows the same application executed with the Intel486
processor. The percentage of write bus cycles jumps to 70% from 30% when this application is
executed with the Intel486 processor.

BLAST#

KEN#

DATA

BRDY#

T1

A5243-01

T2 T2 T2 T2

Sampled

here

Sampled here

1 2 3 4
5-4

MEMORY SUBSYSTEM DESIGN
Figure 5-3. Intel386™ Processor Bus Cycle Mix/Intel486™ Processor Bus Cycle Mix

It seems obvious that many of these write cycles would be consecutive. In fact, 70% of all write
cycles are consecutive. Furthermore, 50% of all write cycles occur three in-a-row. It is obvious
from these statistics that optimizing the memory subsystem for write cycles can improve perfor-
mance. But it is important to optimize the memory system for consecutive write cycles. Improv-
ing individual write cycle latency does not buy much performance improvement if subsequent
write cycles suffer.

5.2.4 Improving Write Cycle Latency

5.2.4.1 Interleaving

The interleaving technique is used to support the burst bus feature of the Intel486 processor. The
use of this technique allows the DRAM to supply a dword every clock during burst cycles. Inter-
leaving proves to be very useful in Intel486 processor memory designs. Without its use, DRAM
timings such as TPC (Page Mode Cycle time) and TCP (CAS Precharge time) would prevent zero
wait state access at 33 MHz.

5.2.4.2 Write Posting

Analysis has shown that, in general, 6% degradation in performance can be expected for every
additional wait state added to write cycles. This analysis was performed by measuring the CPU
clocks required to execute several applications.

A technique called write posting can be used to improve write cycle latency. Write posting uses
data registers that hold write data during write cycles. This technique allows consecutive write
cycles to be overlapped. It also allows write cycles to be overlapped with L2 cache cycles and
reduces overall write miss latency.

Using the write posting technique adds complexity to the system logic. It is important to deter-
mine the performance improvement realized by using this technique. This question is especially
pertinent when we consider the logic already implemented in the Intel486 processor to improve
write performance. The internal Intel486 write buffers decouple the processor execution unit
from the external bus.

21.65% 35.90%

42.45%
74.84%

12.79%

12.37

Write

Prefetch

Read

Intel386™ Bus Cycle Mix Intel486™ Bus Cycle Mix
5-5

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Write posting can improve average write latency to under 3 clocks for many applications. This
improvement is important in Intel486 processor-based systems because approximately 70% of all
bus cycles are writes. Without using a latency improvement technique such as write posting, av-
erage write latency is above 15 clocks. From this data we can conclude that approximately a 9%
performance improvement can be obtained using write posting.

This improvement may increase due to other effects. Write cycles, particularly DRAM page
misses, can be overlapped with read hit cycles in the L2 cache. This fact greatly reduces the delay
caused by read cycles which immediately follow write cycles.

Analysis of this memory subsystem design has shown that use of these features has resulted in a
low latency response to the CPU. The following characteristics have been recorded over several
important applications. The average clock cycles required to complete the first read is 3.5 clocks.
Subsequent cycles of a burst are always processed in one clock. Write cycles average 2.5 clocks.
These average counts result from the DRAM access rates in Table 5-2. Read accesses from the
cache always occur in zero wait states.

5.2.5 Second-Level Cache

Several different types of L2 cache architectures are possible candidates for use with the Intel486
processor. For single CPU systems the different architectures offer similar performance benefits
in most cases. The reason they are so similar is the mechanism which improves performance. The
primary benefit of the L2 cache is bus cycle latency reduction.

In most systems that incorporate a single Intel486 processor, bus traffic from other bus masters
is minimal. With most memory systems, the CPU uses at most 50% to 70% of the bus. Therefore
reduction of bus cycle latency is the only performance benefit external logic can offer.

An L2 cache is an economical method of reducing read cycle latency and can be implemented as
a system option. To provide this capability, a cache device can be configured as a look-aside
cache that monitors the CPU address and control signals. When a cycle occurs in which the cache
can supply data, it intervenes. The cache device could then supply an entire 16-byte line with no
wait states.

The performance improvement offered by an L2 cache is substantial in some environments. This
performance improvement is particularly obvious when executing multi-tasking, multi-user op-
erating systems such as UNIX*, OS/2*, Windows 95*, Windows NT*, and Windows CE*. Some
applications, however, may not require the performance improvement offered by the cache. In
these cases, implementing the L2 cache as a system option is attractive.

Table 5-2. Clock Latencies for DRAM Functions

DRAM Function First Access Burst Subsequent Burst Write Cycles

Page hit 3 1 2

Page miss 7 1 5*

*Latency only incurred for back-to-back cycles.
5-6

MEMORY SUBSYSTEM DESIGN
By designing the cache subsystem as an option both users requirements can be met. A single-sys-
tem design can be manufactured for both customers. The operating system user can add the cache
module. Users can choose the system configuration which meets their price-performance needs.
5-7

6
Cache Subsystem

Chapter Contents

6.1 Introduction ... 6-1

6.2 Cache Memory .. 6-1

6.3 Cache Trade-offs... 6-2

6.4 Updating Main Memory..6-11

6.5 Non-Cacheable Memory Locations6-15

6.6 Cache and DMA Operations ...6-16

6.7 Cache for Single Versus Multiple Processor Systems6-16

6.8 An Intel486™ Processor System Example6-18

roces-
truction
t variants
 in a 4-
es of a
CHAPTER 6
CACHE SUBSYSTEM

6.1 INTRODUCTION

Cache is an important means of improving overall system performance. The Intel486™ p
sors have an on-chip, unified code and data cache. The on-chip cache is used for both ins
and data accesses and operates on physical addresses. The Intel486 processor and mos
have an 8-Kbyte cache (the IntelDX4 processor has a 16-Kbyte cache) which is organized
way set associative manner. To understand cache philosophy and the system advantag
cache, many issues must be considered.

This chapter discusses the following related cache issues:

• Cache theory and the impact of cache on performance.

• The relationship between cache size and hit rates when using a first-level cache.

• Issues in mapping (or associativity) that arise when main memory is cached. Different
cache configurations including direct-mapped, set associative, and fully associative. They
are discussed along with the performance trade-offs inherent to each configuration.

• The impact of cache line sizes and cache re-filling algorithms on performance.

• Write-back and write-through methods for updating main memory. How each method
maintain cache consistency and the impact on external bus utilization.

• Cache consistency issues that arise when a DMA occurs while the Intel486 processor’s
cache is enabled. Methods that ensure cache and main memory consistency during cache
accesses.

• Cache used in single versus multiple CPU systems.

6.2 CACHE MEMORY

Cache memory is high-speed memory that is placed between microprocessors and main memory.
Cache memory keeps copies of main memory that are currently in use to speed microprocessor
access to requested data and instructions. When properly implemented, cache access time can be
three to eight times faster than that of main memory, and thus can reduce the overall access time.
Cache also reduces the number of accesses to main memory DRAM, which is important to sys-
tems with multiple bus masters that all access that same memory. This section introduces the
cache concept and discusses memory performance benefits provided by a cache.

6.2.1 What is a Cache?

A cache memory is a smaller high-speed memory that fits between a CPU and slower main mem-
ory. Cache memory is important in increasing computer performance by reducing total memory
latency. A cache memory consists of a directory (or tag), and a data memory. Whenever the CPU
is required to read or write data, it first accesses the tag memory and determines if a cache hit has
6-1

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
occurred, implying that the requested word is present in the cache. If the tags do not match, the
data word is not present in the cache. This is called a cache miss. On a cache hit, the cache data
memory allows a read operation to be completed more quickly from its faster memory than from
a slower main memory access. The hit rate is the percentage of the accesses that are hits, and is
affected by the size and organization of the cache, the cache algorithm used, and the program run-
ning. An effective cache system maintains data in a way that increases the hit rate. Different cache
organizations are discussed later in this chapter. The main advantage of cache is that a larger main
memory appears to have the high speed of a cache. For example, a zero-wait state cache that has
a hit rate of 90 percent makes main memory appear to be zero-wait state memory for 9 out of 10
accesses.

Programs usually address memory in the neighborhood of recently accessed locations. This is
called program locality or locality of reference and it is locality that makes cache systems possi-
ble. Code, data character strings, and vectors tend to be sequentially scanned items or items ac-
cessed repeatedly, and cache helps the performance in these cases. In some cases the program
locality principle does not apply. Jumps in code sequences and context switching are some ex-
amples.

6.2.2 Why Add an External Cache?

System designers must take into account several factors when deciding whether to incorporate a
Level II cache subsystem in an embedded Intel486 processor design. These considerations in-
clude the performance expectations, operating system used, DRAM cycle speed, possible future
upgrades to the initial application, and system costs. Although the Intel486 processor-based per-
sonal computer often required a 256-K to 512-K L2 cache for optimal performance, embedded
applications have a wide variety of performance and cost requirements and their L2 cache needs
vary accordingly. In many applications, an inexpensive 32-K or 64-K cache provides good per-
formance, whereas the additional performance provided by a 512-K cache would be too costly to
justify. When possible, system designers should run the application code on a standard Intel486
processor-based personal computer (assuming the operating system is compatible) and take per-
formance measurements with the L2 cache first enabled, then disabled in the BIOS. Although this
technique for performance evaluation is not perfect, it gives the applications team a good basis
upon which to make design decisions.

6.3 CACHE TRADE-OFFS

Cache efficiency is the cache’s ability to keep the code and data most frequently used by the mi-
croprocessor. Cache efficiency is measured in terms of the hit rate. Another indication of cache
efficiency is system performance; this is the time in which the microprocessor can perform a cer-
tain task and is measured in effective bus cycles. An efficient cache reduces external bus cycles
and enhances overall system performance. Hit rates are discussed in the next section.

Factors that can affect a cache’s performance are:

• Size: Increasing the cache size allows more items to be contained in the cache. Cost is
increased, however, and a larger cache cannot operate as quickly as a smaller one.
6-2

CACHE SUBSYSTEM

s its

• Associativity (discussed in Section 6.2.2, “Why Add an External Cache?”): Increased

associativity increases the cache hit rate but also increases its complexity and reduce
speed.

• Line Size: The amount of data the cache must fetch during each cache line replacement
(every miss) affects performance. More data takes more time to fill a cache line, but then
more data is available and the hit rate increases.

• Write-Back and Write Posting: The ability to write quickly to the cache and have the cache
then write to the slower memory increases performance. Implementing these types of cache
designs can be very complex, however.

• Features: Adding features such as write-protection (to be able to cache ROM memory), bus
watching, and multiprocessing protocols can speed a cache but increases cost and
complexity.

• Speed: Not all cache return data to the CPU as quickly as possible. It is less expensive and
complex to use slower cache memories and cache logic.

6.3.1 Cache Size and Performance

Hit rates for various first-level cache configurations are shown in Table 6-1. These statistics are
conservative because they illustrate the lowest hit rates generated by analyzing several main-
frame traces. The hit rates are not absolute quantities, and the hit rate of a particular configuration
is software-dependent. However, the table allows a meaningful comparison of the various cache
configurations. It also indicates the degree of hardware complexity needed to arrive at a particular
cache efficiency. Table 6-1 presents direct-mapped, 2-way, and 4-way set associative cache,
which are all discussed in the next section.

Table 6-1. Level-1 Cache Hit Rates (Sheet 1 of 2)

Cache Configurations
Hit Rate

Size Associativity Line Size

1 Kbyte direct 4 bytes 41%

8 Kbyte direct 4 bytes 73%

16 Kbyte direct 4 bytes 81%

32 Kbyte direct 4 bytes 86%
6-3

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Program behavior is another important factor in determining cache efficiency. If a program uses
a piece of data only once, then the cache may spend all its time thrashing or replacing itself with
new data from memory. This is common in vector processing. The processor receives no added
efficiency from the cache because main memory is being requested frequently. In such instances,
the user can consider mapping the data entries as non-cacheable.

Cache system performance can be calculated based on the main memory access time, the cache
access time, the miss rate, and the write cycle time.

CS is defined as the ratio of the cache system access time to the main memory access time. CS is
a dimensionless number but provides a useful measure of the cache performance.
Ca = (1-M)Tc + MTm
Cs = Ca/Tm = (1-M)(Tc/Tm) + M = (1-M)Cm+M

where:
Ca = average cache system cycle time averaged over reads and writes
Tc = cache cycle time
Tm = main memory cycle time
M = miss rate = 1-hit rate
Cs = cache system access time as a fraction of main memory access time
Cm = cache memory access time as compared to main memory cycle time

If the cache always misses, then M=1 and Cm=1, and the main memory access is equal to the ef-
fective access time of the cache. If the cache is infinitely fast, then Cm is equal to the miss rate.
Because the cache access time is finite, the cache system access time approaches the cache access
time as the miss rate approaches zero.

While the above discussion applies to read operations, it can be easily extended to write opera-
tions, which also affect system performance. When memory is written to, the CPU must wait for
the completion of the write cycle before proceeding to the next instruction. In a buffered memory
system, where posted writes occur, data can be loaded in a register, and the memory can be up-

32 Kbyte 2-way 4 bytes 87%

32 Kbyte direct 8 bytes 91%

64 Kbyte direct 4 bytes 88%

64 Kbyte 2-way 4 bytes 89%

64 Kbyte 4-way 4 bytes 89%

64 Kbyte direct 8 bytes 92%

64 Kbyte 2-way 8 bytes 93%

128 Kbyte direct 4 bytes 89%

128 Kbyte 2-way 4 bytes 89%

128 Kbyte direct 8 bytes 93%

Table 6-1. Level-1 Cache Hit Rates (Sheet 2 of 2)

Cache Configurations
Hit Rate

Size Associativity Line Size
6-4

CACHE SUBSYSTEM
dated later. This allows the CPU to begin the next cycle without being delayed by the main mem-
ory write access time. Both these memory updating techniques are discussed later in this chapter.

6.3.2 Associativity and Performance Issues

Data and instructions are written into the cache by a function that maps the main memory address
into a cache location. The placement policy determines the mapping function from the main
memory address to the cache location. There are four policies to consider: fully associative, di-
rect-mapped, set associative, and sector buffering.

Fully Associative: A fully associative cache system provides maximum flexibility in determining
which blocks are stored in the cache at any time. Ideally, the blocks of words in the cache would
contain the main memory locations needed most by the processor regardless of the distance be-
tween the words in main memory. The size of a block in the cache is also known as the line size,
and corresponds to the width of a cache word. For example, a block can be eight bytes for a 32-
bit processor, in which case two doublewords are accessed each time the cache line is filled. In
the example shown in Figure 6-1, the block size is one doubleword.

Figure 6-1. A Fully Associative Cache Organization

Because there is no single relationship between all of the addresses in the 64 blocks, the cache
would have to store the entire address of each block. When the processor requests data, the cache

Byte Enable

16 Mbyte DRAM

32 Bits

128
Locations

TAG–
22 Bits

FFFFFC
000000

FFFFF4

24682468

12345678

33333333

16339C
FFFFF8

87654321
11223344

TAG
Cache/DRAM
 Select

Data

FFFFFC

FFFFF8

FFFFF4

1633A0

16339C

163398

00000C

000008

000004

000000

87654321

24682468

11223344

33333333

12345678

4096 Bit SRAM28 16 Bit SRAM

16 MByte DRAM = 24 Bits

32-Bit
Processor
Address

31 24 2 1 0

Data–
4 Bytes
6-5

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
controller would have to compare the address with each of the 64 addresses in the cache for a
match condition. This organization, shown in Figure 6-1, is called fully associative.

Direct Mapped: In a direct mapped cache, the simplest of the three policies, only one address
comparison is required to determine if the requested word is in the cache. This is because each
block in the cache maps to only one location in the cache. A direct mapped cache address has two
parts: a cache index field, which specifies the block’s location in the cache, and a tag field that
distinguishes blocks within a particular cache location.

For example, consider a 64-Kbyte direct mapped cache that contains 16-Kbyte 32-bit locations
and cache 16 Mbytes of memory. The cache index field must include 14 bits to select one of the
16-Kbyte blocks in cache plus two bits to decode one of the four byte enables. The tag field must
be eight bits wide to identify one of the 256 blocks that can occupy the selected cache location.
The most significant eight bits of the address are decoded to select the cache subsystem from oth-
er memories in the memory space. The direct-mapped cache organization is shown in Figure 6-2.
6-6

CACHE SUBSYSTEM
Figure 6-2. Direct Mapped Cache Organization

If the processor requests data at FFFFF8, the first step is to send the least significant 14 bits of
FFF8 to the cache tag RAM. If the tag field stored at FFF8 is FF (as shown in the diagram), then
a hit has occurred and the data word ‘‘B’’ is sent to the CPU. If the requested word has 020004,
then the tags would not match. In this case the tag RAM would be updated with the value 02 cor-
responding to the index 0004, and the data ‘‘D’’ would be replaced by the word at location
020004.

If the processor accesses locations that have the same index bits, then the cache would have to be
updated constantly. This type of program behavior is infrequent, however, so a direct mapped

32-Bit Processor Address

Cache/DRAM
Select

TAG Index

31 24 23 16 15 0

16 Mbyte DRAM 24 Bits

Main Memory - 16 MB

64 Kbyte Cache 16 Bits

TAG

Cache-64 Kbyte
Index

01
FF

00
01
00

0008
0004
0000

A
B

C
D
E

Y
B

Index

FFFC
FFF8

0008
0004
0000

A

D

C

E

FFFC
FFF8

0008

0004
0000

FFFC
FFF8

0008

0004
0000

32 Bits

DataTAG
FFFC

FFF8

Data
6-7

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
cache may provide acceptable performance at a lower cost when compared to a fully associative
cache memory.

Set Associative: The set-associative cache is a compromise between the fully associative and di-
rect-mapped cache. The set-associative cache has more than one set and it is equivalent to several
direct mapped cache operating in parallel. For each cache index there are several block locations
allowed, and the block can be placed in any set or retrieved from any set. Figure 6-3 shows a two-
way set associative cache memory.

Figure 6-3. Two-Way Set Associative Cache Organization

32-Bit Processor Address

TAG Index

32 24 23 15 14 0

16 Mbyte DRAM 24 Bits

2 x 32 K SRAM = 2 x 15 Bits

TAG

Cache-64 Kbyte
Index

001
1FF

000
001
000

0008
0004
0000

A
B

C
D
E

Y
B

Index

7FFC
7FF8

0008
0004
0000

A

D

C

E

7FFC
7FF8

0008

0004

0000

7FF8
7FFC

0008

0004

0000

32 Bits

DataTAG
7FFC

7FF8

Data

1FF

001

000

Index

1FF

001

0008
0004
0000

Y

W

32 Bits

DataTAG
7FFC

7FF8

W

9 Bits
6-8

CACHE SUBSYSTEM
Given an equal amount of cache memory as in the direct mapped example, the set associative
cache has half as many locations, and the extra address bit becomes part of the tag field. Because
the set-associative cache has several places for a block with the same cache index, the hit rate is
increased. The set associative cache performs more efficiently than a direct mapped cache, but it
needs a wider tag field and additional logic to determine which set should receive the data. This
function is determined by the replacement policy, which is covered later in this section.

Sector Buffering: Another cache configuration uses a sector buffer and is sometimes called a sub-
block cache. The cache is a number of sectors, and the sectors in turn are a number of blocks.
Each block can have its own valid bit, but only one tag address exists per sector. When a word is
accessed whose sector is in the cache but the block is not, then the block is fetched from the main
memory. Sector buffering has its own trade-offs associated with miss ratios and bus utilization.
Having smaller blocks increases the miss ratio, but reduces the number of external bus accesses.
Conversely, having a large number of blocks increases the hit ratio but also increases the external
bus utilization. Figure 6-4 shows the cache organization in sector buffering.

Figure 6-4. Sector Buffer Cache Organization

The Intel486 processor’s on-board cache is organized 4-way set associative with a line size of 16
bytes. The 8-Kbyte cache is organized as four 2-Kbyte sets. Each 2-Kbyte set is comprised of 128
16-byte lines. Figure 6-5 shows the cache organization. An application can achieve an extremely
high hit rate with the 4-way associativity. The cache is transparent so that the Intel486 processor
remains software-compatible with its non-cache predecessors.

TAG 1 BLOCK 1.1 BLOCK 1.2 BLOCK 1.3 ... BLOCK 1.N

TAG 2 BLOCK 2.1 BLOCK 2.2 BLOCK 2.3 ... BLOCK 2.N

...

TAG M BLOCK M.1 BLOCK M.2 BLOCK M.3

TAG per sector Blocks per sector
6-9

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 6-5. The Cache Data Organization for the Intel486™ Processor’s On-Chip Cache

6.3.3 Block/Line Size

Block size is an important consideration in cache memory design. Block size is also referred to
as the line size, or the width of the cache data word. The block size may be larger than the word,
and this can impact the performance, because the cache may be fetching and storing more infor-
mation than the CPU needs.

As the block size increases, the number of blocks that fit in the cache is reduced. Because each
block fetch overwrites the older cache contents, some blocks are overwritten shortly after being
fetched. In addition, as block size increases, additional words are fetched with the requested
word. Because of program locality, the additional words are less likely to be needed by the pro-
cessor.

When a cache is refilled with four dwords or eight words on a miss, the performance is dramati-
cally better than a cache size that employs single-word refills. Those extra words that are read
into the cache, because they are subsequent words and because programs are generally sequential
in nature, are likely be hits in subsequent cache accesses. Also, the cache refill algorithm is a sig-
nificant performance factor in systems in which the delay in transferring the first word from the
main memory is long but in which several subsequent words can be transferred in a shorter time.

Word 0 Word 1 Word 2 Word 3

2 Kbytes

Set 0

Set 1

Set 2

Set 3

2 Kbytes

2 Kbytes

2 Kbytes

4-Way Set Associative 8-Kbyte Cache

Line Size = 4 DWORDS

Line Size = 16 Bytes
6-10

CACHE SUBSYSTEM
This situation applies when using page mode accesses in dynamic RAM; and the initial word is
read after the normal access time, whereas subsequent words can be accessed quickly by chang-
ing only the column addresses. Taking advantage of this situation while selecting the optimum
line size can greatly increase cache performance.

6.3.4 Replacement Policy

In a set-associative cache configuration, a replacement policy is needed to determine which set
should receive new data when the cache is updated. There are four common approaches for
choosing which block (or single word) within a set is be overwritten. These are the least recently
used (LRU) method, the pseudo LRU method, the first-in first-out (FIFO) method, and the ran-
dom method.

In the LRU method, the set that was least recently accessed is overwritten. The control logic must
maintain least recently used bits and must examine the bits before an update occurs. In the pseudo
LRU method, the set that was assumed to be the least recently accessed is overwritten. In the
FIFO method, the cache overwrites the block that is resident for the longest time. In the random
method, the cache arbitrarily replaces a block. The performance of the algorithms depends on the
program behavior. The LRU method is preferred because it provides the best hit rate.

6.4 UPDATING MAIN MEMORY

When the processor executes instructions that modify the contents of the cache, changes have to
be made in the main memory as well; otherwise, the cache is only a temporary buffer and it is
possible for data inconsistencies to arise between the main memory and the cache. If only one of
the cache or the main memory is altered and the other is not, two different sets of data become
associated with the same address. A potential situation of incorrect or stale data is shown in Fig-
ure 6-6. There are two general approaches to updating the main memory. The first is the write-
through method; and the second is the write-back, also known as copy-back method. Memory
traffic issues are discussed for both methods.
6-11

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 6-6. Stale Data Problem in the Cache/Main Memory

6.4.1 Write-Through and Buffered Write-Through Systems

In a write-through system, data is written to the main memory immediately after or while it is
written into the cache. As a result, the main memory always contains valid data. The advantage
to this approach is that any block in the cache can be overwritten without data loss, while the hard-
ware implementation remains fairly straightforward. There is a memory traffic trade-off, howev-
er, because every write cycle increases the bus traffic on a slower memory bus. This can create
contention for use of the memory bus by other bus masters. Even in a buffered write-through
scheme, each write eventually goes to memory. Thus, bus utilization for write cycles is not re-
duced by using a write-through or buffered write-through cache.

Main MemoryCacheCPU
1

Processor reads data into cache
from main memory.

2

The data is processed and
modified and stored in the cache
(not in the main memory).

3

Later, another read overwrites the
cache data and the modified data is
overwritten and lost before the
main memory is updated.

3

The processor reads data from
memory as in the first step, but
stale data is copied in the cache, as
the correct data shown in Step 2
was not sent to the main memory.
6-12

CACHE SUBSYSTEM

 indi-
he data
 any

emory

 number
r than

main
ment.
 to limit
own that
rfor-

omplex
as to be
ations
access

 main
ory

ain stale
. There
hing),

e flush-
Users sometimes adopt a buffered write-through approach in which the write accesses to the main
memory can be buffered with a N-deep pipeline. A number of words are stored in pipelined reg-
isters, and will subsequently be written to the main memory. The processor can begin a new op-
eration before the write operation to main memory is completed. If a read access follows a write
access, and a cache hit occurs, then data can be accessed from the cache memory while the main
memory is updated. When the N-deep pipeline is full, the processor must wait if another write
access occurs and the main memory has not yet been updated. A write access followed by a read
miss also requires the processor to wait because the main memory has to be updated before the
next read access.

Pipeline configurations must account for multiprocessor complications when another processor
accesses a shared main memory location which has not been updated by the pipeline. This means
the main memory hasn’t been updated, and the memory controller must take the appropriate ac-
tion to prevent data inconsistencies.

6.4.2 Write-Back System

In a write-back system, the processor writes data into the cache and sets a “dirty bit” which
cates that a word had been written into the cache but not into the main memory. The cac
is written into the main memory at a later time and the dirty bit is cleared. Before overwriting
word or block in the cache, the cache controller looks for a dirty bit and updates the main m
before loading the cache with the new data.

A write-back cache accesses memory less often than a write-through cache because the
of times that the main memory must be updated with altered cache locations is usually lowe
the number of write accesses. This results in reduced traffic on the main memory bus.

A write-back cache can offer higher performance than a write-through cache if writes to
memory are slow. The primary use of the a write-back cache is in a multiprocessing environ
Since many processors must share the main memory, a write-back cache may be required
each processor's bus activity, and thus reduce accesses to main memory. It has been sh
in a single-CPU environment with up to four clock memory writes, there is no significant pe
mance difference between a write-through and write-back cache.

There are some disadvantages to a write-back system. The cache control logic is more c
because addresses have to be reconstructed from the tag RAM and the main memory h
updated along with the pending request. For DMA and multiprocessor operations, all loc
with an asserted dirty bit must be written to the main memory before another device can
the corresponding main memory locations.

6.4.3 Cache Consistency

Write-through and write-back systems require mechanisms to eliminate the problem of stale
memory in a multiprocessing system or in a system with a DMA controller. If the main mem
is updated by one processor, the cache data maintained by another processor may cont
data. A system that prevents the stale data problem is said to maintain cache consistency
are four methods commonly used to maintain cache consistency: snooping (or bus watc
broadcasting (or hardware transparency), non-cacheable memory designation, and cach
ing.
6-13

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
In snooping, cache controllers monitor the bus lines and invalidate any shared locations that are
written by another processor. The common cache location is invalidated and cache consistency
is maintained. This method is shown in Figure 6-7.

Figure 6-7. Bus Watching/Snooping for Shared Memory Systems

In broadcasting/hardware transparency, the addresses of all stores are transmitted to all the other
cache so that all copies are updated. This is accomplished by routing the accesses of all devices
to main memory through the same cache. Another method is by copying all cache writes to main
memory and to all of the cache that share main memory. A hardware transparent system is shown
in Figure 6-8.

Figure 6-8. Hardware Transparency

In non-cacheable memory systems, all shared memory locations are considered non-cacheable.
In such systems, access to the shared memory is never copied in the cache, and the cache never

Shared
Memory

Cache
Controller

Snoop
Address I/P

Other
Bus Master(s)

CPU

Main
Memory

Cache

CacheCPU

Other
Bus

Master
6-14

CACHE SUBSYSTEM
receives stale data. This can be implemented with chip select logic or with the high order address
bits. Figure 6-9 shows non-cacheable memory.

Figure 6-9. Non-Cacheable Share Memory

In cache flushing, all cache locations with set dirty bits are written to main memory (for write-
back systems), then cache contents are cleared. If all of the devices are flushed before another bus
master writes to shared memory, cache consistency is maintained.

Combinations of various cache coherency techniques may be used in a system to provide an op-
timal solution. A system may use hardware transparency for time critical I/O operations such as
paging, and it may partition the memory as non-cacheable for slower I/O operations such as print-
ing.

6.5 NON-CACHEABLE MEMORY LOCATIONS

To avoid cache consistency problems, certain memory locations must not be cached. The PC ar-
chitecture has several special memory areas which may not be cached. If ROM locations on add-
in cards are cached, for example, write operations to the ROM can alter the cache while main
memory contents remain the same. Further, if the mode of a video RAM subsystem is switched,
it can produce altered versions of the original data when a read-back is performed. Expanded
memory cards may change their mapping, and hence memory contents, with an I/O write opera-
tion. LAN or disk controllers with local memory may change the memory contents independent
of the Intel486 processor. This altering of certain memory locations can cause a cache consisten-
cy problem. For these reasons, the video RAM, shadowed BIOSROMs, expanded memory
boards, add-in cards, and shadowed expansion ROMs should be non-cacheable locations. De-
pending on the system design, ROM locations may be cacheable in a second-level cache if write
protection is allowed.

CPU Decoder

Other
Bus

Master

Cache

Non-cacheable

Cacheable
6-15

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

an in-

irected
hile a
ache

able por-
rob-

cles do

cache
he main
 cy-

t per-
s have
have its
us uti-
d to a

l-
d the L2
es by
troller.
e sys-
etween
ess bus.
 inval-
6.6 CACHE AND DMA OPERATIONS

Some of the issues related to cache consistency in systems employing DMA have already been
covered in the preceding section. Because a DMA controller or other bus master can update main
memory, there is a possibility of stale data in the cache. The problem can be avoided through
snooping, cache transparency, and non-cacheable designs.

In snooping, the cache controller monitors the system address bus and invalidates cache locations
that will be written to during a DMA cycle. This method is advantageous in that the processor
can access its cache during DMA operations to main memory. Only a “snoop hit” causes
validation cycle (or update cycle) to occur.

In cache transparency, memory accesses through the CPU and the DMA controller are d
through the cache, requiring minimal hardware. However, the main disadvantage is that w
DMA operation is in progress, the CPU bus is placed in HOLD. The concurrency of CPU/c
and DMA controller/main memory operations is not supported.

In non-cacheable designs, a separate dual-ported memory can be used as the non-cache
tion of the memory, and the DMA device is tightly coupled to this memory. In this way, the p
lem of stale data cannot occur.

In all of the approaches, the cache should be made software transparent so that DMA cy
not require special software programming to ensure cache coherency.

6.7 CACHE FOR SINGLE VERSUS MULTIPLE PROCESSOR SYSTEMS

6.7.1 Cache in Single Processor Systems

In single CPU systems, a write-through cache is an ideal cache solution. Write-through
solves consistency issues, may be designed as a plug-in option, and is less expensive. T
drawback of a write-through cache is its inability to reduce main memory utilization for write
cles. However, this is not as critical a consideration to single CPU designs.

6.7.2 Cache in Multiple Processor Systems

The Intel486 processor is designed for multiple-processor applications. The BREQ outpu
mits a simple hardware interface for bus arbitration. The on-board and second-level cache
a high hit rate and reduce main memory accesses for reads. Each microprocessor may
own local cache or all the microprocessors may share a global cache. With multi-masters, b
lization is critical. When a write-back cache is used, the bus utilization is reduced compare
write-through cache for write operations.

The multi-processor system illustrated in Figure 6-10 shows two processors and a DMA contro
ler that are connected over the system bus. The address bus on the Intel486 processor an
cache controller are bidirectional to allow cache invalidation on system bus memory writ
other masters. The arbitration logic arbitrates between the processors and the DMA con
The CPUs and their second-level cache monitor the system bus to identify cache writes. Th
tem must have the mechanisms to support invalidation cycles and to ensure consistency b
the contents of the two caches and memory. Coherency is achieved by snooping the addr
When a write is identified by one processor to a location contained in the other's cache, an
6-16

CACHE SUBSYSTEM
idation cycle must be generated by asserting AHOLD and EADS# to the second processor and
its cache. This type of invalidation is true for the write-through cache such as the one shown in
Figure 6-10. If the caches are write-back caches the invalidation protocol may be different.

Figure 6-10. Intel486™ Processor System Arbitration

Memory bus utilization in multiple CPU systems may be the most important performance con-
sideration. In this type of system, a cache should have a very high hit rate for both reads and
writes. Accesses to main, shared memory must be minimized. Write-back cache is best-suited for

Arbitration Logic

DMA

Intel486™
Processor 1

Intel486™
Processor 0

BREQ 2 BACK 2

BREQ 0 BREQ 1

HRQ 1

HLDA 1

HRQ 0

HLDA 0

HRQ 2 HLDA 2

DREQ

DACK

L2 Cache L2 Cache

Address

Data

Control

MemoryI/O
6-17

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
these multiprocessor environments. A write-back cache will, however, be more complex in its ar-
chitecture and coherency mechanisms.

6.8 AN Intel486™ PROCESSOR SYSTEM EXAMPLE

A typical Intel486 processor system is shown in Figure 6-11. The Intel486 processor has a local
bus that consists of address, data and control buses. These buses are either buffered, registered or
latched to comprise the system bus.

Figure 6-11. A Typical Intel486™ Processor System

The memory subsystem is made up of DRAMs, SRAMs, Flash and EPROMs. Main memory ac-
cesses are usually addressed to a DRAM subsystem; however, the I/O subsystem can communi-
cate with the Intel486 processor and with the memory subsystem during DMA operations.

Cache consistency must be maintained whenever main memory accesses occur during DMA op-
erations. Bus snooping and validation logic can monitor the bus to detect memory writes that may
be initiated by other bus masters. If such writes are detected, portions of the processor and the L2
cache may have to be invalidated. The Intel486 processor has mechanisms that can invalidate
cache entries; the L2 cache device should also have this capability.

The typical L2 cache is closely coupled to the Intel486 processor: the address, data, and control
signals are connected to the processor’s local bus, and L2 cache control signals interface to the
system bus as well. The system bus control signals interface to the processor and the L2 cache in

Controls

Controls

Local Bus

Data

Address

Intel486™ CPU Bus

Intel486
CPU

Data
XCVR

Address
XCVR

L2 Cache

Bus Snooping and
Validation Logic

Clock and Reset
 Logic

Memory
Subsystem

I/O

Arbitration
Logic

DMA Controller

LAN Controller
6-18

CACHE SUBSYSTEM
a similar manner, allowing the L2 cache to be implemented into an Intel486 processor system
with ease.

6.8.1 The Memory Hierarchy and Advantages of a Second-level Cache

The Intel486 processor has an on-chip cache and a high-speed register set. These registers are ac-
corded the first level of memory hierarchy. Instructions can be executed in a single clock, and at
an average cycles-per-instruction rate of 1.8 (CPI). The next level of hierarchy is accorded to the
second-level cache, which can consist of one or more L2 cache devices. These sustain a high level
of performance by supporting the fastest possible memory accesses, requiring only two clock cy-
cles for the first read and one clock cycle for each of the subsequent three reads in a burst cycle.
System performance degrades if main memory accesses are required. However, with the on-chip
L1 cache and the external L2 cache, the number of main memory read accesses is reduced con-
siderably. Figure 6-12 shows the memory hierarchy in a typical Intel486 processor system.

Figure 6-12. Intel486™ Processor System Memory Hierarchy

Because the Intel486 processor internal cache is so efficient, most external CPU bus cycles are
DRAM page misses. An L2 cache improves the bus latency problem, as data is available a large
percentage of the time from the cache for read operations. A large main memory can have an ac-
cess time of six to eight cycles on a page miss. On page hits data can be provided in three or four
cycles.

Intel486™ CPU

Register
File

8 Kbyte
 Cache

Main Memory

2nd-
Level
Higher

Bandwidth

Main
Memory

High Band
Width

L2 Cache

1ST Level Cache
Highest Bandwidth

L2 CacheL2 CacheL2 Cache

Processor Bus
6-19

7
Peripheral Subsystem

Chapter Contents

7.1 Peripheral/Processor Bus Interface 7-1

7.2 Basic Peripheral Subsystem..7-17

7.3 I/O Cycles ...7-29

7.4 Differences Between the Intel486™ DX Processor Family
and Intel386™ Processors...7-33

7.5 Interfacing to x86 Peripherals ...7-34

7.6 Intel486™ Processor LAN Controller Interface7-38

s. This
essor,

roces-
 CPU
sider-

pped,
oher-
cessed
s for
uction
oper-
 read

this sec-
critical

-ori-
nce on

 its use
sed to

ghtfor-

 I/O-
ry ad-
g from
CHAPTER 7
PERIPHERAL SUBSYSTEM

The peripheral (I/O) interface is an essential part of any embedded processor system. It supports
communications between the microprocessor and the peripherals. Given the variety of existing
peripheral devices, a peripheral system must allow a variety of interfaces. An important part of a
microprocessor system is the bus that connects all major parts of the system. This chapter de-
scribes the connection of peripheral devices to the Intel486™ processor microprocessor bu
chapter presents design techniques for interfacing different devices with the Intel486 proc
such as LAN controllers and EISA, VESA local bus, and PCI chip sets.

The peripheral subsystem must provide sufficient data bandwidth to support the Intel486 p
sor. High-speed devices like disks must be able to transfer data to memory with minimal
overhead or interaction. The on-chip cache of the Intel486 processor requires further con
ations to avoid stale data problems. These subjects are also covered in this chapter.

The Intel486 processor supports 8-bit, 16-bit and 32-bit I/O devices, which can be I/O-ma
memory-mapped, or both. It has a 106 Mbyte/sec memory bandwidth at 33 MHz. Cache c
ency is supported by cache line invalidation and cache flush cycles. I/O devices can be ac
by dedicated I/O instructions for I/O-mapped devices, or by memory operand instruction
memory-mapped devices. In addition, the Intel486 processor always synchronizes I/O instr
execution with external bus activity. All previous instructions are completed before an I/O
ation begins. In particular, all writes pending in the write buffers are completed before an I/O
or write is performed. These functions are described in this chapter.

7.1 PERIPHERAL/PROCESSOR BUS INTERFACE

Because the Intel486 processor supports both memory-mapped and I/O-mapped devices,
tion discusses the types of mapping, support for dynamic bus sizing, byte swap logic, and
timings. An example of a basic I/O controller implementation is also included. Some system
ented interface considerations are discussed because they can have a significant influe
overall system performance.

7.1.1 Mapping Techniques

The system designer should have a thorough understanding of the system application and
of peripherals in order to design the optional mapping scheme. Two techniques can be u
control the transmission of data between the computer and its peripherals. The most strai
ward approach is I/O mapping.

The Intel486 processor can interface with 8-bit, 16-bit or 32-bit I/O devices, which can be
mapped, memory-mapped, or both. All I/O devices can be mapped into physical memo
dresses ranging from 00000000H to FFFFFFFFH (four-gigabytes) or I/O addresses rangin
00000000H to 0000FFFFH (64 Kbytes) for programmed I/O, as shown in Figure 7-1.
7-1

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 7-1. Mapping Scheme

I/O mapping and memory-mapping differ in the following respects:

• The address decoding required to generate chip selects for the I/O-mapped devices is much
simpler than that required for memory-mapped devices. I/O-mapped devices reside within
the I/O space of the Intel486 processor (64 Kbytes); memory-mapped devices reside in a
much larger Intel486 processor memory space (4-gigabytes), which requires more address
lines to decode.

• The I/O space is 64 Kbytes and can be divided into 64 K of 8-bit ports, 32 K of 16-bit ports,
16 K of 32-bit ports or any combinations of ports which add up to less than 64 Kbytes. The
64 Kbytes of I/O address space refers to physical memory because I/O instructions do not
utilize the segmentation or paging hardware and are directly addressable using DX
registers.

• Memory-mapped devices can be accessed using the Intel486 processor’s instructions, so
that I/O to memory, memory-to-I/O, and I/O-to-I/O transfers, as well as compare and test
operations, can be coded efficiently.

• The I/O-mapped device can be accessed only with IN, OUT, INS, and OUTS instructions.
I/O instruction execution is synchronized with external bus activity. All I/O transfers are
performed using the AL (8-bit), AX (16-bit), or EAX (32-bit) registers.

Physical
Memory

Not
Accessible

Not
Accessible

64 Kbyte

FFFFFFFFH

00000000H

0000FFFFH

00000000H

Accessible
Programmed
I/O Space

I/O SpacePhysical Memory
Space

4 Gbyte
7-2

PERIPHERAL SUBSYSTEM

ed area.
e valid
o

• Memory mapping offers more flexibility in Protected Mode than I/O mapping. Memory-
mapped devices are protected by the memory management and protection features. A
device can be inaccessible to a task, visible but protected, or fully accessible, depending on
where it is mapped. Paging and segmentation provide the same protection levels for 4-
Kbyte pages or variable length segments, which can be swapped to the disk or shared
between programs. The Intel486 processor supports pages and segments to provide the
designer with maximum flexibility.

• The I/O privilege level of the Intel486 processor protects I/O-mapped devices by either
preventing a task from accessing any I/O devices or by allowing a task to access all I/O
devices. A virtual-8086 mode I/O permission bitmap can be used to select the privilege
level for a combination of I/O bytes.

7.1.2 Dynamic Bus Sizing

Dynamic data bus sizing allows a direct processor connection to 32-, 16- or 8-bit buses for mem-
ory or I/O devices. The Intel486 processors support dynamic data bus sizing, except for the Ultra-
Low Power Intel486 GX processor, which has a 16-bit data bus only. With dynamic bus sizing,
the bus width is determined during each bus cycle to accommodate data transfers to or from 32-
bit, 16-bit or 8-bit devices. The decoding circuitry can assert BS16# for 16-bit devices, or BS8#
for 8-bit devices for each bus cycle. For addressing 32-bit devices, both BS16# and BS8# are
deasserted. If both BS16# and BS8# are asserted, an 8-bit bus width is assumed.

Appropriate selection of BS16# and BS8# drives the Intel486 processor to run additional bus cy-
cles to complete requests larger than 16-bits or 8-bits. When BS16# is asserted, a 32-bit transfer
is converted into two 16-bit transfers (or three transfers if the data is misaligned). Similarly, as-
serting BS8# converts 32-bit transfers into four 8-bit transfers. The extra cycles forced by the
BS16# or BS8# signals should be viewed as independent cycles. BS16# or BS8# are normally
driven active during the independent cycles. The only exception is when the addressed device can
vary the number of bytes that it can return between the cycles.

The Intel486 processor drives the appropriate byte enables during the independent cycles initiat-
ed by BS8# and BS16#. Addresses A31–A2 do not change if accesses are to a 32-bit align
Table 7-1 shows the set of byte enables that is generated on the next cycle for each of th
possibilities of the byte enables on the current cycle. BEx# must be ignored for 16-byte cycles t
memory-mapped devices.
7-3

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

the ad-
order
When
6 data
 reads

r write
ro-
s sizing
ls that
 data.
e data
The dynamic bus sizing feature of Intel486 processor is significantly different than that of the
Intel386™ DX processor. The Intel486 processor requires that the data bytes be driven on
dressed lines only, unlike the Intel386 DX processor, which expects both high and low
bytes on D15–D0. The simplest example of this function is a 32-bit aligned BS16# read.
the Intel486 processor reads the two higher order bytes, they must be driven on D31–D1
bus, and it expects the two low order bytes on D15–D0. The Intel386 DX processor always
or writes data on the lower 16-bits of the data bus when BS16# is asserted.

The external system design must provide buffers to allow the Intel486 processor to read o
data on the appropriate data bus pins. Table 7-2 shows the data bus lines where the Intel486 p
cessor expects valid data to be returned for each valid combination of byte enables and bu
options. Valid data is driven only on data bus pins which correspond to byte enable signa
are active during write cycles. Other data pins are also driven, but they do not contain valid
Unlike the Intel386 DX processor, the Intel486 processor does not duplicate write data on th
bus when corresponding byte enables are deasserted.

Table 7-1. Next Byte-Enable Values for the BSx# Cycles

Current Next with BS8# Next with BS16#

BE3# BE2# BE1# BE0# BE3# BE2# BE1# BE0# BE3# BE2# BE1# BE0#

1 1 1 0 N N N N N N N N

1 1 0 0 1 1 0 1 N N N N

1 0 0 0 1 0 0 1 1 0 1 1

0 0 0 0 0 0 0 1 0 0 1 1

1 1 0 1 N N N N N N N N

1 0 0 1 1 0 1 1 1 0 1 1

0 0 0 1 0 0 1 1 0 0 1 1

1 0 1 1 N N N N N N N N

0 0 1 1 0 1 1 1 N N N N

0 1 1 1 N N N N N N N N

NOTE: “N” means that another bus cycle is not required to satisfy the request.
7-4

PERIPHERAL SUBSYSTEM
The BS16# and BS8# inputs allow external 16- and 8-bit buses to be supported using fewer ex-
ternal components. The Intel486 processor samples these pins every clock cycle. This value is
sampled on the clock before RDY# to determine the bus size. When BS8# or BS16# is asserted,
only 16-bits or 8-bits of data are transferred in a clock cycle. When both BS8# and BS16# are
asserted, an 8-bit bus width is used.

Dynamic bus sizing allows the power-up or boot-up programs to be stored in 8-bit non-volatile
memory devices (e.g., PROM, EPROM, E2PROM, Flash, and ROM) while program execution
uses 32-bit DRAM or variants.

7.1.3 Address Decoding for I/O Devices

Address decoding for I/O devices resembles address decoding for memories. The primary differ-
ence is that the block size (range of addresses) for each address signal is much smaller. The min-
imum block size depends on the number of addresses used by the I/O device. In most processors,
where I/O instructions are separate, I/O addresses are shorter than memory addresses. Typically,
processors with a 16-bit address bus use an 8-bit address for I/O.

One technique for decoding memory-mapped I/O addressed is to map the entire I/O space of the
Intel486 processor into a 64-Kbyte region of the memory space. The address decoding logic can
be reconfigured so that each I/O device responds to a memory address and an I/O address. This
configuration is compatible with software that uses either I/O instructions or memory-mapped
techniques.

Addresses can be assigned arbitrarily within the I/O or memory space. Addresses for either I/O-
mapped or memory-mapped devices should be selected so as to minimize the number of address
lines needed.

Table 7-2. Valid Data Lines for Valid Byte Enable Combinations

BE3# BE23 BE1# BE0# w/o BS8#/BS16# w BS8# w BS16#

1 1 1 0 D7–D0 D7–D0 D7–D0

1 1 0 0 D15–D0 D7–D0 D15–D0

1 0 0 0 D23–D0 D7–D0 D15–D0

0 0 0 0 D31–D0 D7–D0 D15–D0

1 1 0 1 D15–D8 D15–D8 D15–D8

1 0 0 1 D23–D8 D15–D8 D15–D8

0 0 0 1 D31–D8 D15–D8 D15–D8

1 0 1 1 D23–D16 D23–D16 D23–D16

0 0 1 1 D31–D16 D23–D16 D31–D16

0 1 1 1 D31–D24 D31–D24 D31–D24
7-5

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

wn in
7.1.3.1 Address Bus Interface

Figure 7-2 shows the Intel486 processor address interface to 32-, 16- and 8-bit devices. To ad-
dress 16-bit devices, the byte enables must be decoded to produce A1, BHE# and BLE# (A0) sig-
nals.

Figure 7-2. Intel486™ Processor Interface to I/O Devices

To access to 8-bit devices, the byte enable signals must be decoded to generate A0 and A1. Be-
cause A0 and BLE# are the same, the same generation logic can be used. For 32-bit memo-
ry/mapped devices A31–A2 can be used in conjunction with BE3#–BE0#. This logic is sho
Figure 7-3.

Address Bus
(A31–A2, BE3#–BE0#)

32-Bit
I/O

Devices

16-Bit
I/O

Devices

8-Bit
I/O

Devices

A31–A2

BE3#–
BE0#

Byte
Select

BHE#,
BLE#,
A1

A0(BLE#), A1
Address
Decoder

Intel486™

BS8# BS16#BS8# = BS16# = HIGH
for 32-Bit Addressing

A31–A2

Processor
7-6

PERIPHERAL SUBSYSTEM

n BS8#

ation
Figure 7-3. Logic to Generate A1, BHE# and BLE# for 16-Bit Buses

7.1.3.2 8-Bit I/O Interface

Due to the presence of dynamic data bus sizing and the variety of byte-enable pin combinations
(Table 7-2), byte swapping logic for 32-to-8-bit conversions can be implemented in various ways.

This section discusses an example in which BE3#–BE0# are low and D7–D0 are used whe
is enabled.

Figure 7-4 shows the interfacing of an Intel486 processor to an 8-bit device. This implement
requires seven 8-bit bidirectional data buffers.

A1
BE0#

BE1#

BHE#
BE1#

BE3#

BE0#

BE2#

BE0#

BE1#

BLE# (OR A0)
7-7

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

 on the
nabled

 also
 equa-
Figure 7-4. Intel486™ Processor Interface to 8-Bit Device

In this example of a 32-bit write, the BE3#–BE0# are enabled; hence 32 bits of data reside
data buffer outputs. This data is then swapped based on the control signals. Buffers are e
in the following manner:

For Byte # 0 Buffer 3 is enabled (BE0# is true)
For Byte # 1 Buffer 2 and 4 are enabled (BE1# and BEN8H#)
For Byte # 2 Buffer 1 and 5 are enabled (BE2# and BEN8UL#)
For Byte # 3 Buffer 0 and 6 are enabled (BE3# and BEN8UH#)

Table 7-5 shows the truth table for 8-bit I/O interface to the Intel486 processor. The table
contains the values of the control signals used to enable the second set of buffers. The PLD
tions used to implement these signals are shown in Tables 7-3 and 7-4.

A5283-02

BUFF

0

BEN8H#

4

BEN8UL#

5

8

BE3#

BEN8UH#

BUFF

1

8

BE2#

6

BUFF

2

8

BE1#

BUFF

3

8

BE0#

Bidirectional

Data Buffers

8-Bit

Bus

Intel486™�

Processor

Interface
7-8

PERIPHERAL SUBSYSTEM
Table 7-3. PLD Input Signals

BS8# The signal is from an 8-bit device or from the system logic that interfaces to an 8-bit
device.

BE3#–BE0# When processor drives all of these signals Low, external logic should look only for
BE0# while in 8-bit mode.

ADS# An address strobe from the Intel486™ processor indicates a valid processor cycle.

OUTPUTS BEN8H#,
BEN8UH#, BEN8UL#

Byte enables for 8-bit interface.

Table 7-4. Equations

BEN8H = ADS * BE1 * /BE0 * BS8
+ /ADS * BEN8H

;Swapping second byte for 8-bit
interface

BEN8UL = ADS * BE2 * /BE1 * /BE0 * BS8
+ /ADS * BEN8UL

;Swapping third byte for 8-bit
interface

BEN8UH = ADS * BE3 * /BE2 * /BE1 * /BE0 * BS8
+ /ADS * BEN8UH

;Swapping fourth byte for 8-bit
interface

Table 7-5. 32-Bit to 8-Bit Steering (Sheet 1 of 2)

Intel486™ Processor (3) 8-Bit Interface (1)

BE3# BE2# BE1# BE0# BEN16# BEN8UH# BEN8UL# BEN8H# BHE# (2) A1 A0

0 0 0 0 1 1 1 1 X 0 0

1 0 0 0 1 1 1 1 X 0 0

0 1 0 0† 1 1 1 1 X X X

1 1 0 0 1 1 1 1 X 0 0

0 0 1 0† 1 1 1 1 X X X

1 0 1 0† 1 1 1 1 X X X

 Inputs Outputs

NOTES:
1. X implies “do not care” (either 0 or 1).
2. BHE# (byte high enable) is not needed in 8-bit interface.
3. † indicates a non-occurring pattern of byte enables; either none are asserted or the pattern has byte

enables asserted for non-contiguous bytes.
7-9

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

 are

its are
7.1.3.3 16-Bit I/O Interface

16-bit I/O interface byte swap logic requires six 8-bit bidirectional I/O data buffers as shown in
Figure 7-5. Buffers 3 through 0 are controlled by BE3#–BE0# respectively. Buffers 4 and 5
monitored by BEN16#.

To transfer data on the lower 16-bits, buffers 2 and 3 are enabled. While the higher 16-b
transferred through Buffer 0, 1, 4, and 5.

0 1 1 0† 1 1 1 1 X X X

1 1 1 0 1 1 1 1 X 0 0

0 0 0 1 1 1 1 1 X 0 1

1 0 0 1 1 1 1 0 X 0 1

0 1 0 1† 1 1 1 0 X X X

1 1 0 1 1 1 1 0 X 0 1

0 0 1 1 1 1 0 0 X 1 0

1 0 1 1 1 1 0 1 X 1 0

0 1 1 1 1 0 1 1 X 1 1

1 1 1 1 1 1 1 1 X X X

Table 7-5. 32-Bit to 8-Bit Steering (Sheet 2 of 2)

Intel486™ Processor (3) 8-Bit Interface (1)

BE3# BE2# BE1# BE0# BEN16# BEN8UH# BEN8UL# BEN8H# BHE# (2) A1 A0

 Inputs Outputs

NOTES:
1. X implies “do not care” (either 0 or 1).
2. BHE# (byte high enable) is not needed in 8-bit interface.
3. † indicates a non-occurring pattern of byte enables; either none are asserted or the pattern has byte

enables asserted for non-contiguous bytes.
7-10

PERIPHERAL SUBSYSTEM
Figure 7-5. Bus Swapping 16-Bit Interface

Table 7-9 shows the truth table for 32-to-16-bit bus swapping logic and A0, A1 and BHE# gen-
eration.

The PLD equation used to implement 32-bit-to-16-bit byte swap logic is shown in Tables 7-6
and 7-7.

BUFF 0

BUFF 1

BUFF 2

BUFF 3

BE3#

BE2#

BE1#

BE0#

8

8

8

8 8

8

8

8

16-Bit

BEN16#

BUFF 4

BUFF 5
7-11

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Table 7-6. PLD Input Signals

BS16# Either from a 16-bit device or from system logic which indicates a 16-bit transfer.

BE3#–BE0# Byte enable inputs from Intel486™ processor. In 16-bit mode, the external logic should
look at BE0# and BE1# only.

ADS# Address strobe from an Intel486 processor indicating a valid CPU cycle.

Table 7-7. PLD Output Signals

BS16# Word enable for 16-bit interface.

Table 7-8. Equation

BEN16 = ADS * BE2 * /BE1 * /BE0 * BS16 * /BS8
+ ADS * BE3 * /BE1 * /BE0 * BS16 * /BS8
+ /ADS * BEN16

;swapping upper 16-bits

Table 7-9. 32-Bit to 16-Bit Bus Swapping Logic Truth Table (Sheet 1 of 2)

Intel486™ Processor (3) 8-Bit Interface (1)

BE3# BE2# BE1# BE0# BEN16# BEN8UH# BEN8UL# BEN8H# BHE# (2) A1 A0

0 0 0 0 1 1 1 1 1 0 1

1 0 0 0 1 1 1 1 1 0 1

0 1 0 0† 1 1 1 1 X X X

1 1 0 0 1 1 1 1 1 0 1

0 0 1 0† 0 1 1 1 0 X 0

1 0 1 0† 0 1 1 1 X X 0

 Inputs Outputs

NOTES:
1. X implies “do not care” (either 0 or 1).
2. BHE# (byte high enable) is not needed in 8-bit interface.
3. † indicates a non-occurring pattern of byte enables; either none are asserted or the pattern has byte

enables asserted for non-contiguous bytes.
7-12

PERIPHERAL SUBSYSTEM
The logic needed to generate the byte-swapping control signals for 32-bit-to-8-bit and 32-bit-to-
16-bit data transfer can be implemented in PLDs. Propagation delay of the PLD and the bidirec-
tional buffer propagation delay of 9 ns maximum must be taken into consideration. This delay
adds into data set-up time for CPU read cycles and data valid delay for the CPU write cycle. The
byte-swapping and address bit generation logic is shown in Figure 7-6.

0 1 1 0† 0 1 1 1 X X X

1 1 1 0 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 0 1

1 0 0 1 1 1 1 1 1 0 1

0 1 0 1† 1 1 1 1 X X X

1 1 0 1 1 1 1 1 1 0 1

0 0 1 1 0 1 1 1 0 1 0

1 0 1 1 0 1 1 1 1 1 0

0 1 1 1 0 1 1 1 1 1 1

1 1 1 1† 1 1 1 1 X X X

Table 7-9. 32-Bit to 16-Bit Bus Swapping Logic Truth Table (Sheet 2 of 2)

Intel486™ Processor (3) 8-Bit Interface (1)

BE3# BE2# BE1# BE0# BEN16# BEN8UH# BEN8UL# BEN8H# BHE# (2) A1 A0

 Inputs Outputs

NOTES:
1. X implies “do not care” (either 0 or 1).
2. BHE# (byte high enable) is not needed in 8-bit interface.
3. † indicates a non-occurring pattern of byte enables; either none are asserted or the pattern has byte

enables asserted for non-contiguous bytes.
7-13

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

ould
ce is
Figure 7-6. Bus Swapping and Low Address Bit Generating Control Logic

7.1.3.4 32-Bit I/O Interface

A simple 32-bit I/O interface is shown in Figure 7-7. The example uses only four 8-bit wide bi-
directional buffers which are enabled by BE3#–BE0#. Table 7-2 provides different combinations
of BE3#–BE0#. To provide greater flexibility in I/O interface implementation, the design sh
include interfaces for 32-, 16- and 8-bit devices. The truth table for a 32-to-32-bit interfa
shown in Table 7-10.

PLD

BS8#

BS16#

BS0#

BS1#

BS2#

BS3#

ADS

From 8-Bit

From 16-Bit

BEN16#

BEN8UH#

BEN8UL#

BEN8H#

A0

A1

BHE#
7-14

PERIPHERAL SUBSYSTEM
Figure 7-7. 32-Bit I/O Interface

BUFF 0

BUFF 1

BUFF 2

BUFF 3

BE3#

8

8

8

8

8

8

8

8

BE2#

BE1#

BE0#

Intel486™ Processor Data Bus 32-Bit I/O Device
7-15

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Table 7-10. 32-Bit to 32-Bit Bus Swapping Logic Truth Table

Intel486™ Processor (3) 8-Bit Interface (1)

BE3# BE2# BE1# BE0# BEN16# BEN8UH# BEN8UL# BEN8H# BHE# (2) A1 A0

0 0 0 0 1 1 1 1 X X X

1 0 0 0 1 1 1 1 X X X

0 1 0 0† 1 1 1 1 X X X

1 1 0 0 1 1 1 1 X X X

0 0 1 0† 1 1 1 1 X X X

1 0 1 0† 1 1 1 1 X X X

0 1 1 0† 1 1 1 1 X X X

1 1 1 0 1 1 1 1 X X X

0 0 0 1 1 1 1 1 X X X

1 0 0 1 1 1 1 1 X X X

0 1 0 1† 1 1 1 1 X X X

1 1 0 1 1 1 1 1 X X X

0 0 1 1 1 1 1 1 X X X

1 0 1 1 1 1 1 1 X X X

0 1 1 1 1 1 1 1 X X X

1 1 1 1† 1 1 1 1 X X X

 Inputs Outputs

NOTES:
1. X implies “do not care” (either 0 or 1).
2. BHE# (byte high enable) is not needed in 8-bit interface.
3. † indicates a non-occurring pattern of byte enables; either none are asserted or the pattern has byte

enables asserted for non-contiguous bytes.
7-16

PERIPHERAL SUBSYSTEM
7.2 BASIC PERIPHERAL SUBSYSTEM

All microprocessor systems include a CPU, memory and I/O devices which are linked by the ad-
dress, data and control buses. Figure 7-8 illustrates the system block diagram of a typical Intel486
processor-based system.

Figure 7-8. System Block Diagram

An embedded Intel486 processor system may consist of several subsystems. The heart of the sys-
tem is the processor. The memory subsystem is also important and must be efficient and opti-
mized to provide peak system level performance. As described in Chapter 5, “Memory

Intel486™
Processor

LAN
Controller

Cache
Subsystem

Memory
Subsystems

DMAC

Memory Bus

Bus
Translator

I/O Bus

Bus
Interface

SCSI/IPI
Interface

ESDI

(EISA, MCA,

Proprietary)
PCI, ISA, or
7-17

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

r for

 how-

ystem.
ion bus
s can
 act as

s
r.
Subsystem Design,” it is necessary to utilize the burst-bus feature of the Intel486 processo
the DRAM control implementation. The cache subsystem, as described in Chapter 6, “Cache
Subsystem,” also plays an important role in overall system performance. For many systems
ever, the on-chip cache provides sufficient performance.

A high-performance Intel486 processor-based system, requires an efficient peripheral subs
This section describes the elements of this system, including the I/O devices on the expans
(the memory bus) and the local I/O bus. In a typical system, a number of slave I/O device
be controlled through the same local bus interface. Complex peripheral devices which can
bus masters may require a more complex interface.

The bus interface control logic is shown in Figure 7-9 and consists of three main blocks: the bu
control and ready logic, the data transceiver and byte swap logic, and the address decode
7-18

PERIPHERAL SUBSYSTEM
Figure 7-9. Basic I/O Interface Block Diagram

Clock CLK

ADS#

M/IO#

D/C#

W/R#

RDY#

ADS#

M/IO#

D/C#

W/R#

RDY#

Intel486™
 CPU

Bus Control
and Ready

IOCYC

EN

Address
Decoder

CS1#

CS0#

INTA

RECOV

IOR#

IOW#

CS0#

CS1#

OE#
Data

Transceiver

DIR Data
Bus

CS0#RD#

WR#

A2

I/O #2
(32-Bit)

I/O #1
(32-Bit)

RD#

WR#

A2

CS1#

32

32 32 4

(To Interrupt Controller)

Data
Bus

Addr
Bus

BE3#–
BE0#
7-19

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

ped I/O

onse is
ge (IN-

#) and

 to

cycle
or the
rding

nd
 from

This

9A

are
7.2.1 Bus Control and Ready Logic

A typical peripheral device has address inputs which the processor uses to select the device’s in-
ternal registers. It also has a chip select (CS#) signal which enables it to read data from and write
data to the data bus, as controlled by the READ (RD#) and WRITE (WR#) control signals. For a
processor that has separate memory and I/O addressing, either memory or I/O read and write sig-
nals can be used. As discussed in Section 7.1.1, “Mapping Techniques,” when memory read and
write signals are used to access the peripheral device, the device is called a memory-map
device.

Many peripheral devices also generate an interrupt output which is asserted when a resp
required from the processor. Here, the processor must generate an interrupt acknowled
TA#) signal.

The bus controller decodes the Intel486 processor’s status outputs (W/R#, M/IO# and D/C
activates command signals according to the type of bus cycle requested.

The bus controller can be used to do the following:

1. Generate an EPROM data read when the control logic generates a signal such as a
memory read command (EPRD#). The command forces the selected memory device
output data. Chapter 8, “System Bus Design,” provides further explanation.

2. Generate the IOCYC# signal which indicates to the address decoder that a valid I/O
is taking place. As a result, the relevant chip select (CS#) signal should be enabled f
I/O device. Once IOCYC is generated, the IOR# and IOW# signals are asserted acco
to the decoded Intel486 processor status signals (explained later).

3. Initiate I/O read cycles when W/R# is low and M/IO# is low. The I/O read command
(IOR#) is generated. IOR# selects the I/O device which is to output the data.

4. Initiate an I/O write cycle when W/R# is high and M/IO# is low. The I/O write comma
signal (IOW#) is generated. This signal instructs a selected I/O device to receive data
the Intel486 processor.

5. Generate a RECOV signal which is used for recovery and to avoid data contention.
signal is detailed in Section 7.2.6, “Recovery and Bus Contention.”

6. Generates the interrupt acknowledge signal (INTA#). This signal is sent to the 82C5
programmable interrupt controller to enable 82C59A interrupt vector data onto the
Intel486 processor data bus using a sequence of interrupt acknowledge pulses that
issued by the control logic. This signal is detailed in Section 7.5, “Interfacing to x86
Peripherals.”
7-20

PERIPHERAL SUBSYSTEM
7.2.2 Bus Control Signal Description

The following list describes the input/output signals for the bus control logic.

7.2.2.1 Processor Interface

ADS#—Address Status. This input signal to the bus controller is connected directly to the pro-
cessor’s ADS# output. It indicates that a valid bus cycle definition and address are available on
the cycle definition lines and address bus. ADS# is driven active at the same time when addresses
are driven.

M/IO#—Memory/Input-Output Signal
D/C#—Data/Control
W/R#—Write/Read (Input signals to bus controller)

These signals are connected directly to the Intel486 processor’s bus cycle status outputs. For the
Intel486 processor, they are valid when ADS# is asserted. Table 7-11 describes the bus cycles of
various combinations of M/IO#, D/C# and W/R# signals.

RDY#—Ready Output Signal. This signal is connected directly to the Intel486 processor’s
RDY# input and indicates that the current bus cycle is complete. It also indicates that the I/O de-
vice has returned valid data to the Intel486 processor’s data pins following an I/O write cycle. For
the Intel486 processor, RDY# is ignored when the bus is idle and at the end of the first clock of
the bus cycle. The signal is utilized in wait state generation which is covered in the next section.

CLK#—Clock Input Signal. This signal provides the fundamental timings for the bus control
logic and is synchronous with the processor’s clock. All of the external timings are specified with
respect to the rising edge of the clock.

IOCYC—I/O Interface Signals. The IO cycle output signal is generated at the rising clock edge
following ADS#, M/IO#, D/C and W/R# being active. The signal indicates that an I/O cycle is
taking place and is used to enable the address decoder.

Table 7-11. Bus Cycle Definitions

M/IO# D/C# W/R# ADS# Bus Cycle Initiated

0 0 0 0 Interrupt acknowledge

0 0 1 0 Halt/special cycle

0 1 0 0 I/O read

0 1 1 0 I/O write

1 0 0 0 Code read

1 0 1 0 Reserved†

1 1 0 0 Memory read

1 1 1 0 Memory write

NOTE: † Intel reserved. Do not use.
7-21

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

DIP
te wait

 is de-

t

IOR#—The I/O Read Signal. This signal is active low and is generated when the Intel486 pro-
cessor’s W/R# output signal is low, indicating a read cycle. When IOR# is low, data can be read
from the peripheral device. The signal is deasserted with the rising edge of the RDY# signal.

IOW#—Interrupt Write Signal. This signal is generated by the controller logic and is active
low when W/R# status signal from the Intel486 processor is high, indicating that the processor
will write to the I/O device which has its present address on the address bus. When IOW# is low,
data from the Intel486 processor can be written to the peripheral device. The signal is valid until
the rising edge of the RDY# signal.

INTA—Interrupt Acknowledge Signal. This signal is active high and is generated to acknowl-
edge an interrupt from peripheral devices such as 82C59A, etc. The signal function is discussed
in Section 7.5, “Interfacing to x86 Peripherals.”

7.2.2.2 Wait State Generation Signals

SEL0, SEL1, SEL2. These programmable wait state select inputs can be controlled by
switches or can be programmed by the processor. In the control logic example, a seven-sta
state generator is implemented. The purpose and functionality of a wait state generator
scribed in the next section.

C0, C1, C2—Counter Outputs 0, 1, and 2. These outputs are internally decoded to generate a
RDY# signal and they represent the number of wait states implemented by the bus control logic.
The wait state generation logic is used to patch timing differences between the peripheral device
and the Intel486 processor. The next section discusses this issue in detail.

7.2.3 Wait State Generator Logic

When the memory subsystem or the I/O device cannot respond to the processor in time, wait
states are added to the bus cycles. During wait states the processor freezes the state of the bus. On
the Intel486 processor, wait states are activated by the RDY# signal (when asserted). Additional
wait states are generated as long as RDY# stays deasserted, and the processor resumes its opera-
tions once RDY# is asserted.

Timing differences between microprocessors and peripheral devices are common, but can be
compensated for by using wait states or some other delay techniques. The following major timing
parameters must be accounted for:

1. Minimum pulse width for read and write timings

2. Chip select access time

3. Address access time

4. Access time from read strobe

It is possible to adjust the minimum pulse width and chip select access time by adding wait states.
Refer to Section CHAPTER 4, “Bus Operation” for more detailed information on adding wai
states to basic bus cycles.
7-22

PERIPHERAL SUBSYSTEM
Figure 7-10 shows PLD equations for basic I/O control logic. A wait state generator should be
implemented to optimize wait state generation.

Figure 7-10. PLD Equations for Basic I/O Control Logic

The equation in Figure 7-10 shows an implementation of a seven-state wait state controller. The
wait state logic inserts the needed wait states according to the number required by the device be-
ing accessed. In a simple design, I/O accesses can be designated as being equal to the number of
wait states required by the slowest device.

7.2.4 Address Decoder

The function of the address decoder is to decode the most significant address bits and generate
address select signals for each system device. The address space is divided into blocks, and the
address select signals indicate whether the address on the address bus is within the predetermined
range. The block size usually represents the amount of address space that can be accessed within
a particular device and the address select signal is asserted for any address within that range.

Inputs ADS#, M/IO#, D/C#, W/R#, SEL0, SEL1, SEL2

Outputs IOCYC, 0 C1, C2, IOR#, IOW#, RDY#
IOCYC = IOCYCLE VALID
C0, C1, C2 = Outputs of a 3-bit counter
Sel 0, 1, 2 = Programmable wait state select input

PLD Equation:
IO VALID CYCLE; ; start I/O cycle

IOCYC : =ADS * M/IO# *D/C ;END when ready

Wait State Counter;
C0 : = IOCYC * C0# ;Counter bit 0
C1 : = IOCYC * C0 * C1# ;Counter bit 1

+ IOCYC * C0# * C1
C2 : = IOCYC * C0 * C1 * C2# ;Counter bit 2

+ IOCYC * C0# * C2
+ IOCYC * C0# * C1 * C2

I/O Read; I/O Write
IOR : = ADS * M/IO# * D/C * W/R#

 + IOR * RDY
IOW : = ADS * M/IO * D/C * W/R

 + IOW * RDY#
READY (3 Wait States)

 RDY = C0 * C1 * C2#
7-23

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Address select signals are asserted within the range of addresses which is determined by the de-
coded address lines. The relationship between memory and I/O mapping and address decoding is
given by the following equation:
Given thatn = bits to decoder

m = bits to I/O or memory

then # of chip selects = 2n
address range = 2m = # of least significant address lines

For example, when the address decoder decodes A13 through the most significant address bits,
the least significant 13 address bits A2 to A12 are ignored. Hence the address select can be as-
serted for a 2-Kbyte address range.

For I/O-mapped devices, the maximum I/O space is 64 Kbytes. When using I/O instructions the
block size (range of addresses) for each address select signal is much smaller than the address
space of the memory-mapped devices. The minimum block size is determined according to the
number of addresses being used by the peripheral device.

A typical address decoding circuit for a basic I/O interface implementation is shown in Figure
7-11. It uses 74S138. Only one output is asserted at a time. The signal corresponding to the binary
number present at the A, B and C inputs and value of the gate enable signals.

Figure 7-12 shows the internal logic and truth table of the 74S138. It has three enable inputs; two
are active low, and one is active high. All three inputs must be asserted; otherwise the outputs are
deasserted. Since all of the outputs are active low, the selected output is low and the others are
high.

Figure 7-11. I/O Address Example

RDY#

RESET

TIMEOUT

S

D

Q#

QADS#

CPU CLK

A5
A6
A7

A2

A3

A4

M/IO#

D/C#

IO CS (XXE0)

E4

E8

FC

F8

E1

E2

E3

A
B

C

74S138
7-24

PERIPHERAL SUBSYSTEM

 de-
 in the
In Figure 7-11, address lines A15–A8 are ignored to maintain simplicity. Lines A7–A2 are
coded to generate addresses XXE0–XXFC. When a valid cycle begins, ADS# is latched
flip-flop.

Figure 7-12. Internal Logic and Truth Table of 74S138

(15)

(14)

(13)

(12)

(11)

(10)

(9)

(7)

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Data
Outputs

(6)

(4)

(5)

G1

G2A#

G2B#

Enable
Inputs

(1)

(2)

(3)

A

B

C

Select
Inputs

Function Table
Inputs

Outputs
Enable Select

G1 G2#† C B A Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

X 1 X X X 1 1 1 1 1 1 1 1

0 X X X X 1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1 1 1 1 1 1

1 0 0 0 1 1 0 1 1 1 1 1 1

1 0 0 1 0 1 1 0 1 1 1 1 1

1 0 0 1 1 1 1 1 0 1 1 1 1

1 0 1 0 0 1 1 1 1 0 1 1 1

1 0 1 0 1 1 1 1 1 1 0 1 1

1 0 1 1 0 1 1 1 1 1 1 0 1

1 0 1 1 1 1 1 1 1 1 1 1 0

†G2# = G2A# + G2B#
1 = High 0= Low Level
X = Don’t Care
7-25

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

s
d

rated

 32 bit
vious

 a re-
ncies,
ices,
sure

ave de-
 this

ats, bus
 prob-
When A5, A6 and A7 are high and ADS# is strobed, E2 on the decoder is enabled. Here, M/IO#
is low and D/C# is high, enabling inputs E1 and E3 of the decoder. When RDY# is active, E2 is
disabled and the address is no longer valid. Reset and timeout signals may also disable the address
decoding logic.

Because of its non-pipelined address bus, the basic I/O interface design for the Intel486 processor
does not require address latches following the decoder.

The number of decoders needed is usually a factor of memory mapping complexity.

7.2.5 Data Transceivers

Data transceivers are used for isolating the processor’s data bus from the external data bus and
increasing the drive capability for larger fanouts. Transceivers are used to avoid the contention
on the data bus caused when slow devices perform a delayed read on the databus following a read
cycle. When a write cycle follows a read cycle, the Intel486 processor may drive the data bus be-
fore a slow device can remove its outputs from the bus, creating potential bus contention. If the
load on the Intel486 processor’s data pins meets device specifications, and if the data float time
of the device is short enough, the transceivers can be omitted from the system.

There should be enough transceivers in the bus interface to accommodate the device with the
most inputs and outputs on the data bus. Only eight transceivers are needed if the widest device
has 16 data bits and if the I/O device addresses are connected only to the lower byte of the data
bus.

The 74S245 transceiver is controlled through two input signals:

• Data Transmit/Receive (DT/R#)—The transceiver for write cycles is enabled when thi
signal is high, and a read cycle is enabled when it is low. This signal is simply a latche
version of the Intel486 processor’s W/R# output.

• Data Enable (DEN#)—When low, this input enables the transceiver outputs. It is gene
by the byte swapping logic and by the BE3#–BE0# signals.

Data transceivers may be combined with byte swapping logic, depending upon whether a
to 8/16/32-bit transfer is used. The implementation details of this logic are discussed in pre
sections.

7.2.6 Recovery and Bus Contention

Although data transceivers help to avoid data bus contention, I/O devices may still require
covery period between back-to-back accesses. At higher Intel486 processor clock freque
bus contention is more problematic, particularly because of the long float delay of I/O dev
which can conflict with read data from other I/O devices or write data from the CPU. To en
proper operation, I/O devices require a recovery time between consecutive accesses. All sl
vices stop driving data on the bus on the rising edge of IOR#. After a delay which follows
rising edge, the data bus floats.

When other devices drive data on to the bus before the data from the previous access flo
contention occurs. The Intel486 processor has a fast cycle time (30 ns at 33 MHz), and the
ability of bus contentions must be addressed.
7-26

PERIPHERAL SUBSYSTEM

s are
or up-

ction
l bus.
 or to
ction.
cuted

overy
ad cy-
t buffer
 Then,
 allows

ed. A
apped
writes
quiring
Bus control logic should implement recovery to eliminate bus contention. The logic generates a
RECOV signal until the data from the previous read floats. It may or may not be possible to en-
force this recovery with the hardware counter. The hardware counter method may not be feasible
when recovery times are too fast for the hardware counter (i.e., when recovery time is in nano-
seconds). In this case, recovery time can be enforced in software using NOPs and delay loops or
using a programmable timer.

The advantages of using hardware-enforced recovery are transparency and reliability. When
moving to higher processor clock speeds, no change is needed in the I/O device drivers. For these
reasons, hardware enforced I/O recovery time is recommended.

7.2.7 Write Buffers and I/O Cycles

The Intel486 processor contains four write buffers to enhance the performance of consecutive
writes to memory. Writes are driven onto the external bus in the same order in which they are
received by the write buffers. Under certain conditions, a memory read is reordered in front of
the writes pending in the write buffer even though the writes occurred earlier in program execu-
tion (see Chapter 4, “Bus Operation” for details).

However, I/O cycles must be handled in a different manner by the write buffers. I/O read
never reordered in front of buffered memory writes. This ensures that the Intel486 process
dates all memory locations before reading status from an I/O device.

The Intel486 processor never buffers single I/O writes. When processing an I/O write instru
(OUT, OUTS), internal execution stops until the I/O write actually completes on the externa
This allows time for the external system to drive an invalidate into the Intel486 processor
mask interrupts before the processor continues to the instruction following the write instru
Repeated OUTS (REP OUTS) instructions are buffered and the next instruction is not exe
until the REP OUTS finishes executing.

7.2.7.1 Write Buffers and Recovery Time

The write buffers, in association with the cache, have certain implications for I/O device rec
times. Back-to-back write recovery times must be guaranteed by explicitly generating a re
cle to a non-cacheable area in between the writes. Since the Intel486 processor does no
I/O writes, the inserted read does not proceed to the bus until the first write is completed.
the read cycle executes on the external bus. During this time, the I/O device recovers and
the next write.

7.2.8 Non-Cacheability of Memory-Mapped I/O Devices

To avoid problems caused by I/O “read arounds,” memory-mapped I/O should not be cach
read around occurs when a read cycle is reordered in front of a write cycle. If the memory-m
I/O device is cached, it is possible to read the status of the I/O device before all previous
to that device are completed. This causes a problem when the read initiates an action re
memory to be up-to-date.
7-27

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
An example of when a read around could cause a problem follows:

• The interrupt controller is memory-mapped in cacheable memory.

• The write buffer is filled with write cache hits, so a read is reordered in front of the writes.

• One of the pending writes is a write to the interrupt controller control register.

• The read that was reordered (and performed before the write) was to the interrupt
controller’s status register.

Because the reading of the status register occurred before the write to the control register, the
wrong status was read. This can be avoided by not caching memory-mapped I/O devices.

7.2.9 Intel486™ Processor On-Chip Cache Consistency

Some peripheral devices can write to cacheable main memory. If this is the case, cache consis-
tency must be maintained to prevent stale data from being left in the on-chip cache. Cache con-
sistency is maintained by adding bus snooping logic to the system and invalidating any line in the
on-chip cache that another bus master writes to.

Cache line invalidations are usually performed by asserting AHOLD to allow another bus master
to drive the address of the line to be invalidated, and then asserting EADS# to invalidate the line.
Cache line invalidations may also be performed when BOFF# or HOLD is asserted instead of
AHOLD. If AHOLD, BOFF# and HOLD are all deasserted when EADS# is issued, the Intel486
processor invalidates the cache line at the address that happens to be on the bus. Cache line in-
validations and cache consistency are explained more fully in Chapter 6, “Cache Subsystem.”
7-28

PERIPHERAL SUBSYSTEM
7.3 I/O CYCLES

The I/O read and write cycles used in a system are a factor of the I/O control logic implementa-
tion. Figures 7-13 through 7-16 illustrate an I/O read and write cycle for a typical implementation.

7.3.1 Read Cycle Timing

A new processor read cycle is initiated when ADS# is asserted in T1. The address and status sig-
nals (M/IO# = low, W/R# = low, D/C# = high) are asserted. The IOCYC signal is generated by
the control logic by decoding ADS#, M/IO#, W/R# and D/C#. IOCYC indicates to an external
device that an I/O cycle is pending. The IOR# signal is asserted in the T2 state when IOCYC is
valid and RECOV is inactive. The RECOV signal indicates that the new cycle must be delayed
to meet the I/O device recovery time or to prevent data bus contention. The I/O read signal (IOR#)
signal is not asserted until RECOV is deasserted. Data becomes valid after IOR# is asserted, with
the timing dependent on the number of wait states implemented.

In the example, two wait states are required for the slowest I/O device to do a read, and the bus
control logic keeps IOR# active to meet the minimum active time requirement. The worst case
timing values are calculated by assuming maximum delay in the decode logic and through data
transceivers. The following equations show the fastest possible cycle implementation. Wait
States should be added to meet the access times of the I/O devices used. Figure 7-13 and 7-14
show the I/O read cycle timing and the critical analysis.

Figure 7-13. I/O Read Timing Analysis

TRVD Read Signal Valid Delay
TRVD = TPLDpd

= 10 ns

TDSU Read Data Setup Time
TDSU = TBUFpd + Tsu

†

= 9 + 5 = 14 ns

TDHD Read Data Hold Time
TDHD = THD

† – TBUFpd
= 3 – 9 = –6 ns

†TSU = T22 = Intel486™ processor time (33 MHz)
 THD = Intel486 processor read hold time (33 MHz)
7-29

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 7-14. I/O Read Timings

CLK

ADS#

M/IO#

D/C#

A31–A2

W/R#

IOCYC

IOR#

CS#

DATA

RDY#

TDSU

TDHD

To CPU

TRVD

T2 T2 T2 T2T1 T1
7-30

PERIPHERAL SUBSYSTEM
7.3.2 Write Cycle Timings

The I/O write cycle is similar to the I/O read cycle with the exception of W/R# being asserted
high when sampled rather than low from the Intel486 processor side. This is shown in Figures
7-15 and 7-16.

Figure 7-15. I/O Write Cycle Timings

The timing of the remaining signals (the address and status signals) is similar to that of I/O read
cycle timings. The processor outputs data in T2. The I/O write signal (IOW#) may be asserted
one or two clocks after the chip select. The exact delay between the chip select and the IOW#
varies according to the write requirements of the I/O device. Data is written into the I/O device
on the rising edge of IOW#, and the processor stops driving data once RDY# data is sampled ac-
tive. The critical timings for the I/O write cycle are shown in Figure 7-16.

CLK

ADS#

M/IO#

D/C#

A31–A2

W/R#

IOCYC

IOW#

CS#

DATA

RDY#

From CPU

TWVD

T2 T2 T2 T2T1 T1

TDVD TDFD
7-31

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 7-16. I/O Write Cycle Timing Analysis

Latches and data buffers can improve processor write performance. In Figure 7-17, I/O addresses
and data are both latched in a configuration called a posted write. Posted writes help increase sys-
tem performance by allowing the processor to complete a cycle without wait states. Once the data
and address are latched, RDY# can be asserted during the first T2 of an I/O write cycle. Thus, the
processor operation and the write cycle to the peripheral device can continue simultaneously.
This is illustrated in Figure 7-18. The write cycle appears to be only two clocks long (from ADS#
to RDY#) because the actual write overlaps other CPU bus cycles.

Figure 7-17. Posted Write Circuit

TWVD Write Signal Valid Delay
TWVD = TPLDpd

= 10 ns

TDVD Write Data Valid Delay
TDVD = TVD

† + TBUFpd
= 19 + 9 = 28 ns

TDFD Write Data Float Time
TDFD = TFD

† – TBUFpd
= 0 + 9 = 9 ns

†TVD = T10 = Intel486™ processor write data valid delay (33 MHz)
 TFD = T11 = Intel486 processor write data float delay (33 MHz)

I/O
Device

I/O
Data
Latch

I/O
Address
Decode

I/O
Address

Latch

Data
Buffer

Address

Intel486™
Processor

Data I/O Write
Data Bus
7-32

PERIPHERAL SUBSYSTEM
Figure 7-18. Timing of a Posted Write

7.4 DIFFERENCE BETWEEN THE Intel486 DX PROCESSOR FAMILY AND
Intel386 PROCESSORS

The IntelDX2 and IntelDX4 processors are integrated chips that is include a CPU, a math copro-
cessor, and a cache controller. It is fully compatible with its predecessor, the Intel386 DX pro-
cessor, yet has the following differences:

• Intel486 processor offers dynamic bus sizing to support 8-, 16-, and 32-bit bus sizes, except
for the Ultra-Low Power Intel486 GX processor, which supports a 16-bit data bus only.
Dynamic bus sizing requires external swapping logic. The Intel386 DX processor supports
only 16-bit and 32-bit bus sizes and does not require swapping logic.

• The Intel486 processor has a burst transfer mode which can transfer four 32-bit words from
external memory to the on-chip cache using only five clock cycles. The Intel386 DX
processor requires at least eight clock cycles to transfer the same amount of data.

• The Intel486 processor has a BREQ output which supports multi-processor environments.

• The Intel486 processor’s bus is significantly faster than the Intel386 processor’s bus. New
features include a 1x clock, parity support†, burst cycles, cacheable cycles, cache invalidate
cycles and 8-bit support. The Hardware Interface and Bus Operation chapters of the
Embedded Intel486™ Processor Family Developer’s Manual explains of the bus
functionality and its hardware interface.

• To support the on-chip cache, new bits have been added to control register 0 (CD and NW),
new pins have been added to the bus, and new bus cycle types have been added. The on-
chip cache must be enabled after reset by clearing the CD and NW bit in CR0.

† Not available in the ULP486SX or ULP486GX processors.

CLK

T1 T1 T2T2

ADS

CPU

Latched

RDX#

Address

Address
Cycle 1

Cycle 1 Cycle 2
7-33

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

added.

rrupt
• The complete Intel387™ math coprocessor instruction set and register set have been
No I/O cycles are performed during floating-point instruction execution. The instruction
and data pointers are set to zero after FINIT/FSAVE. Interrupt 9 cannot occur, and inte
13 occurs instead.

• The Intel486 processor supports new floating-point error reporting modes to ensure DOS
compatibility. These new modes require a new bit in Control Register 0 (NE) as well as new
pins.

• Six new instructions have been added: Byte Swap (BSWAP), Exchange and Add (XADD),
Compare and Exchange (CMPXCHG), Invalidate data cache (INVD), Write-back and
Invalidate Data Cache (WBINVD) and Invalidate TLB Entry (INVLPG).

• Two new bits are defined in control register 3 for page table entries and page directory
entries.

• A new page protection feature has been added, requiring a new bit in Control Register 0.

• A new alignment check feature has been added, requiring a new bit in the flags register and
a new bit in the control register 0.

• The replacement algorithm for the translation lookaside buffer (TLB) is a pseudo least-
recently-used algorithm (PLRU), like the one used in the on-chip cache.

• Three new testability registers TR5, TR6 and TR7 have been added for testing of the on-
chip cache. TLB testability has been enhanced.

• The prefetch queue has been increased from 16 bytes to 32 bytes. A jump must always
execute after code modification to ensure proper execution of the new instruction.

• After reset, the ID in the upper byte of the DX register is 04. The contents of the base
register, including the floating-point registers, may be different after reset.

Refer to the individual Intel486 processor datasheets for more information about these features.

7.5 INTERFACING TO x86 PERIPHERALS

This section discusses the Intel486 processor interface to two peripheral devices from the x86
family: the 8041 and the 82C59A. Not all systems use these separate devices, however the exam-
ples explain in detail many of the issues surrounding slave I/O and interrupts.

7.5.1 Universal Peripheral Interface

Universal peripheral interface (UPI) devices allow customized solutions for peripheral device
control. These microcontrollers have a slave interface on-board and include an 8-bit CPU, ROM,
RAM, an I/O timer/counter and a clock. Intel supplies an EPROM implementation, which in-
cludes the 8741 and 8742 microcontrollers. The 8742 has a 2 K x 8-bit ROM and 256 K x 8-bit
RAM, an eight-bit timer/counter and 18 programmable I/O pins. It also has an 8-bit status register
and two data registers for asynchronous slave-to-master interfacing. The 8742 supports DMA, in-
terrupt and polled operations.
7-34

PERIPHERAL SUBSYSTEM

ignal.
orming
l-

 distin-
s must
The 32-bit Intel486 processor requires 32-bit-to-8-bit byte-steering logic to interface to an 8-bit
UPI device.

7.5.2 82C59A Interface

The following discussion of interrupt-driven processor environments is a helpful preface to the
section on interfacing Intel486 processor systems to the 82C59A programmable interrupt control-
ler. It also provides a context to review other interrupt controller implementations.

In a microcomputer system, the CPU must efficiently service I/O devices such as keyboards and
display monitors to minimize overhead. One technique is polling, in which the processor tests
each device in sequence to determine whether servicing is needed. A large portion of the main
program must be devoted to polling, at a cost of system throughput.

Interrupts provide a more efficient and desirable alternative for servicing I/O devices. Using in-
terrupts, a hardware signal can cause the main program to change its execution path. These inter-
rupts are acknowledged only between instructions—with the exception of the bus error s
The Intel486 processor reacts to interrupts by saving the program address and then perf
special interrupt processing (as explained in the Embedded Intel486™ Processor Family Deve
oper’s Manual). Once the current program address and flags are saved on a stack, the Intel486
processor receives an eight-bit vector identifying an entry in the interrupt table that contains the
starting address of the interrupt service routine. The vector interrupt allows a hardware mecha-
nism to select a separate service routine for each interrupt source. Once the interrupt service rou-
tine is executed, the previous processor state is restored, and program execution resumes. The
Intel486 processor can handle up to 256 interrupts/exceptions. Refer to the Embedded Intel486™
Processor Family Developer’s Manual for the interrupt table.

The interrupt-driven environment increases system throughput and allows more tasks to be ac-
complished by the processor, thus increasing overall cost-effectiveness.

The 82C59A is a high performance CMOS programmable interrupt controller which manages the
interrupt-driven Intel486 processor system environment. It accepts requests from peripheral de-
vices and determines device priorities. The 82C59A provides the processor with an eight-bit vec-
tor interrupt. The interrupt points to an address in the vector table, and the processor’s INTA#
signal (generated by the bus controller logic) enables the vector data on the data bus.

Individual 82C59A devices can be cascaded to accommodate up to 64 interrupts. Later sections
discuss how to implement such configurations.

7.5.2.1 Single Interrupt Controller

Figure 7-19 shows a basic I/O interface between the Intel486 processor and a single 82C59A de-
vice. The address decoder generates the chip select (CS#) signal, while the bus control ready logic
generates the interrupt acknowledge (INTA#), write (WR#) and read (RD#) signals. In this ex-
ample, the 82C59A is used in the master mode since the SP/EN# pin is high. The A0 address pin
is used to decipher various processor command words and to determine the status that the proces-
sor wishes to read. The A0 pin is connected to the processor’s A2 pin and is also used to
guish between two consecutive interrupt acknowledge cycles. The 82C59A register addres
therefore be located at two consecutive doubleword boundaries.
7-35

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 7-19. Intel486™ Processor Interface to the 82C59A

An interrupt activates the Interrupt output of the 82C59A, which is connected to the INTR input
(interrupt request) of the Intel486 processor. The processor automatically performs two consec-
utive interrupt acknowledge cycles. The 82C59A device’s timings are as follows:

• Each interrupt acknowledge cycle must be extended by at least one wait state, which is
implemented by the wait state generator logic described in Section 7.2, “Basic Peripheral
Subsystem.”

• Four idle cycles must be inserted between two interrupt acknowledge cycles.

DATA

W/R#

Intel486™
Processor

Clock
Generator

Master Mode

VCC

IRQ7

IRQ6

IRQ1

IRQ0

CAS0

CAS1

CAS2

INTA#

WR#

RD#

A0

CS#

8 Bit

Address
Decoder

Data
Transceivers

Byte Swap
Logic

BE3#–BE0#

32 Bits

A2

PIC

82C59A

Bus Control
 and

Ready Logic
M/IO#

D/C#

ADS#

WR#

RDY#

BS8#

SP/EN#

Address

INTR

INTR
7-36

PERIPHERAL SUBSYSTEM

R

uests
t iden-

o the
7.5.2.2 Cascaded Interrupt Controllers

Figure 7-20 shows how several interrupt controllers can be cascaded to handle up to 64 interrupt
requests. One device acts as the master and the rest as slaves. The interface between these devices
resembles the single device interface with the following additional features:

• The cascaded address outputs are used to provide address and chip select signals for the
slave controllers.

• The interrupt request lines (IR7–IR0) of the master controller are connected to the INT
outputs of the slave devices.

Figure 7-20. Cascaded Interrupt Controller

The function of each slave controller is to identify the priorities among eight interrupt req
and generate a single interrupt request for the master controller. The master controller mus
tify the priorities among eight slave controllers and transmit a single interrupt request t
Intel486 processor.

Master 82C59A
Programmable

Interrupt Controller Intel486™ Processor

INTRINTR
IRQ0

IRQ1
IRQ2
IRQ3

IRQ4
IRQ5

IRQ6
IRQ7

Slave 82C59A
Programmable

Interrupt Controller

INTR
IRQ0

IRQ1
IRQ2

IRQ3
IRQ4

IRQ5
IRQ6
IRQ7

Cascade Bus

D7:D0

INTA#
Bus Cycle

Type
Decoder

M/IO#, D/C#, W/R#

IRQ14

IRQ15

IRQ8

IRQ9

IRQ10

IRQ11

IRQ12

IRQ13

IRQ6

IRQ7

IRQ0

IRQ1

IRQ2

IRQ3

IRQ4

IRQ5

From ISA
Slots

PLOCK#

LOCK#

IN
T

A
#

7-37

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
The timing interface resembles that used for single devices. During the first interrupt acknowl-
edge cycle, all the 82C59A devices freeze the states of their interrupt request inputs. The master
controller outputs the cascaded address to select the slave controller that is generating the request
with the highest priority. During the second interrupt acknowledge cycle, the selected slave con-
troller outputs an interrupt vector to the Intel486 processor.

7.5.2.3 Handling More than 64 Interrupts

If an Intel486 processor-based system requires more than 64 interrupt request lines, a third
82C59A device level in polled mode is added to the configuration shown in Figure 7-19. Once
the third-level interrupt controller receives an interrupt, it drives an interrupt request input to the
slave controller on the second level. The second-level slave controller then sends an interrupt re-
quest to the master controller, which in turn interrupts the processor. The slave controller then
returns a service routine vector to the Intel486 processor. The service routine must include com-
mands to poll the third level to determine the source of the interrupt request.

The additional hardware required to implement this configuration includes additional 82C59A
devices and the chip-select logic.

7.6 Intel486™ PROCESSOR LAN CONTROLLER INTERFACE

This section describes two LAN interface solutions using Intel controllers: the 82596CA copro-
cessor and the PCI-compliant 82557 controller for fast Ethernet networks.

7.6.1 82596CA Coprocessor

The 82596CA coprocessor (hereafter referred to generically as the 82596 coprocessor) is a 32-bit
multitasking LAN coprocessor which implements the carrier-sense, multiple-access and colli-
sion-detect (CSMA/CD) link access protocol. The coprocessor supports a wide variety of net-
works. It executes high-level commands, and it performs command chaining and inter-processor
communication via memory shared with the Intel486 processor. This relieves the processor of all
time-critical local-network control functions.

The coprocessor’s features include:

• Complete CSMA/CD Functions

— Complete media access control (MAC) functions

— High-level command interface

— Manchester encoding or NRZ encoding and decoding

— IEEE 802.3 or CCITT HDLC frame delimiting
7-38

PERIPHERAL SUBSYSTEM

to the
ontrol
ndard
r. This
 micro-
ems, al-
4-byte
• Industry-Standard Network Support

— IEEE 802.3 (Ethernet, Ethernet Twisted Pair, Cheapernet, StarLAN, etc.)

— IBM PC Network (baseband and broadband)

— Proprietary CSMA/CD networks up to 20 Mbits/second

— HDLC frame delimiting

• Compatible Intel486 Processor Interface

— Optimized interface to the Intel486 processor bus

— Shared Intel486 processor bus signals and memory timing

— Support for Intel486 processor byte ordering

• Architectural Features

— On-chip DMA

— Bus Throttle

— 128-byte receive FIFO, 64-byte transmit FIFO

— On-chip memory management

— Network management and diagnostics

— 82586 software-compatible mode

• Performance Features

— 9.6 msec interframe spacing for back-to-back frame transmission and reception

— 80/106 Mbytes/second bus transfer rate (burst) at 25/33 MHz

— 50/66 Mbytes/second bus transfer rate (non-burst) at 25/33 MHz

Figure 7-21 is a block diagram of the 82596 coprocessor. A serial subsystem interfaces
physical-layer device for the network. This subsystem performs CSMA/CD media access-c
and channel-interface functions. It supports the full set of IEEE 802.3 and other industry-sta
and proprietary network functions. A parallel subsystem interfaces to the Intel486 processo
subsystem contains a data interface unit, a bus interface unit, a 4-channel DMA unit, and a
machine command processor. A FIFO subsystem connects the serial and parallel subsyst
lowing them to run asynchronously to one another through a 128-byte receive FIFO and a 6
transmit FIFO.
7-39

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 7-21. 82596CA Coprocessor Block Diagram

The coprocessor can be used in either baseband or broadband networks. It can be configured for
maximum network efficiency (minimum contention overhead) for networks of any physical cable
length operating at any data rate up to 20 Mbits/second. It features a highly flexible CSMA/CD
unit, supporting address lengths from zero to six bytes. It supports 16- or 32-bit CRC. The CRC
field can optionally be transferred directly to memory on receive and dynamically inserted on
transmit. The CSMA/CD unit can also be configured for full duplex operation or for CSMA/DCR
(deterministic collision resolution).

The coprocessor provides a rich set of diagnostic and network management functions, including
internal and external loopback, exception condition tallies, channel activity indicators, optional
capture of all frames (promiscuous mode), optional capture of erroneous or collided frames, and
time-domain reflectometry; for locating fault points on the network cable. The 32-bit statistical
counters; monitor CRC errors, alignment errors, overrun errors, resource errors, short frames, and
receive collisions.

The coprocessor also features a monitor mode for network analysis. This mode can capture status
bytes and update statistical counters of frames monitored, without transferring the contents of the
frames to memory. It does this concurrently with frame transmission and frame transfers to mem-
ory destined to that station.

Serial Subsystem FIFO Subsystem Subsystem

Micro
Machine

2

CSMA/CD

Data
Interface

Unit

Bus
Interface

Unit

DMA
BE3#–BE0#

A31–A2

Control

D31–D0

LE/BE Ports

2x32

TxD, RTS#
LPSK#

RxD, RxC#
TxC#, CTS#
CDT#, CRS#

FIFO
7-40

PERIPHERAL SUBSYSTEM
The 82596 coprocessor is an extension of the earlier 82586 LAN coprocessor, which interfaces
an Ethernet network to a 16-bit Intel bus. The 82596 coprocessor can be configured to run soft-
ware drivers written for the 82586 device without modification.

7.6.1.1 Hardware Interface

The 82596 coprocessor communicates with the rest of the system via two hardware interfaces:
the Intel486 processor bus (parallel) interface and the network (serial) interface, as shown in Fig-
ure 7-22. The signals for both interfaces are listed in Table 7-12. The coprocessor’s bus cycles
(including burst cycles), bus interface timing, bus arbitration method, and signal definitions are
compatible with the Intel486 processor. When the coprocessor is not holding the bus, its bus in-
terface signals are floated. The state machines for the Intel486 processor and the 82596 coproces-
sor are very similar.

Figure 7-22. 82596CA Application Example

Serial
Interface

82596
LAN

Controller

Processor Bus

Intel486™

Network Cable Media

Processor

BREQ

HLDA

HOLD
7-41

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Table 7-12. 82596 Signals (Sheet 1 of 2)

Signal Type Description

Address and Data Buses

A31–A2 O Address

D31–D0 I/O Data

BE3#–BE0# O Byte-enables

BS16# I 16-bit data bus size

LE/BE# I Little endian or big endian byte ordering

DP3–DP0 I/O Data parity

PCHK# O Parity error

Cycle Definition and Control

ADS# O Address status

W/R# O Write or read

PORT#† I Port access

RDY# I Non-burst data ready

BRDY# I Burst data ready

BLAST# O Last burst cycle

Bus Control

CLK I Clock

RESET† I Reset

INT/INT# O Interrupt

BREQ I Bus request

HOLD O Bus hold request

HLDA I Bus hold acknowledgment

AHOLD† I Address hold request

BOFF# I Bus backoff

LOCK# O Bus lock

CA#† I Channel attention
†Signals marked with a dagger are not included on, or operate differently than, the Intel486™ processor
bus.
7-42

PERIPHERAL SUBSYSTEM
These similarities between the Intel486 processor and the 82596 coprocessor simplify bus arbi-
tration when the processor and the coprocessor are the only two bus masters on the processor bus.
The HOLD and HLDA signals can be used for handshake arbitration and BREQ from the proces-
sor can trigger the coprocessor’s bus throttle timers when needed, as shown in Figure 7-23.

Network (Serial) Interface

TxD† O Transmit data

TxC#† O Transmit clock

LPBK# O Loopback

RxD I Receive data

RxC# I Receive clock

RTS# O Request to send

CTS# I Clear to send

CRS# I Carrier sense

CDT# I Collision detect

Table 7-12. 82596 Signals (Sheet 2 of 2)

Signal Type Description

†Signals marked with a dagger are not included on, or operate differently than, the Intel486™ processor
bus.
7-43

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 7-23. 82596-to-Processor Interfacing

Access to memory and I/O resources can be overlapped between the processor and the coproces-
sor with the bus backoff (BOFF#) output to the processor. The BOFF# overlapping method
avoids the need for a time-consuming bus hold arbitration (HOLD and HLDA) and it is done
without the risk of deadlock.

The coprocessor signals have the same significance as on the Intel486 processor bus, except for
the AHOLD signal. Because there is no internal cache to invalidate on the coprocessor, this input
is used to release the coprocessor address bus when an external cache controller needs to perform
a cache invalidation cycle.

7.6.1.2 Processor and Coprocessor Interaction

The 82596 coprocessor interacts with the processor bus as either a bus master or a slave (port ac-
cess mode). In normal operation, it is a bus master which moves data between the system memory
and the coprocessor’s control registers or internal FIFOs. The coprocessor can use the same burst
cycles, bus hold, address hold, bus backoff, and bus lock operations that the Intel486 processor
uses.

The coprocessor and the processor communicate through shared memory, as shown in Figure
7-24. The processor and the coprocessor normally use the interrupt (INT/INT#) and channel at-
tention (CA) signals to initiate communication, using a system control block of memory for com-
mand and status storage. INT/INT# alerts the processor to a change of contents in the system
control block. By asserting CA, the processor causes the coprocessor to examine the system con-
trol block contents for the change.

A31–A2

D31–D0

BE3#–BE0#

DP3–DP0, PCHK#

RDY#, W/R#, ADS#

BRDY#, BLAST#

AHOLD, BOFF#

BS16#, LOCK#

HOLD, HLDA

BREQ

82596 LAN
Controller

Intel486™

M/IO#, D/C#
CA, RESET

PORT#Glue

Processor
7-44

PERIPHERAL SUBSYSTEM
Figure 7-24. 82596 Shared Memory

The coprocessor executes its command list from shared memory and, in parallel, receives frames
from the network and places them in shared memory. The processor manages the shared memory,
which contains command chains and bidirectional data chains. The coprocessor executes the
command chains. An on-chip DMA controls four channels, which allow autonomous transfers of
data blocks independently of the processor. Buffers containing erroneous or collided frames can
be automatically recovered without processor intervention. The processor becomes involved only
after a command sequence has finished executing, or after a sequence of frames has been received
and stored, ready for processing.

In addition to this normal operating mode, the processor can initiate a port access in the copro-
cessor. This mode may be entered whenever the coprocessor is not actively driving the bus. It
allows the processor to write an alternate system configuration pointer, write an alternate dump
command and pointer (used for troubleshooting a no-response problem), perform a software re-
set, or perform a self-test.

82596
LAN

Controller

Intel486™
INTA#

Processor

Initialization
Root

System Control
Block Mailbox

Shared Memory

INT/INT#

Receive
Frame
Area

Command
Line

Transmit
 Buffer
7-45

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
7.6.1.3 Memory Structure

The memory shared by the processor and 82596 coprocessor consists of four parts.

• Initialization root

• System control block

• Command list (including transmit buffer)

• Receive frame area

The command list functions as a program. Individual commands are placed in blocks of memory
called command blocks. These command blocks contain the parameters and status of high-level
commands used by the processor to control the operation of the coprocessor.

One of three memory addressing modes can be used:

• 82586 Mode: Uses 24-bit addresses with all shared memory structures residing in one 64-
Kbyte segment.

• 32-bit Segmented Mode: Uses 32-bit addresses with all shared memory structures residing
in one 64-Kbyte segment.

• Linear Mode: Uses 32-bit addresses with no restrictions on the placement of any shared
memory structure.

Big-endian and little-endian byte ordering schemes are supported. For compatibility with the
Intel486 processor, the little-endian scheme should be used.

7.6.1.4 Media Access

The 82596 coprocessor accesses the cable-media network through the serial subsystem. This sub-
system performs the full set of IEEE 802.3 CSMA/CD media access control (MAC) sublayer and
channel interface functions, including framing, preamble generation and stripping, source ad-
dress generation, destination address checking, short-frame (runt packet) detection, and automat-
ic-length field handling. Data rates up to 20 Mbits per second on the cable media are supported.
IEEE 802.3 and HDLC CRC generation and checking is supported.

The following media access methods are supported:

• CSMA/CD

• Deterministic collision resolution

• Full duplex

The following IEEE standards are supported:

• 1BASE5

• 10BASE5

• 10BASE2

• 10BROAD36
7-46

PERIPHERAL SUBSYSTEM
• Proposed 10BASE-F

• Proposed 10BASE-T

7.6.1.5 Transmit and Receive Operation

Most of the bus traffic initiated by the coprocessor consists of DMA transfers of frame data. The
coprocessor transmits data as a series of frames by executing a series of high-level commands
from the command list in memory. These commands are fetched by the coprocessor and executed
in parallel with processor operations. A single transmit command contains all the information
necessary to prepare and execute the transmission of one or more data frames.

The data consists of a buffer descriptor and a data buffer containing the actual data. These may
also be chained into a linked list of buffer descriptors and associated data buffers. A frame with
a long data field can therefore be transmitted using several shorter buffers chained together. This
is useful when assembling frames which include nested headers generated by independent soft-
ware modules.

In order for the coprocessor to receive frames, the processor must first dedicate an area of mem-
ory as a receive buffer space and enable the coprocessor for reception. Frames arrive unsolicited
at the coprocessor network interface. The coprocessor must always be prepared to store them in
an buffer area of memory known as the free frame area. The receive frame area is a list of free
frame descriptors and a list of user-prepared buffers. The coprocessor fills the buffers as frames
are received, and it reformats the free buffer list into received frame structures. The frame struc-
ture stored is the same as that for frames to be transmitted. The data contained in the buffers is
transferred by means of the on-chip DMA controller. This allows bidirectional, autonomous
transfer of data blocks partitioned as buffers or chained into frames. Buffers which contain errors
are recovered automatically without processor intervention.

The coprocessor monitors the frames presented on the serial interface for a destination address
which corresponds to its own unique address, one or more multicast addresses, or the broadcast
address. When a match is found, the frame’s destination, source addresses, and length field are
stored, and the data field is placed in the next available buffer. As one buffer is filled, the device
automatically links the next available buffer until the entire frame is stored. This technique ac-
commodates buffer sizes which are much shorter than the maximum permitted frame length.

When a frame has been received without error, several housekeeping tasks are performed by the
coprocessor. If a frame error occurs, the coprocessor re-initializes the DMA pointers and reclaims
any buffers to which the frame had been allocated.

7.6.1.6 Bus Throttle Timers

The 82596 coprocessor’s use of the processor bus is regulated with the coprocessor’s bus throttle
timer logic. These timers are independently programmed and can be triggered internally or exter-
nally. The operation of the timers is shown in Figure 7-25. Two timers are associated with the bus
throttle function:

• TON Timer: Defines the maximum time the coprocessor can remain bus master.

• TOFF Timer: Defines the minimum time the coprocessor must wait before re-asserting the
HOLD output to request the bus again.
7-47

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

”

During
istin-
l. The
when

an ad-
While
mation.
port ac-
 HOLD.

state.
Figure 7-25. Bus Throttle Timers

If the timers are configured to be triggered internally, the coprocessor monitors the length of time
that the HLDA input is held asserted. When this time exceeds the time programmed in the TON
timer, the coprocessor relinquishes the bus by de-asserting HOLD; and starts the TOFF timer.

If the timers are configured externally, assertion of the BREQ; input causes the coprocessor to
start the TON timer. Upon timeout, the coprocessor relinquishes the bus and starts the TOFF tim-
er. This latter configuration is particularly useful in the Intel486 processor environment, where
the processor’s BREQ output can be tied directly to the coprocessor’s BREQ input.

7.6.1.7 Design Considerations

The glue logic for interfacing the 82596 coprocessor to the Intel486 processor can be contained
in a single Intel 85C220 PLD, as shown in Figure 7-26. This logic provides four functions:

• Generate channel attention (CA) input to the coprocessor.

• Generate reset (RESET) input to the coprocessor.

• Generate processor port access (PORT#) input to the coprocessor.

• Drive the M/IO# and D/C# processor bus signals when the coprocessor is bus master.

The coprocessor’s RESET input is referred to in Figure 7-26 and the text below as “596RESET
to distinguish it from the processor's RESET.

To assert the CA or 596RESET signals, the processor drives a memory-mapped I/O cycle.
such a cycle, address decode is done while monitoring CLK, ADS#, HLDA, and D0 to d
guish CA from 596RESET. A similar memory-mapped cycle is used to de-assert the signa
HLDA input to the 85C220 PLD gates the logic, so that CA or 596RESET is generated only
HLDA is de-asserted (i.e., when the coprocessor is not bus master).

The PORT# input to the coprocessor can be generated by combinatorial logic which has
dress decode qualified by ADS# and CLK. This asserts the PORT# output for one clock.
PORT# is asserted, the coprocessor treats the data bus as containing slave control infor
System software must ensure that the coprocessor is idle while the processor executes a
cess. This guarantees that the coprocessor does not attempt to acquire the bus by asserting
Failure to comply with this restriction may result in the coprocessor entering an undefined

t2

t1

t3

TON TOFF TON

t1 = t2 + t3
82596 Bus Usage
Without Throttle Timers

82596 Bus Usage
With Throttle Timers
7-48

PERIPHERAL SUBSYSTEM
The CA, 596RESET, and PORT# signals are generated according to the equations shown in Fig-
ure 7-26. The M/IO# and D/C# signals are also generated by the glue logic. When both HOLD
and HLDA are asserted, indicating that the coprocessor has requested and been granted the bus,
M/IO# and D/C# must be driven high.

Figure 7-26. 596RESET, CA, and PORT# Equations

Caching of the coprocessor memory structures in the Intel486 processor internal cache may be
disadvantageous, because these memory structures are not directly executable by the processor.
Typically, most coprocessor bus activity consists of receiving and transmitting frames, managing
the receive frame area, and prefetching descriptor pointers. The system control block is typically
accessed only once by the processor for every update of this area made by the coprocessor. The
processor gains no advantage from caching locations which are used only once. Also, each time
a cached memory location is written to by the coprocessor, a cache invalidation cycle must be
performed.

For systems in which caching is obligatory, external logic must monitor ADS# and W/R# and
drive the EADS# cache invalidation input to the processor.

7.6.1.8 82596 Co-processor Performance

With a 25-MHz clock, the 82596 coprocessor can transfer data at up to 80 Mbyte/second in burst
cycles, or 50 Mbytes/second in non-burst cycles. With a 33-MHz clock, the rates are
106 Mbytes/second for burst and 66 Mbytes/second for non-burst. Most transfers in a Intel486

HLDA

ADDRESS

ADS#

D0

RESET

D/C#, M/IO#

CLK

HOLD

CA

596RESET

PORT#

82596 LAN
Controller

85C220
PLD

CA = (CA Address Decode) & ADS# & D0 Registered
596RESET = (596RESET Address Decode) & D0 I RESET Registered
PORT# = (Port Access Address Decode) & ADS# Combinatorial
7-49

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

ast
low-
 the
s mas-
MT)
 mem-
 been
nce.

t data
 frame
up to
 well
de to
 MII
Ys)
processor environment can be in burst mode. Ethernet provides data at a maximum instantaneous
rate of 1.25 Mbytes/second. The coprocessor, however, requires approximately
0.25 Mbytes/second additional bandwidth for frame processing, updating various command
blocks, and descriptors. This brings the maximum bus bandwidth requirement to approximately
1.5 Mbytes/second. The coprocessor therefore requires only a small fraction of the available pro-
cessor bus bandwidth.

Several variables affect the total bandwidth required. The main factors are:

• Use of burst cycles for memory transfers

• Number of memory wait states per transfer

• Processor bus clock (CLK) frequency

• Frame and buffer size

Table 7-13 compares the percentage of 32-bit bus bandwidth used under some of these condi-
tions. These are worst-case numbers and over-estimate typical network loading. Typical bus uti-
lization numbers at non-peak rates are lower.

7.6.2 82557 High Speed LAN Controller Interface

7.6.2.1 82557 Overview

The 82557 is Intel’s first highly-integrated 32-bit PCI LAN controller for 10 or 100 Mbps F
Ethernet networks. The 82557 offers a high performance LAN solution while maintaining
cost through its high integration. It contains a 32-bit PCI Bus Master interface to fully utilize
high bandwidth (up to 132 Mbytes per second) available to masters on the PCI bus. The bu
ter interface can eliminate the intermediate copy step in Receive (RCV) and Transmit (X
frame copies, resulting in faster processing of these frames. The 82557 maintains a similar
ory structure to the 82596 LAN Co-processor; however, these memory structures have
streamlined for better network operating system (NOS) interaction and improved performa

The 82557 contains two large receive and transmit FIFOs (3 Kbytes each) which preven
overruns or underruns while waiting for access to the PCI bus, and enables back-to-back
transmission within the minimum 960 nanosecond inter-frame spacing. Full support for
1 Mbyte of FLASH enables network management support via Intel FlashWorks utilities as
as remote boot capability (a BIOS extension stored in the FLASH which could allow a no
boot itself off of a network drive). For 100 Mbps applications, the 82557 contains an IEEE
compliant interface to the Intel 82553 serial interface device (or other MII compliant PH

Table 7-13. 82596 Bus Bandwidth Utilization

Bus
Frequency Frame Size Burst

(0 ws)
Non-Burst

(0 ws)
Non-Burst

(1 ws)

25 MHz
64 bytes 3.33% 4.05% 5.65%

1,518 bytes 1.70% 2.63% 3.90%

33 MHz
64 bytes 2.52% 3.07% 4.29%

1,518 bytes 1.29% 1.99% 2.95%
7-50

PERIPHERAL SUBSYSTEM
which will allow connection to 100/10 Mbps networks. For 10 Mbps networks, the 82557 can be
interfaced to a standard ENDEC device (such as the Intel 82503 Serial Interface), while maintain-
ing software compatibility with 100 Mbps solutions.

The 82557 is designed to implement cost effective, high performance PCI add-in adapters, em-
bedded PCs, or other interconnect devices such as hubs or bridges. Its combination of high inte-
gration and low cost make it ideal for these applications.

7.6.2.2 Features and Enhancements

The following list summarizes the main features of the Intel 82557 controller:

• Glueless 32-bit PCI Bus Master Interface (Direct Drive of Bus), compatible with PCI Bus
Specification, Revision 2.1

• 82596-like chained memory structure

• Improved dynamic transmit chaining for enhanced performance

• Programmable transmit threshold for improved bus utilization

• Early receive interrupt for concurrent processing of receive data

• FLASH support up to 1 Mbyte

• Large on-chip receive and transmit FIFOs (3 Kbytes each)

• On-chip counters for network management

• Back-to-back transmit at 100 Mbps

• EEPROM support

• Support for both 10 Mbps and 100 Mbps networks

• Interface to MII-compliant PHY devices, including Intel 82553 Physical Interface
component for 10/100 Mbps designs

• Compatible with IEEE 802.3u 100Base-T, TX, and T4

• Interface to Intel 82503 or other serial device for 10 Mbps designs: Compatible with IEEE
802.3 10Base-T

• Autodetect and autoswitching for 10 or 100 Mbps network speeds

• Capable of full or half duplex at 10 and 100 Mbps

• 160-Lead QFP package

Figure 7-27 shows a high level block diagram of the 82557 part. It is divided into three main sub-
systems: a parallel subsystem, a FIFO subsystem and the 10/100 Mbps CSMA/CD unit.
7-51

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 7-27. Intel 82557 Block Diagram

7.6.2.3 PCI Bus Interface

The PCI bus interface enables the 82557 to interact with the host system via the PCI bus. It pro-
vides the control, address and data interface to implement a PCI-compliant device. The 82557 op-
erates as both a master and slave on the PCI bus. As a master, the 82557 interacts with the system
main memory to access data for transmission or deposit received data.

As a slave, some 82557 control structures are accessed by the host CPU which reads or writes to
these on-chip registers. The CPU provides the 82557 with the necessary action commands, con-
trol commands, and pointers which enable the 82557 to process RCV and XMT data. The PCI
bus interface also provides the means for configuring PCI parameters in the 82557.

7.6.2.4 82557 Bus Operations

After configuration, the 82557 is ready for its normal operation. As a Fast Ethernet Controller,
the role of the 82557 is to access transmitted data or deposit received data. In both cases the
82557, as a bus master device, initiates memory cycles via the PCI bus to fetch/deposit the re-
quired data. In order to perform these actions, the 82557 is controlled and examined by the CPU
via its control and status structures and registers. Some of these control and status structures re-
side on-chip and some reside in system memory. For access to its Control/Status Registers (CSR),
the 82557 serves as a slave (target). The 82557 serves as a slave also while the CPU accesses its
1 Mbyte Flash buffer or its EEPROM.

7.6.2.5 Initializing the 82557

A power-on or software reset prepares the 82557 for normal operation. Because the PCI specifi-
cation already provides for auto-configuration of many critical parameters such as I/O, memory
mapping and interrupt assignment, the 82557 is set to an operational default state after reset.
However, the 82557 cannot transmit or receive frames until a Configure command is issued

Flash/EEPROM
Target Interface

On-board
System
Control
Block
(SCB)

Structure

Micro-
Machine

TX FIFO

FIFO Extender
Control

RX FIFO4-Channel PCI
Bus Master Interface

10/100 Mbps
CSMA/CD

Parallel Side Serial Side

MII
Interface

Serial
Interface

P
C

I I
nt

e
rf

a
ce
7-52

PERIPHERAL SUBSYSTEM
7.6.2.6 Controlling the 82557

The CPU issues control commands to the Command Unit (CU) and Receive Unit (RU) through
the SCB, which is part of the CSR. The CPU instructs the 82557 to Activate, Suspend, Resume
or Idle the CU or RU by placing the appropriate control command in the CU or RU control field.
A CPU write access to the SCB causes the 82557 to read the SCB, including the Status word,
Command word, CU and RU Control fields, and the SCB General Pointer. Activating the CU
causes the 82557 to begin executing the CBL. When execution is complete, the 82557 updates
the SCB with the CU status, then interrupts the CPU, if configured to do so. Activating the RU
causes the 82557 to access the RFA and go into the READY state for frame reception. When a
frame is received, the RU updates the SCB with the RU status and interrupts the CPU. It also au-
tomatically advances to the next free RFD in the RFA. This interaction between the CPU and
82557 can continue until a software reset is issued to the 82557, at which point the initialization
process must be executed again. The CPU can also perform certain 82557 functions directly
through a CPU PORT interface.
7-53

8
System Bus Design

Chapter Contents

8.1 Introduction ... 8-1

8.2 System Bus Interface .. 8-1

8.3 EISA Bus: System Design Example 8-2

8.4 PCI Bus: System Design Example......................................8-19

or 32-
bedded
dustry

various
re global
n its lo-

l is the
nd I/O
he sys-

g sub-

cated
tems on
dividual
ng re-
mance,

ocessing
y be

 when
sed in
 that bus
C and
CHAPTER 8
SYSTEM BUS DESIGN

8.1 INTRODUCTION

With the increasing speed of microprocessors, there is a need for efficient input/output devices
(such as disks, video controllers and local area network controllers). The key to successfully sup-
porting I/O options is to have a standard means of connecting them to the motherboard. Each
computer supports a standard system bus. System bus types include ISA, MCA, EISA, PCI, etc.
To exercise the full potential of the Intel486™ processor’s 32-bit system buses, support f
bit I/O devices is required. This chapter discusses two standards supported by the em
Intel486 processors: the PCI (Peripheral Component Interconnect) and EISA (Extended In
Standard Architecture) system buses.

A typical embedded Intel486 processor system includes of a system bus that connects
subsystems. Each subsystem can have its own local bus with local resources and can sha
resources. This approach allows each subsystem to perform operations simultaneously o
cal bus to yield a significant throughput improvement over single-bus systems.

Intel486 processor system designs may be divided into several subsystems. The first leve
CPU core, which consists of CPU and second-level cache subsystem memory, cache, a
control. Each of these subsystems have been described in detail in the previous chapters. T
tem bus is the vehicle by which the Intel486 processor communicates with other processin
systems that perform operations simultaneously on their own local buses.

A major concern when designing a system with various subsystems is how to divide the allo
resources. A designer has to decide which resources should be shared by all the subsys
the system bus and which should be located on the local bus. The choice is based on the in
system's needs in the areas of reliability, integrity, throughput, and performance. Duplicati
sources on each local bus, for example, may increase system integrity and local bus perfor
but increase system cost.

8.2 SYSTEM BUS INTERFACE

Subsystems must communicate with one another. Each may be able to stand alone as a pr
unit but must share information. The system bus is the vehicle by which information ma
transferred. In addition, a standard system bus provides a format for all vendors to follow
building boards or subsystems. This standard allows boards from multiple suppliers to be u
a system. For a subsystem to access the system bus, the protocol signals associated with
must be provided. In addition, buffers and drivers are needed to provide the necessary A
DC drive capability for the address, data, and control signals.
8-1

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

2-bit

s mas-
rovides
of so-
de disk
llers.

nsfer-
evic-
ces and

ltiple
pted

as been
 grants
, and

encies
nger
8.3 EISA BUS: SYSTEM DESIGN EXAMPLE

8.3.1 Introduction to the EISA Architecture

EISA represents an extension to the Industry Standard Architecture (ISA) but maintains compat-
ibility with ISA expansion boards and software. EISA provides the following important enhance-
ments:

• 32-bit address bus for CPU, DMA and bus masters

• 32-bit data transfers for CPU, DMA, I/O devices and bus masters

• High speed synchronous bus transfers of 1.5 cycles per doubleword

• Automatic translation of bus cycles between EISA and ISA master and slaves

• Up to 33 Mbytes/second transfer rates for bus masters and DMA devices

• Interrupts are programmable to be edge- or level-sensitive

• Support of intelligent bus master peripheral controllers

The EISA bus is designed to handle wider address and data buses than those of ISA. All EISA
connector, performance, and function enhancements are a superset to those of ISA. EISA main-
tains full compatibility with ISA expansion boards and software.

Bus masters and multiple processors on the EISA bus can be synchronized to a common clock
for greater performance. Burst cycles can be executed at 33 Mbytes/sec transfer rate and a stan-
dard EISA cycle can transfer data in two cycles. However, CPUs are permitted to generate 1.5-
clock “compressed” cycles for slaves that request such cycles.

EISA systems can support DMA transfers with 32-bit addressability, and with 8-, 16-, or 3
data. 32-bit DMA devices can transfer data at 33 Mbytes/sec using burst cycles.

EISA-based computers support a bus master architecture for intelligent peripherals. The bu
ter provides a high-speed channel with data rates up to 33 Mbytes/sec. The bus master p
localized intelligence with a dedicated I/O processor and local memory to relieve the host
phisticated memory access functions. Peripherals that use bus mastering techniques inclu
controllers, LAN interfaces, data acquisition systems and certain classes of graphic contro

The EISA bus provides a mechanism for data size translation which is useful when it is tra
ring data between 16-bit ISA bus masters and 8-bit or 16-bit memory, I/O slaves, or DMA d
es. The system board also provides a mechanism for transactions between 16-bit ISA devi
32-bit EISA devices.

EISA systems provide a centralized arbiter that allows efficient bus sharing between mu
EISA bus masters and DMA devices. An active bus master or DMA device may be preem
when another device needs the bus. Further, if a device does not release the bus once it h
preempted, then the centralized arbiter can reset the device. The EISA arbitration method
the bus to the DMA devices, the memory controller for DRAM refreshes, the bus masters
the host CPU in an efficient rotational manner. The rotational scheme provides shorter lat
for DMA devices to ensure compatibility with ISA devices. Bus masters and CPUs have lo
latencies because often they have buffers.
8-2

SYSTEM BUS DESIGN
8.3.2 An Example EISA Chip Set

Figure 8-1 shows a high-performance system with an Intel486 processor residing on the host bus.
Three EISA support devices, an EISA bus controller (EBC), an integrated system peripheral
(ISP), and EISA bus buffers (EBB), interface the host bus to the EISA bus. The three devices also
communicate with each other.
8-3

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 8-1. Intel486™ Processor System

Intel486™
CPU

Clock
and

Control
Logic

Error/
Ready
Logic

Page Hit

Director

DRAM
Control

Host Bus

ISP 32/16-Bit
Masters

32/16/8-Bit
I/O Slaves

EBC

EBB

32/16/8-Bit
Memory

EBB
Address
Buffers

Select
Logic

82077

Low
Power
SRAM

BIOS

AEN
Decoder

8042

Real
Time
Clock

Buffer

D
at

a

A
d

dr
e

ss
C

on
tr

o
l

X
B

U
S

D
at

a

A
dd

re
ss

C
on

tr
ol

Memory
Address
Decode

Write
Data
Buffer

Data
Mux

Addr
MUX

DRAM

EIDA Bus
8-4

SYSTEM BUS DESIGN
The EBC interfaces the host bus to the EISA/ISA bus. It provides compatibility with EISA/ISA
bus cycles for EISA/ISA standard memory or I/O cycles, zero-wait state cycles, compressed cy-
cles and burst cycles. It also translates host bus cycles to EISA/ISA bus cycles and vice versa. It
generates ISA signals for EISA masters and EISA signals for ISA masters and it supports host
and EISA/ISA refresh cycles. The EBC supports 8-, 16-, and 32-bit DMA transfers and interacts
with the DMA controller. It provides byte-assembly and disassembly for 8-, 16-, and 32-bit data
transfers. The EBC generates the appropriate data conversion and assembly control signals to fa-
cilitate transfers of various data widths between the host and ISA and EISA buses. The EBC posts
processor-to-EISA/ISA write cycles to improve system performance and provides I/O recovery
time between back-to-back I/O cycles. Figure 8-2 shows a detailed block diagram of the EBC and
its various interface signals to the host, the EISA, ISA, ISP units and the data and address con-
trols. The interfaces are discussed later in this chapter.
8-5

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 8-2. Block Diagram of EISA Bus Controller (EBC)

Data
Buffer
Control

Address
Buffer
Control

Host Bus
Interface

Unit

Cache
Support

Reset
Control

CPU Select

Slot Support

Clock
Generator

Unit

ISA Bus
Interface

Unit

EISA Bus
Interface

Unit

ISP
Interface

Unit

I/O Recovery

Testing

SDCPYUP
SDHDLE(3:0)#

SDOE(2:0)#

HDSDLE1#

HDOE(1:0)#

HALAOE#

LAHAOE#

LASAOE#

SALAOE#

HALE#

SALE#

HBE(3:0)#

HADS(1:0)#

HNA#

HD/C#

HW/R#

HM/IO#

HLOCK#

HRDYI#

HRDYO#

HERDYO#

HHOLD

HHLDA

HLOCMEM#

HLOCIO#

HGTI6M#

HSTRETCH#

HSSTRB#

RDE#

RST

RSTCPU

RST385

RSTAR#

SPWROK

CPU(3:0)

SDCPYEN
HCLKCPU
BCLK

CLKKB

BCLKIN

BALE

SA(1:0)

SBHE#

IORC#

IOWC#

MRDC#

MWTC#

SMRDC#

SMWTC#

IO16#

M16#

NOWS#

CHRDY#

REFRESH#

MASTER16#

BE(3:0)#

M-IO

W-R

LOCK#

START#

CMD#

EXRDY

MSBURST#

SLBURST#

EX32#

EX16#

ST(3:0)

DHOLD

DRDY

EXMASTER#

EMSTR16#

LIOWAIT#

TEST1#

LALE#

AENLE#

GTIM#

(3:1, 13)#
8-6

SYSTEM BUS DESIGN
The integrated system peripheral (ISP), shown in Figure 8-3, is a multi-function support periph-
eral device that integrates many system functions that are normally distributed in several VLSI
and LSI components. The ISP supports high-performance DMA operations with a programmable
seven-channel controller. It has an arbiter that provides efficient bus sharing among multiple
EISA masters and DMA devices. A programmable interrupt controller provides 15 levels of in-
terrupts which can be edge-triggered or level-sensitive on a channel-by-channel basis. Non-
maskable interrupts (NMI) are also supported. The ISP has five counters/timers that can provide
system timer interrupts for a time of day, a diskette timeout, DRAM refresh requests and other
system timing operations. The DMA controller is integrated in the ISP, and it has the necessary
logic to set up, initiate, and complete DMA transfers. Various types of DMA transfers are pro-
vided for, including single transfer, block transfer, demand transfer, and cascade modes. Buffer
chaining is also supported. The DMA controller provides the necessary timing signals to support
a 33 Mbytes/sec transfer rate. Also supported are full 32-bit addressability on all functions and
control signal support for data transfer between devices of different data widths. Each channel
can operate independently in several modes.
8-7

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 8-3. Block Diagram of Integrated System Peripheral (ISP)

The EISA bus buffers (EBB) are used to interconnect the host data and address buses to the EI-
SA/ISA data and address bus. The EBB integrates multiple address or data latches and buffers
that are typically used in EISA systems, and operates in various modes to support data and ad-
dress interfaces. It has a 32-bit mode without parity and a 32-bit data mode with parity support

Bus Interface

15 Level
Interrupt
Control

IRQ <1,3-7, 8#,
9-15>

INT

BCLK

NMI

IOCHK#

PARITY#

SPKR SLOWH# OSC

Timer 2/Counter 2
Timer 2/Counter 0
Timer 1/Counter 2
Timer 1/Counter 1
Timer 1/Counter 0

DREQ

DACK#
MREQ#
MACK#
REFRESH#
DHLDA
CPUMISS#
DHOLD
EMSTR16#
EXMASTER#

System
Arbiter
Logic

AEN#

RST

GT16M#

EOP

IRQ0

CLK

NMI
Logic

DMA
Controller

and
Refresh

Generator

S
T

A
R

T
#

C
M

D
#

H
W

/R
#

B
E

3#
–B

E
0#

D
R

D
Y

H
A

31
#–

H
A

2#

S
T

3–
S

T
0

G
T

1M
#

D
7

–D
0

C
S

O
U

T
#

R
T

C
A

LE
R

S
T

D
R

V

8-8

SYSTEM BUS DESIGN

s, byte
by the
f a host
r more

ng an
 master

e up-
aster

cles or

X mi-

slave.

ontrol
utdown
ycles
hen it

 write
en the

r cy-

 and
m the
for each of the bytes. It also has an EISA address mode in which the addresses are interfaced with
internal latched transceivers. Polarity on the address lines is compatible with the EISA specifica-
tion, so that, for example, the most significant address byte is inverted.

8.3.3 EBC Host Bus Interface

The EBC resides between a fast host bus and the EISA bus and monitors cycles that are initiated
on either bus. When the host initiates a bus master cycle and no response is received from the host
slaves, the EBC forwards the cycle to the EISA bus. When an EISA bus master initiates a cycle,
then it is always forwarded to the host bus. The EBC provides controls to the EBB device for the
address and the data buffers between the two buses. The EBC also inserts delays between back-
to-back I/O cycles between the host and the EISA bus.

8.3.3.1 Clock, Control and Status Interface

The host CPU clock (HCLKCPU) runs at the same frequency as the CPU clock. The EBC divides
the HCLKCPU appropriately to generate the EISA BCLK signal.

Host address status (HADS1–HADS0) input signals indicate to the EBC that the addresse
enables, and cycle type information is valid on the host. These two signals are received
EBC when there is a master on the host bus and are used to track the host bus cycles. I
slave does not respond, and if an EISA/ISA slave or ISP is being addressed, then one o
cycles are generated on the EISA bus.

Host byte enables (HBE3#–HBE0#) are bidirectional signals that indicate valid bytes duri
operation. They are inputs during host bus master cycles and are outputs during EISA bus
cycles as well as when the ISP is performing DMA or refresh cycles.

Host Byte High Enable (HBHE#) is a bidirectional signal. When asserted, it indicates that th
per byte of the 16-bit host bus is involved in the transfer. It is an input during host bus m
cycles when an EISA/ISA slave is being accessed and an output during EISA master cy
when the ISP is performing DMA or refresh cycles.

Host address bits 1,0 (HA1, HA0) are bidirectional signals that are used in the Intel386™ S
croprocessor systems.

Host next address (HNA#) is an output to the host CPU when it accesses an EISA/ISA
HNA# is asserted to indicate that the CPU can put a new address on the host bus.

Host data or control (HD/C#) is a bidirectional signal that differentiates between data and c
cycles. It is an input to the EBC during host bus master cycles and is used to decode sh
and interrupt acknowledge cycles. It is an output from the EBC during EISA/ISA master c
and when the ISP performs DMA or refresh cycles. The signal is asserted to a high level w
is an output.

Host write or read (HW/R#) is a bidirectional signal that distinguishes between read and
cycles. It is an input to the EBC on host bus master is accessing an EISA/ISA slave, or wh
ISP is performing DMA or refresh cycles. It is an output from the EBC on EISA/ISA maste
cles.

Host memory or I/O (HMI/O#) is a bidirectional signal that differentiates between memory
I/O cycles. It is an input to the EBC when the host bus master cycles and is an output fro
8-9

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

” ef-
m is
 high

ate a
A/ISA

icate

ocked
ated to
EBC that is asserted high when the ISP is performing DMA or refresh cycles. It is also used to
decode shutdown and interrupt acknowledge cycles.

Host bus ready input (HRDYI#) is an input signal that indicates the termination of a cycle on the
host bus.

Host bus ready output (HRDYO#) is an output signal indicating that the EBC has completed a
cycle. It is asserted when the host is addressing an EISA/ISA slave and the cycle has completed
by appropriate inputs from EXRDY, CHRDY, NOWS#, and DRDY.

Host bus early ready output (HERDYO#) is an early version of the ready output from the EBC
for situations in which HRDYO# does not provide enough setup time.

8.3.3.2 Host Local Memory and I/O Interface

Host bus local memory (HLOCMEM#) is an input signal which indicates that a host bus memory
slave has decoded the current address as its own without preconditioning the HMI/O# signal. If
this signal is asserted on host bus master memory cycles, it prevents an EISA bus cycle from ini-
tiating. This signal is used to determine if the memory is being accessed on the host bus during
EISA/ISA master memory cycles or during DMA cycles.

Host bus local I/O (HLOCIO#) is an input signal which indicates that a host bus I/O slave has
decoded the current address as its own without preconditioning the HMI/O# signal. If this signal
is asserted on host bus master I/O cycles, it prevents EISA bus cycle from initiating. This signal
is used to determine if the I/O device is being accessed on the host bus during EISA/ISA master
I/O cycles.

Host bus stretch (HSTRETCH#) is an input used by host bus slaves during EISA/ISA master cy-
cles to run zero (EISA) wait state cycles. This input can be used during DMA cycles and
EISA/ISA bus master cycles to stretch the low period of the BCLK during the CMD# portion of
the cycle. BCLK remains low until HSTRETCH# is sampled high. This produces a “stalling
fect of the EISA/ISA master without adding BCLK wait states. If the host memory subsyste
capable of performing EISA cycles without wait states, then the HSTRETCH# can be pulled
and no CPU clock-based logic is required for bus master or DMA cycles.

8.3.3.3 Host Bus Acquisition and Release

Host bus hold request (HHOLD) is an output signal which is asserted by the EBC to indic
hold request to the host. This occurs when the ISP asserts DHOLD to indicate that an EIS
bus master wants control or that a DMA device requires service.

Host hold acknowledge (HHLDA) is an input signal to the EBC from the bus master to ind
that it has relinquished control.

8.3.3.4 Lock, Snoop, and Address Greater than 16 Mbytes

Host bus lock (HLOCK#) is an input signal which is asserted by the host master when a l
bus cycle is in progress. If the addressed device is on the EISA bus, the signal is propag
the LOCK# signal on the EISA bus.
8-10

SYSTEM BUS DESIGN

 in the
s mas-
 DMA

 I/O
/ISA
Host snoop strobe (HSSTRB#) is an output signal which is driven by the EBC during any write
cycle on the host bus. It is asserted during I/O to memory DMA cycles, EISA/ISA bus master
write cycles to memory, and CPU write cycles to host memory.

8.3.4 EISA/ISA Bus Interface to the EBC

The EBC translates cycles from EISA masters that can be handled by ISA slaves and translates
cycles between ISA masters that can be handled by EISA slaves. It also facilitates transfers be-
tween 32-bit and 16-bit EISA devices and 16-bit and 8-bit ISA devices.

Most of the EISA and ISA bus signals connect directly to the EBC or ISP without buffers. The
direct connection assumes a worst case load of 300 pF and an IOL of 24 mA, with a worst case
clock-to-output propagation delay of 30 ns. Only the AEN8 control signal lacks a direct connec-
tion to EISA/ISA. AENx is a slot-specific signal that is decoded and asserted for a specific slot
of a particular address. The ISP unit provides a global AEN# that is decoded with the LA bus ad-
dress bit to generate the AENx signals. This is shown in Table 8-1.

The following is a brief functional description of the interface signals between the EISA/ ISA bus
and the EBC.

8.3.4.1 EBC and EISA Bus Interface Signals

Byte enables (BE3#–BE0#) are bidirectional signals that indicate which bytes are involved
current cycle. They are outputs during host bus master cycles and are inputs during ISA bu
ter cycles. They are inputs during EISA bus master cycles and when the ISP is performing
or refresh cycles.

Memory or I/O cycle (M/IO#) is an output signal that distinguishes between memory and
EISA cycles. It is an output during ISA master cycles and during host bus master-to-EISA
slaves cycles. The signal floats during CPU, DMA, or EISA bus master cycles.

Table 8-1. AENx Decode Table

Address AEN#
AENx

1 2 3 4 5 6

xxxx 1 1 1 1 1 1 1

00xx, 04xx, 08xx, 0Cxx 0 1 1 1 1 1 1

01xx--03xx, 05xx-07xx, 09xx-0Bxx, 0Dxx-0Fxx 0 0 0 0 0 0 0

10xx, 14xx, 18xx, 1Cxx 0 0 1 1 1 1 1

20xx, 24xx, 28xx, 2Cxx 0 1 0 1 1 1 1

30xx, 34xx, 38xx, 3Cxx 0 1 1 0 1 1 1

40xx, 44xx, 48xx, 4Cxx 0 1 1 1 0 1 1

50xx, 54xx, 58xx, 5Cxx 0 1 1 1 1 0 1

60xx, 64xx, 68xx, 6Cxx 0 1 1 1 1 1 0
8-11

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Write or read cycle (W/R#) is a bidirectional signal that is an input during EISA bus master cy-
cles. It is an output of the EBC during host bus master to EISA/ISA slave cycles, and during ISA
master cycles.

Start cycle (START#) is a bidirectional input signal to the EBC which starts cycles on the host
bus. It is an output from the EBC on host master cycles when no responses are received from the
host slaves. It is an output during ISP requests for DMA and refresh cycles. It is also an output
during ISA master I/O cycles to 8-bit devices and when the EBC translates a 32-bit or 16-bit
EISA bus master into cycles for an EISA/ISA slave with a smaller data bus size.

Command (CMD#) is an output which provides timing control within cycles. It is asserted simul-
taneously with the negation of START# and remains asserted until the cycle terminates. It is gen-
erated by the EBC during any EISA cycle.

Master burst (MSBURST#) is a bidirectional, open-collector output asserted by an EISA master
to indicate that it is capable of supporting a burst operation in the next cycle. It is an input during
EISA bus master cycles and an output during DMA cycles, when a burst mode DMA has been
selected, and when memory is capable of supporting burst operations.

Slave burst (SLBURST#) is a bidirectional open-collector signal that is asserted by EISA slaves
to indicate that they can accept burst cycles. It is an input when the ISP requests burst cycles and
an output from the EBC when an EISA master is in control. It is asserted if the host memory is
accessed and has asserted HSLBURST#.

EISA 32-bit device (EX32#) is a bidirectional, open-collector signal that is asserted by 32-bit
EISA slaves to indicate 32-bit bus size. The signal is used to determine matched or unmatched
data sizes on masters and slaves. Once the sizes are determined, the EBC assembles and disas-
sembles data and performs multiple EISA or ISA cycles when necessary.

EISA 16-bit device (EX16#) is a bidirectional, open-collector signal that is asserted by 16-bit
EISA slaves to indicate 16-bit bus size. The signal is used to determine matched or unmatched
data sizes on masters and slaves. Once the sizes are determined, the EBC assembles and disas-
sembles data and performs multiple EISA or ISA cycles when necessary.

EISA ready (EXRDY) is a bidirectional, open-collector signal which indicates that a slave is
ready to terminate a cycle. It is an input to the EBC on host master cycles which access EISA or
ISA slaves and is propagated to the host as the HRDY# signal. It is also an input for performing
DMA or refresh cycles and is propagated as DRDY. It is an output from the EBC when an EISA
master is accessing a host bus slave or the ISP. It is an output from the EBC during EISA master
cycles to ISA slaves and is derived from CHRDY. It is an output for CPU cycles to ISA slaves
for which an EISA cycle has been initiated.

Locked cycle (LOCK#) is an output signal which indicates to EISA slaves that the host CPU is
executing a locked cycle. It is asserted by the EBC when the HLOCK# signal is asserted.

8.3.4.2 EBC and ISA Bus Interface Signals

Bus address latch enable (BALE) is an output from the EBC which indicates that a valid address
is present on the latched address (LA) bus.
8-12

SYSTEM BUS DESIGN
Bus clock (BCLK) is an output signal derived from the host CPU clock (HCLKCPU). The
HCLKCPU can be divided by 3, 4, 5, 6 or 8 to give clock frequencies ranging between 8.0 and
8.33 MHz. The high or low time of BCLK can be stretched to synchronize it to four conditions.

16-bit master (MASTER1#16) is an input that indicates that a 16-bit EISA or ISA master has con-
trol of the EISA bus. It is sampled twice, at the beginning and at the end of START#. If negated
at the first sampling time but asserted at the second sampling time, then it indicates to the EBC
that a 32-bit EISA master is translating to 16 bits in order to perform burst operations.

16-bit memory (M16#) is a bidirectional open-collector signal that indicates that the ISA memory
is capable of performing 16-bit transfers. It is an output during ISA master cycles in which a host
slave or EISA memory slave is accessed. It is an input during host bus master cycles in which the
EISA/ISA bus is accessed. It is an input during EISA master cycles.

Standard memory read control strobe (SMRDC#) is an output signal that commands the ISA
memory to place data on the data bus. It is asserted during CPU, DMA or EISA/ISA master read
cycles to 16-bit or 8-bit ISA memory slaves when the address range is less than one megabyte. It
behaves like the MRDC# signal.

Standard memory write control strobe (SMWTC#) is an output signal that commands the ISA
memory slave to accept data from the data bus. It is asserted during CPU, DMA or EISA/ISA
master write cycles to 16-bit or 8-bit ISA memory slaves when the address range is less than one
megabyte.

Channel ready (CHRDY) is a bidirectional, open-collector signal which is used by the ISA slaves
to insert wait states. It is an output during ISA master cycles and accesses host bus slaves or EISA
slaves.

No wait states (NOWS#) is an input asserted by ISA slaves to request compressed standard wait
states, and by EISA bus slaves to request compressed or 1.5 BCLK cycles.

System address bits 1 and 0 (SA1, SA0) are the least significant bits of the latched EISA address
bus. They are inputs during ISA bus master cycles and generate appropriate EISA bus or host bus
controls. They are outputs during host bus master cycles and access EISA/ISA slaves. Further,
they are outputs during EISA master cycles to ISA slaves and during DMA accesses to ISA mem-
ory.

System byte high enable (SBHE#) is a bidirectional signal that indicates the validity of the high
byte on the EISA bus. It is an input during ISA bus master cycles and an output during host ac-
cesses to EISA/ISA slave. Further, it is an output during EISA master cycles to ISA slaves and
during DMA accesses to ISA memory.

Refresh (REFRESH#) is an input which indicates that the ISP is performing a refresh cycle. Dur-
ing refresh cycles the EBC generates the MRDC#, CMD# and other host bus signals to refresh
the entire system’s DRAM memory.

8.3.5 EBC and ISP Interface

The EBC and ISP have a tightly coupled interface, and they interact with the host bus requests,
DMA status, EISA bus master size, and other control and status signals described below:
8-13

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

MA
 cycle
BC

ISP,
 bus
• ISP hold request (DHOLD) is an input from the ISP which is used to request the host bus on
behalf of ISA/EISA masters or when a DMA device requests service. DHOLD is used to
generate HHOLD.

• ISP ready (DRDY) is a bidirectional signal. It is an input to the EBC when the ISP is in the
slave mode. It is an output from the EBC during DMA cycles and refresh cycles.

• Greater than one megabyte (GT1M#) is an input to the EBC that indicates that the current
address is above the 00000000h to 000FFFFFh range. If it is not asserted during a host bus
master cycle or an EISA/ISA bus master cycle, or during DMA cycles on accessing ISA
memory slave, then the EBC generates SMRDC# or SMWTC# signals. The ISP generates
the GT1M# signals for all cycles including DMA and non-DMA cycles.

• Host address greater than 16 megabytes (HGT16M#) is an input signal which indicates that
the address of the current cycle is greater than 00FFFFFFh. It is driven on DMA cycles,
based on the address from the ISP. This signal is used by the EBC during DMA cycles to
determine whether to generate the ISA memory command signals, MRDC# and MWTC#.
MRDC# and MWTC# are generated during DMA cycles but are inhibited when HGT16M#
is active.

• DMA status (ST3–ST0) are bidirectional signals. They are inputs to the EBC during D
and refresh cycles. They indicate the timing that has been programmed for the current
and the size of the I/O device involved in the DMA transfer. They are outputs form the E
when the ISP is not a bus master. The four signals function as address strobe for the
memory or I/O cycle indicator, the interrupt acknowledge cycle indicator, and the EISA
master cycle indicator, respectively.

• EISA master (EXMASTER#) is an input signal to the EBC, which indicates that a 16-bit or
32-bit EISA master has control of the EISA bus. It is used with the MASTER16# signal to
differentiate between 32-bit EISA masters, 16-bit EISA masters, and 16-bit ISA masters.

• Early indication of 16-bit ISA master (EMSTR16#) is an input signal to the EBC which
indicates that a 16-bit master is in control is or about to assume control of the EISA bus.

8.3.6 EBC and EBB Data and Address Buffer Controls

The host data and address buses are connected to the EISA/ISA data and address buses using the
EISA bus buffer (EBB). The EBB has internal latches and the outputs can be controlled in either
direction. Data from the EISA bus can flow to the host bus on port B and on an individual byte
basis on port A. Data can be stored using the provided control signal. Data can also flow from the
host bus to the EISA/ISA bus.

The EBB controls byte assembly. Bytes can be transferred as shown in Figure 8-4. The EBC pro-
vides signals used to copy the individual bytes. For multiple cycle operations the octal registered
transceivers are used to temporarily store the data until an entire word or doubleword is assem-
bled. Following assembly, the word or doubleword is transferred to the destination. Byte assem-
bly logic is used for all bus size mismatches and non-aligned address translations between the
host bus, a 32-bit or a 16-bit EISA bus and a 16-bit ISA bus. The EBC generates controls to steer
the data buses and to latch the address and data.
8-14

SYSTEM BUS DESIGN

e byte
etween

 copy

ol the

 on the

t con-

ffers.
Figure 8-4. EBB Byte Transfer

Copy enable between bytes SDCPYEN(03#–01#, 13#) are output controls that enable th
copy transceivers between the EISA bus bytes 0, 1, 2, and 3. Data bits 7–0 can be copied b
data bits 15-8, 23–16 and 31–24. Data bits 15–8 can be copied between data bits 31–24.

Copy up (SDCPYUP) is an output that controls the direction of the byte copy transceivers to
the lower bytes to the higher bytes and vice versa.

System (EISA) to host data latch enables (SDHDLE3#–SDHDLE0#) are outputs that contr
latching of data from the EISA bus to the host bus.

System (EISA) data output enable (SDOE2#–SDOE0#) are output enables to data buffers
EISA bus.

Host data to system (EISA) data latch enables (HDSDLE1#–HDSDLE0#) are outputs tha
trol the latching of data from the host data bus to the EISA data bus.

Host data output enables (HDOE1#, HDOE0#) are output enables to the host data bus bu

Host Data Bus

EBB
REG

EBB
REG

EBB
REG

EBB
REG

245

245 245 245

EISA/ISA
Data Bus
8-15

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

 31–2.

 on to
eld until

 LA
fresh

dress
aster

A ad-
elining

ffers
aster

A ad-
les.

g in-

annels,
-bit de-
 and
ing the
 rotat-

arbiter
uesters

 in-
, as are
gle,
efresh

ter-
s. The
able
Host address bus to EISA LA bus output enable (HALAOE#) is an output signal which enables
the output of the address buffers for host address bus bits 31–2 on to the EISA LA bus bits
The signal is asserted during CPU, DMA and refresh cycles along with HALAOE#.

Host address latch enable (HALE#) is an output signal which latches the LA address bus
the host address bus. The latch closes on the trailing edge, and the host address bus is h
the slave terminates the cycle.

EISA LA to EISA SA output enable (LASAOE#) is an output signal which enables the EISA
bus bits 19-2 on the EISA SA bus. It is asserted during CPU, EISA bus master, DMA and re
cycles.

EISA LA to host address output enable (LAHAOE#) is an output signal which enables ad
buffers from the EISA LA bits to the host address bus. It is asserted during EISA/ISA bus m
cycles.

LA latch enable (LALE#) is an output signal which latches the host address bus on to the L
dress bus. It is useful when the CPU operates in burst mode or when additional address pip
is required on the host bus.

EISA SA to EISA LA output enable (SALAOE#) can be used to the output of the address bu
from the EISA SA bus bits 16-2 on to the EISA LA bus 16–2. It is asserted during ISA bus m
cycles.

SA latch enable (SALE#) is an output signal which latches the LA address bus on to the S
dress bus. It can be asserted during EISA master, CPU, regular DMA, and DMA burst cyc

8.3.6.1 Functions of the ISP

The ISP provides system arbitration, DMA control, interrupt control, and counting by usin
terval timer/counters.

The system arbiter on the ISP evaluates requests from several sources including DMA ch
EISA devices, refresh requesters, and the host CPU: DREQ is generated by 8-, 16-, or 32
vices that require DMA service; MREQ# is generated by 16-bit or 32-bit EISA devices;
CPUMISS# is generated by the host CPU. Refresh requests are generated internally us
timers. Request priority is assigned on different levels, and at each level, devices are given
ing priority. Examples of priorities and assignments are shown in the ISP datasheet. The
determines which requester receives the bus from EISA masters, DMA slaves, refresh req
and the host CPU.

The on-chip DMA controller is functionally equivalent to two 8237 DMA controllers. Seven
dependent channels can be programmed. Data widths of 8-, 16-, and 32-bits are supported
ISA-compatible, ISA/EISA compatible, type A/type B modes, and EISA type C mode. Sin
block, demand, or cascade transfer modes are supported. The DMA controller provides r
address generation, and buffer chaining.

The ISP provides an ISA-compatible interrupt controller and the functionality of two 8259 in
rupt controllers. The ISP can handle fourteen external interrupts and two internal interrupt
internal interrupts are for internal functions only and not available externally. A non-mask
interrupt can be generated by hardware or software.
8-16

SYSTEM BUS DESIGN

 HA31–
all of
t these

BE2#–
E0# are

is an
ropa-

ed and

d to

r sub-
s arbi-

d ISP

 must
 ST2#

 host
. Upon

rror.

f the

 has
The ISP has five interval timers. The counter timers are addressed as if they are contained in two
separate 8254 timers.

The ISP operates as a slave device or as a master device. In slave mode, the ISP monitors the ad-
dress lines and decodes all bus cycles. Here, an EISA master or host bus master can read or write
to any of the ISP registers. 16-bit ISA masters can read and write to any of the non-DMA registers
and to some of the non-8237/PC AT compatible registers. In the master mode, the ISP becomes
the bus master and can perform DMA or refresh cycles.

8.3.6.2 ISP-to-Host Interface

Host addresses HA31–HA2 are 3-stateable address signals which connect to the host bus.
HA20 and HA15–HA2 are bidirectional, whereas HA19–16 are outputs. In master mode
the address lines are outputs. In slave mode HA15–2 and HA31–2 are inputs. Upon rese
lines are 3-stated and configured as inputs.

Byte enables (BE3#–BE0#) are 3-stateable EISA bus byte enables. In slave mode the
BE0# are inputs and are used to access ISP internal registers. In master mode BE3#–B
outputs. BE3# is always an output.

Host write/read (HW/R#) is a bidirectional signal which indicates a read or write cycle. It
input during slave mode and an output during master mode. It is sent to the EBC which p
gates the appropriate read/write signals to the EISA bus. Upon reset this signal is 3-stat
configured as an input.

Slow down host CPU (SLOWH#) is an output from CPU slowdown timer 2, which is use
slow down the host CPU.

CPU cache miss (CPUMISS#) is an input signal from the host CPU, or the cache controlle
system which indicates that a host bus cycle is pending and must contend for the next bu
tration.

Hold acknowledge (DHLDA) is an input signal which indicates that the system has grante
to the host bus.

Interrupt (INT) is an output signal which indicates that an interrupt request is pending and
be serviced. Once asserted, it remains asserted until it receives the first INTA# pulse via the
signal. Upon reset, the state of INT is undefined.

Non-maskable interrupt (NMI) is an output used to force a non-maskable interrupt to the
CPU. Once asserted, it remains asserted until the CPU reads to one of the NMI registers
reset this signal is low.

Parity (Parity#) is an input from the system board which indicates a main memory parity e

8.3.7 ISP-to-EISA Interface

DMA requests (DMA 7–5, 3–0) are inputs to the ISP, which indicate requests for control o
system bus. They are generated externally by DMA subsystems or by 16-bit masters.

DMA acknowledge (DACK 7–5, 3–0) are outputs from the ISP which indicate that the bus
been granted to the respective requester.
8-17

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

EISA

t the

uld be
 a bus

SH# is

and
 data

of the
es to
unt; as
 buffer

d BE0
 inputs
 mode.

hen
 to the
eline

mode.
UT# is

sed in

 is the

ecks
rupt.
Master requests (MREQ5–MREQ0) are slot-specific inputs to the ISP which are used by
masters to request bus access.

Master acknowledges (MACK#5–MACK#0) are outputs from the ISP that acknowledge tha
bus has been granted to a requesting EISA master.

Refresh (REFRESH#) is a bidirectional signal. It is an output during refresh cycles and sho
used to refresh the entire system memory at once. It is an output only when the ISP DMA is
master, while an internal request for a refresh cycle is generated in the ISP. The REFRE
an input when an expansion bus adapter acts as a 16-bit ISA bus master.

Start of cycle (START#) is an input which connects to the EISA START# signal. Comm
(CMD#) is an input that connects directly to the EISA CMD# signal. It is used to 3-state the
buffers following a read cycle.

End of process (EOP) is a bidirectional signal which is directly connected to the TC signal
ISA/EISA bus. It is used in three modes: as an input in one mode, it is used by DMA slav
stop DMA transfers; as an input from a slave in a second mode, it is used as a terminal co
an output in a third mode, it indicates that a chain buffer has expired and that a new chain
must be programmed. Interrupt request (IRQ 15–3,1) are interrupt inputs to the ISP.

Byte enables (BE3#–BE0#) are the EISA bus byte enables. BE3-BE1 are bidirectional, an
is output only. In master mode, the ISP drives these lines. In slave mode the BE3-BE1 are
to the ISP and are used to access the internal registers. BE0 is remains an output in slave

Ready signal (DRDY) is a bidirectional signal. In slave mode, it is an output which is driven w
the ISP detects a slave write to its registers. In master mode, it is an input which indicates
DMA controller that the current cycle has completed and that the DMA controller must pip
addresses for DMA burst transfers.

Data (D7-D0) are bidirectional signals that function as outputs when the ISP is in the slave
These signals are not used in the master mode. The pins are in output mode when CSO
asserted during an I/O read or interrupt acknowledge cycle.

Slave mode selected (CSOUT#) is an output from the ISP which indicates that it is acces
the slave mode.

Address enable (AEN#) is an output signal, which indicates whether the host, EISA, or ISA
current bus master.

I/O check bus error (IOCHK#) is an input from the ISA bus and is used for parity error ch
and for other high priority interrupts. It can be programmed to cause a non-maskable inter
8-18

SYSTEM BUS DESIGN
8.4 PCI BUS: SYSTEM DESIGN EXAMPLE

8.4.1 Introduction to PCI Architecture

The PCI (Peripheral Component Interconnect) bus is the descendant of the VESA VL bus and is
a widely-implemented embedded system solution. The PCI standard was defined by Intel to en-
courage designers to adopt a common system bus architecture that would accommodate future
computing needs. Because the VESA VL standard does not take a sufficient long-term approach,
the PCI standard does not support VESA VL. The PCI standard provides the following features.

• 32-bit or 64-bit address buses to accommodate 32-bit and 64-bit CPUs and bus masters

• 32-bit or 64-bit data transfers

• 33 MHz and 66 MHz PCI bus operation speeds

• 132 Mbytes/sec transfer rate for 33 MHz/32-bit implementation, 264 Mbytes/sec for
66 MHz/32-bit or 33 MHz/64-bit implementations, and 524 Mbytes/s for 66 MHz/64-bit
implementation.

• All read and write transfers over the PCI bus are burst transfers.

The PCI bus handles 32-bit wide address and data buses in the 32-bit implementation. The PCI
specification also provides for 64-bit wide address and data buses (address and data buses by PCI
standards are muxed).

All actions on the PCI bus are synchronized using the PCICLK signal. Revision 1.0 of the spec-
ification requires that all devices support 16-33 MHz operation. Revision 2.1 requires that all de-
vices support operation down to 0 MHz. Revision 2.2 adds support for 66 MHz implementation,
requiring that all devices operate from 0 MHz-66 MHz.

PCI-based computers support a Bus Initiator/Target architecture for intelligent peripherals. All
transactions on the PCI bus are in burst mode. The initiator starts by driving an address on the
PCI Address/Data bus and by driving the command type onto the PCI Command/Byte Enable
bus. Each PCI target latches the address and decodes the start address and command type to de-
termine if it is the addressed device. The device also determines the type of transaction in
progress. Upon completion of the address phase, the PCI Address/Data bus is used to transfer da-
ta. The target must latch the start address and increment the address to point to the next address
for each subsequent data transfer.

PCI systems provide a centralized arbiter that allows efficient bus sharing between multiple PCI
bus initiators. Although the PCI specification does not specify the exact method of arbitration
(such as fixed and rotational), the 2.1 specification states that the arbiter is required to implement
a fairness algorithm to avoid deadlocks. Fairness means that each potential bus master must be
granted access to the bus independent of other requests. However, this does not mean that all
agents are required to have equal access to the bus.

8.4.2 Example PCI System Design

This section describes an example of the PCI architecture implemented in an embedded Intel486
processor system.
8-19

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
This example PCI chipset supports all Intel486 processors and upgrades, including write-back in-
ternal (L1) cache and Intel SMM power management. PCI local bus IDE is incorporated for high-
er performance IDE. A block diagram of a system that uses this type of PCI chip set is shown in
Figure 8-5.

Figure 8-5. Example System Block Diagram

Power Management

Interrupt
DMA

Timer

ISA Bus

5 Slots

82091AA
AIP

KBC BIOS RTC

X-Bus

PCI
Graphics

Device

IDE
Interface

PCI Bus

Main MemorySystem ControllerISA Bridge

System

Interface

L2
Cache

Host Bus

Intel486™ Processor
Family and Upgrades

HA[17:2]

Data

Optional
245(5)

Optional
244(3)

Controller/
ISA Bridge
8-20

SYSTEM BUS DESIGN
The chipset consists of two components: the system controller and the ISA bridge. The system
controller integrates the second-level (L2) cache controller and the DRAM controller. The cache
controller supports both write-through and write-back cache policies and cache sizes from 64
Kbytes to 512 Kbytes in an interleaved or non-interleaved configuration. The DRAM controller
interfaces main memory to the Host bus and the PCI bus. The system controller supports a two-
way interleaved DRAM organization for optimum performance. Up to ten single-sided SIMMs
or four double-sided and two single-sided SIMMs provide a maximum of 128 Mbytes of main
memory. The system controller provides memory write posting to PCI for enhanced CPU-to-PCI
memory write performance. In addition, the system controller provides a high performance PCI
local bus IDE interface. Figure 8-6 shows a block diagram of the system controller component of
the PCI chip set.
8-21

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 8-6. System Controller Block Diagram

The ISA bridge links the ISA bus and Host bus, and integrates the common I/O functions found
in today’s ISA-based systems: a seven channel DMA controller, two 82C59 interrupt controllers,
an 8254 timer/counter, Intel SMM power management support, and control logic for NMI gen-
eration. The ISA bridge also provides the decode for the external BIOS, real time clock, and key-

A31–A30,
A26–A2

SRESET/INIT
HD31–HD0

HDP3–HDP0
BE3#–BE0#

M/IO#
D/C#
W/R#

PCD/CACHE#
ADS#
RDY#

BRDY#
BLAST#

HOLD

HLDA
AHOLD

KEN#

EADS#

HITM#

SMI#
SMIACT#

CI3E

CI302
CWE1#–CWE0#
COE1#–COE0#

TWE#
TAG8–TAG0

PCLKIN

HCLKIN
CLK2IN

CPURST
KBDRST#

FRAME#

TRDY#
IRDY#
LOCK#
STOP#

PAR

SERR#
DEVSEL#
C/BE3#–C/BE0#
AD22–AD16

AD31 or IDE1CS#

AD30 or IDE3CS#
AD29 or DIR
AD28 or IORDY
AD27–AD25 or

AD24 or IOR#
AD23 or IOW#
AD15–AD0 or

LBIDE#

CMDV#
SIDLE#

LREQ#
LGNT#

PREQ1#/HDEV#
PREQ0#
PGNT1#/HRDY#

PGNT0#

MA10–MA0

RAS4#–RAS0#
CAS7#–CAS0#

WE#

Host
CPU

Interface

PCI Bus
Interface

IDE
Interface

System

Interface

PCI
Arbitration

and
Host Bus

Slave
Device

DRAM
Interface

Clocks
and

Reset

Cache
Interface

SMM
Interface

MUX

IDED15–IDED0

IDEA2–IDEA0

controller/
ISA bridge
8-22

SYSTEM BUS DESIGN
board controller. Edge/level interrupts and interrupt steering are supported for PCI plug-and-play
compatibility. The ISA bridge integrates the ISA address and data path, reducing TTL and system
cost. In addition, the integration of system clock generation logic eliminates the need for external
host and PCI clock drivers.

Figure 8-7. ISA Bridge Block Diagram

A17–A2

CMDV#

SIDLE#
LREQ#

LGNT#

SMI#
STPCLK#
EXTSMI#

CLK2IN

CLK2OUT

HCKLOUT2–HCKLOUT1

SYSCLK

PCICLK2–PCICLK1

XBUSTR#

XBUSOE#
BIOSCS#

KBCCS#
RTCCS#
RTCALE

FERR#
IGNNE#

OSC
SPKR

IOCS16#

MEMCS16#

ZEROWS#

MEMR#

MEMW#

SMEMR#

SMEMW#

IOCHRDY

BALE

IOR#

SERR#

DREQ7–DREQ5

DACK7–DACK5

TC
REFRESH#

IRQ8#

IRQ(15,14,11:9,7:3,1)

IRQ12/M

INTR
PIRQ0#

PIRQ1#

TESTIN#

CPURST

RSTDRV

PCIRST

PWROK#

SRESET

IOW#

LA23–LA17

SA19–SA0
SD15–SD0

SBHE#
HCLKIN

AEN

IOCHK#

NMI

DREQ3–DREQ0

DACK3–DACK0

PCI

Link
Interface

SMM
Interface

Clock
Interface

Reset
Interface

X-Bus
Interface

Timers/
Counters
1x82C54

ISA Bus
Interface

NMI
Interface

DMA
2x82C37

Interrupt
2x82C59

Test

ISA Bridge
8-23

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

ition,

esses.
A initi-
ents

buses.

erface
. (i.e.,

tes be-
ices),

rades.

el486
 and
slave.
 that
red to
 may
 ranges
 mem-

, these
KEN#,
 that

 system

ected

n cy-
n by

down
This PCI chip set interfaces to three system buses: the CPU, PCI, and the ISA buses. The system
controller provides positive decode for certain I/O and memory space accesses on the CPU and
PCI buses. These decodes include accesses to the PCI Local bus IDE (CPU only), main memory
(CPU, ISA, and PCI), and the system controller’s I/O Control registers (CPU only). In add
the system controller subtractively decodes certain CPU/PCI cycles.

The ISA bridge provides the positive decode for certain ISA I/O and memory space acc
These decodes include accesses to the ISA-compatible registers (for ISA master and DM
ated cycles), main memory (for ISA and DMA initiated cycles), BIOS, X-Bus, and system ev
for SMM support. Note that DMA devices and ISA masters cannot access the PCI or CPU

This PCI chip set provides bus arbitration on the Host bus, the PCI bus, and the PCI/ISA int
(to the ISA bus). A device that is the master on any bus is the master of the entire system
concurrency of more than one active master is not supported).

When there are no active requests, the CPU owns the system. The system arbitration rota
tween the PCI bus, CPU bus, and Link Interface bus (on behalf of DMA and ISA Master dev
with the CPU permitted access every other transition.

8.4.3 Host CPU Interface

This PCI chip set provides a host interface to all of the Intel486 family processors and upg

8.4.3.1 Host Bus Slave Device

The PCI chip set can be configured (via the HOST Device Control register) to support an Int
Host bus slave device (for example, a graphics device). Two special signals (HDEV#
HRDY#) as defined by the VL bus specification are used in the interface to the Host bus
The system controller can be configured to monitor HDEV# for all memory and I/O ranges
are not positively decoded by the system controller. The system controller can be configu
monitor HRDY# and assert the RDY# input to the CPU, based on HRDY#. The host device
include an I/O range, a memory range, or both I/O and memory ranges. In all cases, these
must not be programmed (positively decoded) by the system controller. The host device’s
ory ranges are non-cacheable.

8.4.3.2 L1 Cache Support

The PCI chip set provides signals that support the CPU’s L1 cache. For the S-Series CPUs
signals are PCD, KEN#, and EADS#. For the D-Series and P24T CPUs, the signals are the
EADS#, CACHE#, and HITM#. The P24T and the D-Series CPUs include certain signals
are not connected to the PCI chip set. These signals are fixed to 1 or 0, depending on the
configuration.

8.4.3.3 Control and Status Interface

Soft Reset/Initialize, SRESET/INIT, is the soft reset output of the PSSC and should be conn
to the SRESET or INIT input to the CPU, depending on the CPU type.

Host Address, A31–A30, A26–A2, are used as inputs to the system controller for CPU-drive
cles. A31–A30, A26–A4 are outputs during Snoop cycles. Note that A29–A27 are not drive
the system controller. These signal lines must be externally driven low either by weak pull-
8-24

SYSTEM BUS DESIGN

ystem

These

 after a

a bus.
e sys-
e cy-

/IO#
direc-
ignal

BE3#–

, de-
the cur-
d, the

 the
at
of the
/R#
E#

/C#,

sserted

 dur-

 signal

a new
ter and
oller is

lock.
bridge
his sig-
resistors or by driving these lines low when HLDA is asserted. A17–A2 are also used for s
controller/ISA bridge link interface transfers. These signals are 3-stated after a hard reset.

The Byte Enable signals BE3#–BE0# indicate active bytes during read and write cycles.
signals are 3-stated after a hard reset.

Host Data HD3–HD0 are connected to the host CPU data bus. These signals are inputs
hard reset.

The Host Data Parity signals, HPD3–HPD0, are bi-directional parity signals for the host dat
These signals provide parity to the system controller during main memory read cycles. Th
tem controller sends parity information to main memory during non-CPU main memory writ
cles. These signals are 3-stated after a hard reset.

Bus Cycle Definition, M/IO#, D/C# and W/R#, are signals that define the Host bus cycle. M
is a bi-directional signal that distinguishes between memory and I/O cycles. D/C# is a bi-
tional signal that differentiates between data and control cycles. W/R# is a bi-directional s
that distinguishes between read and write cycles. Note that special cycles are identified by
BE0# and A4–A2. These signals are 3-stated after a hard reset.

Page Cache Disable/Cache, PCD/CACHE#, is a multiplexed signal pin with two functions
pending on the type of CPU used. The PCD cache input signal, when asserted, indicates
rent cycle cannot be cached in the L2 cache during line fill operation. When PCD is asserte
line is not cached in L1 or L2. The CACHE# signal is active along with the first ADS# until
first RDY# or BRDY#. For line fills, the functionality of the CACHE# signal is identical to th
of the PCD signal. During write-back cycles, CACHE# is always asserted at the beginning
line write-back. The beginning of a write-back cycle is uniquely identified by active ADS#, W
and CACHE#. Beginning of the snoop write-back is identified by the ADS#, W/R#, CACH
and HITM# being active.

The Address Status, ADS#, input indicates that the bus cycle definition signals (M/IO#, D
W/R#), BE3#–BE0#, and A31–A30, A26–A2 are available on their corresponding pins.

Ready, RDY#, indicates that the current non-burst bus cycle is complete. This signal is dea
after a hard reset.

Burst Ready, BRDY#, performs the same function during a burst cycle that RDY# performs
ing a non-burst cycle. This signal is deasserted after hard reset.

Burst Last, BLAST#, indicates the end of a burst access for CPU-initiated cycles.

The system controller asserts HOLD to the CPU to request ownership of the Host bus. This
is deasserted after a hard reset.

Hold Acknowledge, HLDA, must be asserted by the CPU for the system controller to grant
master on the PCI or ISA buses. When HLDA is deasserted, the CPU is the Host bus mas
the system controller is the PCI bus master. When HLDA is deasserted, the system contr
also the master on the system controller/ISA bridge link interface.

Address Hold, AHOLD, output signal forces the CPU to float its address bus in the next c
The system controller asserts this signal in preparation to perform a system controller/ISA
interface transfer, when SRESET needs to be asserted, or upon Deturbo logic requests. T
nal is deasserted after a hard reset.
8-25

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
External Address, EADS#, when asserted, indicates that an external address has been driven onto
the CPU address lines. This address is used to perform an internal cache snoop cycle. This signal
is deasserted after a hard reset.

Cache Enable, KEN#, when asserted, indicates whether the current cycle is cacheable in the CPU
L1 cache. This signal is deasserted after a hard reset.

Hit Modified, HITM#, when asserted, indicates that a hit to a modified data cache has occurred
during the snoop cycle. A pull-up is used to keep HITM# deasserted when not used.

The system controller has a standard master/slave PCI bus interface. As a PCI device, the system
controller can be either a master initiating a PCI bus operation or a target responding to a PCI bus
operation. The system controller is a PCI bus master for Host-to-PCI accesses and a target for
PCI-to-main memory accesses (or accesses that are forwarded to the ISA bus). The Host can read
or write configuration spaces, PCI memory space, and PCI I/O space.

8.4.3.4 PCI Bus Cycles Support

When the host initiates a bus cycle to a PCI device, the system controller becomes a PCI bus mas-
ter and translates the CPU cycle into the appropriate PCI bus cycle. Post buffers permit the CPU
to complete Host-to-PCI writes in zero wait-states.

When a PCI bus master initiates a main memory access, the system controller becomes the target
of the PCI bus cycle and responds to the read/write access. As a PCI master, the system controller
generates address parity for read and write cycles, and data parity for write cycles. As a target,
the system controller generates data parity for read cycles. During PCI-to-main memory accesses,
the system controller automatically performs cache snoop operations on the Host bus, if needed,
to maintain data consistency.
8-26

SYSTEM BUS DESIGN

ransfer.

31–A30,
AD29–

n the
ble of
e buff-
dword

t return
as-
K to
PCI bus commands indicate to the target the type of transaction desired by the master. These com-
mands are presented on the C/BE3#–C/BE0# signals during the address phase of a t
Table 8-2 summarizes the system controller’s support of the PCI bus commands.

8.4.3.5 Host to PCI Cycles

Host bus accesses to PCI bus are always in the Host bus address range, as defined by A
A26–A2 and the four BE lines. The PCI address lines are driven during the address phase.
AD27 lines are driven to the value of A30, during Host accesses to PCI.

The system controller has the ability to burst up to 32 back-to-back CPU memory writes o
PCI bus. This function in controlled by the PCICON register. The system controller is capa
merging 8/16-bit graphic write cycles to the same dword address into the same posted writ
er location (controlled by the PCICON register). The merged data is then driven as a single
cycle on the PCI bus. Byte merging is performed in the compatible VGA range only.

8.4.3.6 Exclusive Cycles

The system controller, as a PCI master, never performs LOCKed cycles. The CPU does no
active HLDA while it is performing a LOCKed sequence. Also, the CPU is the only active m
ter, as long as HLDA is inactive. Thus, the system controller does not need to drive LOC

Table 8-2. Supported PCI Bus Commands

C/BE[3:0] Command Type Supported As
Target

Supported As
Master

0000 Interrupt Acknowledge No No

0001 Special Cycle No No

0010 I/O Read Yes Yes

0011 I/O Write Yes Yes

0100 Reserved D D

0101 Reserved D D

0110 Memory Read Yes Yes

0111 Memory Write Yes Yes

1000 Reserved D D

1001 Reserved D D

1010 Configuration Read No Yes

1011 Configuration Write No Yes

1100 Memory Read Multiple Yes(1) No

1101 Dual Address Cycle No No

1110 Memory Read Line Yes(1) No

1111 Memory Write and Invalidate Yes(2) No

NOTES:
1. As a target, the system controller treats this command as a memory read command.
2. As a target, the system controller treats this command as a memory write command.
8-27

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

signals
t.

ignals

icates

Y# is
 device

input
eady.

plete.
e PCI

current
s signal

a phas-
roller is
 Parity
d data

emory

the bus
 based

EL# in-
rd reset.
guarantee the CPU atomic LOCK sequence. Note that this PCI chip set supports a bus locking
mechanism (i.e., when a PCI master performs locked accesses, the arbitration is not changed until
the locked sequence is completed).

The system controller does not check parity or generate SERR# based on the PCI parity. The sys-
tem controller only generates SERR# (if enabled via the PCICOM register), when a main mem-
ory read results in a parity error. When main memory parity error is detected, the system
controller activates SERR#, if enabled, for a single PCICLK.

When a main memory parity error is detected and SERR# generation is enabled, the MMPERR
bit in the DS register is set to 1. When SERR# is activated, the SERRS bit in the DS register is
set to 1.

8.4.3.7 Status and Control Interface

Address/Data, AD31–AD0, are connected to the PCI multiplexed address/data bus. These
are also multiplexed with the IDE interface. These signals are driven high after a hard rese

Bus Command/Byte Enable, C/BE3#–C/BE0#, are multiplexed on the same pins. These s
are driven high after a hard reset.

FRAME# is an output when the system controller is a master on the PCI bus. FRAME# ind
that a PCI cycle has started. This signal is 3-stated after a hard reset.

Target Ready, TRDY#, is an input when system controller is a master on the PCI bus. TRD
an output when the system controller acts as a PCI slave. TRDY# indicates that the target
is ready. This signal is 3-stated after a hard reset.

Initiator Ready, IRDY#, is an output when system controller is a PCI master. IRDY# is an
when the system controller is a PCI slave. IRDY# indicates that the initiator of the cycle is r
This signal is 3-stated after a hard reset.

LOCK# indicates an exclusive bus operation and may require multiple transactions to com
The system controller supports a bus type of LOCK only. Thus, when a PCI master locks th
bus, it owns the system for the duration of the locked transactions.

Stop, STOP#, indicates that the current bus target is requesting the master to stop the
transaction. STOP# is used to disconnect, retry, and abort sequences on the PCI bus. Thi
is 3-stated after a hard reset.

Parity, PAR, is driven by the system controller, as a PCI master, during the address and dat
es for a write cycle and during the address phase for a read cycle. When the system cont
a PCI slave, parity is driven by the system controller for the data phase of a PCI read cycle.
is even across AD31–AD0 and C/BE3#–C/BE0#. PAR lags the corresponding address an
phase by one PCICLK. This signal is asserted after a hard reset.

System Error, SERR#, when driven by the system controller, indicates that either a main m
parity error occurred or the system controller, as a master, received a target abort.

Device Select, DEVSEL#, when asserted, indicates that a PCI slave device has decoded
cycle address as the target of the current access. The system controller drives DEVSEL#
on the main memory address range being accessed by a PCI master. As an input, DEVS
dicates whether any device on the bus has been selected. This signal is 3-stated after a ha
8-28

SYSTEM BUS DESIGN

rans-
ith SI-

 hard
ve, and

sfers.
to set
hese
tched

 deas-

sfer.
Request1/Host Device, PREQ1#/HDEV#, is a multiplexed signal that has two functions.
PREQ1# is used by the PCI master to gain control of the PCI bus. This signal can be externally
cascaded to support multiple PCI masters. The HDEV# function is used when the system control-
ler is programmed to support a Host bus slave device.

Request0, PREQ0#, is used by the PCI master to gain control of the PCI bus. This signal can be
externally cascaded to support multiple PCI masters.

Grant1/Host Ready, PGNT1#, is driven by the system controller to grant control of the PCI bus
to a PCI master. PGNT1# can be externally cascaded to support multiple PCI masters. The
HRDY# function is used when the system controller is programmed to support a Host bus slave
device. This signal is driven high during and after a hard reset.

Grant0, PGNT0#, is driven by the system controller to grant control of the PCI bus to a PCI mas-
ter. PGNT0# can be externally cascaded to support multiple PCI masters. This signal is driven
high during and after a hard reset.

8.4.4 System Controller/ISA Bridge Link Interface

The system controller and ISA bridge interface communications include CPU/PCI accesses of the
ISA bridge internal registers, CPU/PCI cycles forwarded to the ISA bus, and ISA master or DMA
accesses to main memory. The system controller/ISA bridge link interface is a point-to-point
communication connection between the system controller and the ISA bridge.

Four sideband signals synchronize data flow and bus ownership: Link Request (LREQ#), Link
Grant (LGNT #), Command Valid (CMDV#), and Slave Idle (SIDLE#). LREQ# and LGNT# are
used by the ISA bridge to arbitrate for link mastership. Only the ISA bridge drives LREQ# while
on the system controller drives LGNT#. CMDV# is driven by the current link master, whereas
SIDLE# is driven by the current link slave. Commands, addresses, and data are transferred be-
tween the system controller and ISA bridge using the host address bus signals (A17–A2).

8.4.4.1 Status and Control Interface

Command Valid, CMDV#, is asserted by the link master to indicate the beginning of a link t
fer. The system controller deasserts this signal after a hard reset. CMDV# is used along w
DLE# to set the system controller/ISA bridge system clock configuration during a PWROK
reset. These inputs are strapped to the appropriate levels, sampled while PWROK is inacti
latched when PWROK goes active.

Slave Idle, SIDLE#, is asserted by the link slave to indicate that it is available for data tran
The ISA bridge asserts this signal after a hard reset. SIDLE# is used along with CMDV#
the system controller/ISA bridge system clock configuration during PWROK hard reset. T
inputs are strapped to the appropriate levels, sampled while PWROK is inactive, and la
when PWROK goes active.

Link Request, LREQ#, is asserted by the ISA bridge to request a link transfer. This signal is
serted after a hard reset.

Link Grant, LGNT#, is asserted by the system controller to grant the ISA bridge a link tran
This signal is deasserted after a hard reset.
8-29

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

nds
et.

 ISA
rface
ener-
Host Address/Link, A17–A2 for system controller/ISA bridge, link transfers of data/comma
between the ISA bridge and system controller. These signals are 3-stated after a hard res

8.4.5 ISA Interface

The ISA bridge incorporates a fully ISA bus compatible master and slave interface. The
bridge directly drives five ISA slots without external data or address buffers. The ISA inte
also provides byte swap logic, I/O recovery support, wait-state generation, and SYSCLK g
ation. The ISA interface supports the following cycle types:

• CPU or PCI master initiated I/O and memory cycles to the ISA bus.

• DMA-compatible cycles between main memory and ISA I/O, and between ISA I/O and
ISA memory.

• ISA refresh cycles initiated by either the ISA bridge or an external ISA master.

• ISA master-initiated memory cycles to main memory and ISA master-initiated I/O cycles to
the internal ISA bridge registers.

8.4.5.1 I/O Recovery Support

The I/O recovery mechanism in the ISA bridge is used to add additional recovery delay between
the CPU or PCI master initiated 8-bit and 16-bit I/O cycles to the ISA bus. The ISA bridge auto-
matically forces a minimum delay of 3.5 SYSCLKs between back-to-back 8- and 16-bit I/O cy-
cles to the ISA bus. This delay is measured from the rising edge of the I/O command (IOR# or
IOW#) to the falling edge of the next I/O command. If a delay of greater than 3.5 SYSCLKs is
required, the ISA I/O Recovery Timer register can be programmed to increase the delay in incre-
ments of SYSCLKs. No additional delay is inserted for back-to-back I/O sub-cycles generated as
a result of byte assembly or disassembly.

8.4.5.2 SYSCLK Generation

The ISA bridge generates the ISA system clock (SYSCLK). SYSCLK is a divided down version
of HCLKOUT and has a frequency of either 8.00 or 8.33 MHz, depending on the HCLKOUT
frequency.

For CPU or PCI initiated cycles to the ISA bus, SYSCLK is stretched to synchronize BALE fall-
ing to the rising edge of SYSCLK. During CPU or PCI initiated cycles to the ISA bridge, BALE
is normally driven high, synchronized to the rising edge of SYSCLK and then driven low to ini-
tiate the cycle on the ISA bus. However, if the cycle is aborted, BALE remains high and is not
driven low until the next cycle to the ISA bus.

8.4.5.3 Data Byte Swapping (ISA Master or DMA to ISA Device)

The data swap logic is integrated in the ISA bridge. For slaves that reside on the ISA bus, data
swapping is performed if the slave (I/O or memory) and ISA bus master (or DMA) sizes differ
and the upper (odd) byte of data is being accessed. The data swapping direction is determined by
8-30

SYSTEM BUS DESIGN

 ISA

 ISA
at the
the cycle type (read or write). Table 15 shows when data swapping is provided during DMA and
ISA master cycles to ISA slaves.

8.4.5.4 Wait-State Generation

The ISA bridge adds wait-states to the following cycles, if IOCHRDY is sampled low (deassert-
ed).

• During Refresh and ISA bridge master cycles (not including DMA) to the ISA bus.

• During DMA-compatible transfers between ISA I/O and ISA memory only.

Wait states are added as long as IOCHRDY remains low.

For ISA master cycles targeted for the ISA bridge’s internal registers or main memory, the
bridge always extends the cycle by driving IOCHDY low until the transaction is complete.

8.4.5.5 Cycle Shortening

The ISA bridge shortens the following cycles, if ZEROWS# is sampled asserted (low).

• During ISA bridge master cycles (not including DMA) to 8-bit and 16-bit ISA memory.

• During ISA bridge master cycles (not including DMA) to 8-bit ISA I/O only.

For ISA master cycles targeted for the ISA bridge’s internal registers or main memory, the
bridge does not assert ZEROWS#. When IOCHRDY and ZEROWS# are sampled low
same time, IOCHRDY takes precedence and wait states are added.

Table 8-3. DMA Data Swap

DMA I/O Device
Size

ISA Memory
Slave Size Swap Comments

(I/O) ↔ Memory

8-bit 8-bit No SD[7:0]↔SD[7:0]

8-bit 16-bit No SD[7:0]↔SD[7:0]

8-bit 16-bit Yes SD[7:0]↔SD[15:8]

16-bit 8-bit No Not Supported

16-bit 16-bit No SD[15:0]↔SD[15:0]

Table 8-4. 16-bit Master to 8-bit Slave Data Swap

SBHE# SA0 SD[15:8] SD[7:0] Comments

0 0 Odd Even Word Transfer (data swapping not required)

0 1 Odd Odd Byte Swap (1, 2)

1 0 Even Byte Transfer (data swapping not required)

1 1 Not Allowed
8-31

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

fter a

reting
fresh

t addi-
 ISA

agent
l ISA
an ISA
ata is
RDY
 does
stated

 they

rted, it
e ISA

e data
 IOR#
 when

 from
OW#
 a hard

ysical
s the
 The

–SA0
 same
A19–

rred on
BHE#
aster
8.4.5.6 Status and Control Interface

Bus Address Latch Enable, BALE, is asserted by the ISA bridge to indicate that the address
(SA19–SA0, LA23–LA17) and SBHE# signal lines are valid. This signal is deasserted a
hard reset.

Address Enable, AEN, is asserted during DMA cycles to present I/O slaves from misinterp
DMA cycles as valid I/O cycles. This signal is also asserted during ISA bridge-initiated re
cycles. This signal is deasserted after a hard reset.

I/O Channel Ready, IOCHRDY, is deasserted by resources on the ISA bus to indicate tha
tional time (wait-states) is required to complete the cycle. This signal is normally high on the
bus. IOCHRDY is an input when the ISA bridge owns the ISA bus and the CPU or a PCI
is accessing an ISA slave, or during DMA transfers. IOCHRDY is output when an externa
bus master owns the ISA bus and is accessing main memory or an ISA bridge register. As
bridge output, IOCHRDY is deasserted from the falling edge of the ISA commands. After d
available for an ISA master read or the ISA bridge latches the data for a write cycle, IOCH
is asserted for 70 ns. After 70 ns, the ISA bridge three-states IOCHRDY. The ISA bridge
not drive this signal when an ISA bus master is accessing an ISA bus slave. IOCHRDY is 3-
upon CPURST.

16-bit I/O Chip Select, ISCS16#, is driven by I/O devices on the ISA bus to indicate that
support 16-bit I/O bus cycles.

I/O Channel Check, IOCHK#, can be driven by any resource on the ISA bus. When asse
indicates that a parity or an uncorrectable error has occurred for a device or memory on th
bus. If IOCHK# is asserted and NMIs are enabled, an NMI is generated to the CPU.

I/O Read, IOR#, when asserted indicates to an ISA I/O slave device that the slave may driv
on the ISA data bus (SD15–SD0). The I/O slave device must hold the data valid until after
is deasserted. IOR# is an output when the ISA bridge owns the ISA bus. IOR# is an input
an external ISA master owns the ISA bus. This signal is deasserted after a hard reset.

I/O Write, IOW#, asserted indicates to an ISA I/O slave device that the slave may latch data
the ISA data bus (SD15–SD0). IOW# is an output when the ISA bridge owns the ISA bus. I
is an input when an external ISA master owns the ISA bus. This signal is deasserted after
reset.

Unlatched Address, LA23–LA17, are bi-directional address lines allowing accesses to ph
memory on the ISA bus up to 16 Mbytes. LA23–LA17 are outputs when the ISA bridge own
ISA bus. The LA23–LA17 lines become inputs when an ISA master owns the ISA bus.
LA23–LA17 signals are driven to an unknown state after a hard reset.

System Address bus, SA19–SA0, are outputs when the ISA bridge owns the ISA bus. SA19
are inputs when an external ISA master owns the ISA bus. Note that SA19–SA17 have the
values as LA19–LA17 for all memory cycles. For I/O accesses only SA15–SA0 are used. S
SA0 are driven to an unknown state after a hard reset.

System Byte High Enable, SBHE#, indicates, when asserted, that a byte is being transfe
the upper byte (SD15–SD8) of the data bus. SBHE# is deasserted during refresh cycles. S
is an output when the ISA bridge owns the ISA bus and an input when an external ISA m
owns the ISA bus. This signal is at an unknown state after a hard reset.
8-32

SYSTEM BUS DESIGN

SD15–
D15–

 in-
pports
 ISA-
r ro-

used
DCM)
 also
quest
nels
”.

 3–0
count-
a size
Memory Chip Select, 16 MEMCS16#, is driven low by ISA slaves that are 16-bit memory devic-
es. MEMCS16# is an input when the ISA bridge owns the ISA bus. MEMCS16# is an output
when an ISA bus master owns the ISA bus. The ISA bridge drives this signal low during ISA
master to main memory cycles.

Memory Read, MEMR#, is the command to a memory slave that it may drive data onto the ISA
data bus. MEMR# is an output when the ISA bridge is a master on the ISA bus and an input when
an ISA master, other then the ISA bridge, owns the ISA bus. This signal is also driven by the ISA
bridge during refresh cycles. For DMA cycles, the ISA bridge, as a master, asserts MEMR#. This
signal is 3-stated after a hard reset.

Memory Write, MEMW#, is the command to a memory slave that it may latch data from the ISA
data bus. MEMW# is an output when the ISA bridge owns the ISA bus and an input when an ISA
master, other then the ISA bridge, owns the ISA bus. For DMA cycles, the ISA bridge, as a mas-
ter, asserts MEMW#. This signal is 3-stated after a hard reset.

Standard Memory Read, SMEMR#, is asserted to request an ISA memory slave to drive data onto
the data lines. If the access is below the 1 Mbyte range (00000000-000FFFFFh) during DMA
compatible, ISA bridge master, or ISA master cycles, the ISA bridge asserts SMEMR#.
SMEMR# is a delayed version of MEMR#. This signal is deasserted after a hard reset.

Standard Memory Write, SMEMW#, is asserted to request an ISA memory slave to accept data
from the data lines. If the access is below the 1 Mbyte range (00000000-000FFFFFh) during
DMA compatible, ISA bridge master, or ISA master cycles, the ISA bridge asserts SMEMW#.
SMEMW# is a delayed version of MEMW#. This signal is deasserted after a hard reset.

Zero Wait-States, ZEROWS#, is asserted by an ISA slave after its address and command signals
have been decoded to indicate that the current cycle can be shortened. If IOCHRDY is deasserted
and ZEROWS# is asserted during the same clock, then ZEROWS# is ignored and wait-sates are
added as a function of IOCHRDY (i.e. IOCHRDY has precedence over ZEROWS#).

System Data, SD15–SD8, provide the 16-bit data path for devices residing on the ISA bus.
SD8 correspond to the high order byte and SD7–SD0 correspond to the low order byte. S
SD0 are undefined during refresh. These signals are 3-stated after hard reset.

8.4.6 DMA Controller

The DMA circuitry incorporates the functionality of two 82C37 DMA controllers with seven
dependently programmable channels (Channels 3–0 and Channels 7–5). The DMA su
8/16-bit devices using ISA-compatible timings and 27-bit addressing as an extension of the
compatible specification. The DMA channels can be programmed for either fixed (default) o
tating priority. The DMA controller also generates ISA refresh cycles. DMA Channel 4 is
to cascade the two controllers and default to cascade mode in the DMA Channel Mode (
register (Figure 10). In addition to accepting requests from DMA slaves, the DMA controller
responds to requests that are initiated by software. Software may initiate a DMA service re
by setting any bit in the DMA Channel Request register to a 1. The DMA controller for Chan
3–0 is referred to as “DMA-1” and the controller for Channels 7–4 is referred to as “DMA-2

Each DMA channel is hardwired to the compatible settings for DMA device size channels
are hardwired to 8-bit, count-by-bytes transfers and channels 7–5 are hardwired to 16-bit,
by-words (address shifted) transfers. The ISA bridge provides the timing control and dat
8-33

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

 from
bus.
e to
until the

e-
 grant-
hese

ator.

ess. As
n the
rated
fresh
translation necessary for the DMA transfer between the memory (ISA or main memory) and the
ISA bus I/O. ISA-compatible DMA timing is supported. The DMA controller also features re-
fresh address generation and auto-initialization following a DMA termination.

Note that a DMA device (I/O device) is always on the ISA bus, but the memory referenced is lo-
cated on either an ISA bus device or in main memory. When the ISA bridge is running a DMA
cycle, it drives the MEMR# or MEMW# strobes, if the address is less than 16 Mbytes (000000-
FFFFFFh). The ISA bridge always generates ISA-compatible DMA memory cycles. The
SMEMR# and SMEMW# are generated if the address is less than 1 Mbyte (0000000-
00FFFFFh). To avoid aliasing problems when the address is greater than 16 Mbytes (1000000-
7FFFFFFh), the MEMR# or MEMW# strobe is not generated.

The channels can be programmed for any of four transfer modes: single, block, demand, or cas-
cade. Each of the three active transfer modes (single, block, and demand), can perform three dif-
ferent types of transfers (read, write, or verify). Note that memory-to-memory transfers are not
supported by the ISA bridge. The DMA supports fixed and rotating channel priorities.

Figure 8-8. Internal DMA Controller

8.4.6.1 DMA Status and Control Interface

DMA Request lines, DREQ3–DREQ0, DREQ7–DREQ5, are used to request DMA service
the ISA bridge’s DMA controller or for a 16-bit master to gain control of the ISA expansion
The active level (high or low) is programmed via the DMA Command register. All inactiv
active edges of DREQ are assumed to be asynchronous. The request must remain active
appropriate DACKx# signal is asserted.

DMA Acknowledge output lines, DACK3#–DACK0#, DACK7#–DACK5#, indicate that a r
quest for DMA service has been granted by the ISA bridge or that a 16-bit master has been
ed the bus. The active level (high or low) is programmed via the DMA Command register. T
signals are deasserted after a hard reset.

Terminal Count, TC, is asserted by the ISA bridge to DMA slaves as a terminal count indic
This signal is deasserted after a hard reset.

Refresh, REFRESH#, is an output when asserted indicates when a refresh cycle is in progr
an output, this signal is driven directly onto the ISA bus. This signal is an output only whe
ISA bridge DMA refresh controller is a master on the bus responding to an internally gene
request for refresh. As an input, REFRESH# is driven by 16-bit ISA bus masters to initiate re
cycles. This signal is 3-stated after a hard reset.

Channel 4

Channel 3

Channel 0

Channel 1

Channel 2

Channel 5

Channel 7

Channel 6

DMA-1 DMA-2
8-34

9
Performance
Considerations

Chapter Contents

9.1 Introduction ... 9-1

9.2 Instruction Execution Performance....................................... 9-2

9.3 Internal Cache Performance Issues 9-4

9.4 On-Chip Write Buffers.. 9-7

9.5 External Memory Considerations ... 9-8

9.6 Second-Level Cache Performance Considerations9-11

9.7 Dram Design Techniques..9-14

9.8 Extended Data Output RAM (EDO RAM).........................9-14

9.9 Floating-Point Performance ..9-16

 mem-
er) to
 cach-
ropro-
scribes

el486
. This
mory
roces-
 using

or the
 is fast-
the fre-
up to a

re re-
RAM
ractical
ance.

ant for
a from
y cy-
% over

 gen-
ortant
CHAPTER 9
PERFORMANCE CONSIDERATIONS

9.1 INTRODUCTION

System performance is a key attribute of any embedded computer system. How quickly a pro-
gram is run is the common measure of performance. Program performance is a function of many
parameters: CPU speed, clock speed, memory latency, memory data transfer rate, memory size,
disk access time, disk data transfer rate, video access time, compiler efficiency, operating system
efficiency, program algorithms, etc. This chapter focuses on the memory system parameters that
affect performance. External caches are also examined as a means of improving memory system
performance. Chapters 5 and 6 give specific examples of memory and cache designs.

Memory system design is important. The Intel486™ processor is faster than any practical
ory system. It contains a significant amount of logic (e.g., caches, write buffers, prefetch
allow the execution logic to keep operating even with slow external memories. The on-chip
es and data bandwidth requirements of the Intel486 processor are different than earlier mic
cessors. Memory system design should be approached differently as well. This chapter de
the memory requirements and bus usage characteristics of the Intel486 processor.

9.1.1 Memory Performance Factors

The ideal memory subsystem would operate without wait states. All bus cycles on the Int
processor would complete in only two clocks for single access and five clocks for cache fill
is impractical for almost all applications since they would require huge amounts of 15 ns me
to run at 33 MHz. Practical systems use DRAM of 60-100 ns access times. The Intel486 p
sor is designed to effectively use DRAM. This chapter examines memory system design
DRAM.

There are many different performance options in the design of the memory subsystem f
Intel486 processor. The CPU clock speed sets the maximum possible performance. Higher
er, but it then requires faster memories to keep the whole system performance scaling at
quency rate. The Intel486 processor is designed to allow overall performance to increase
point with higher clock speed and constant memory speed.

The most common attribute of memory design is the number of wait states, if any, that a
quired to read a data item. At 33 MHz, a read operation requires 15 ns SRAM. For slower D
or Flash access, at 33 MHz add 30 ns access time for each wait state. Wait states exist in p
memory system design. This chapter examines how they affect Intel486 processor perform

The Intel486 processor adds a new metric to memory design: read transfer rate. It is import
filling the internal cache of the Intel486 processor. The Intel486 processor can transfer dat
memory on every clock for most read transfers. This is twice the rate of individual memor
cles. Memory systems supporting this high speed transfer rate increase performance 10-20
those without.

A third important attribute is write cycle time. The Intel486 processor write-through cache
erates approximately twice as many writes as reads. Write performance is especially imp
9-1

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

it less
a few
pplica-

emory
r dur-
o best

arlier
tive to
 com-

igning
red to
ance.
for 16-bit programs, which generate more writes than 32-bit programs. The cycle time of the
write can limit system performance as the total bus usage approaches the maximum allowed.

A common method of improving memory system performance is to add a cache. The Intel486
processor has an on-chip cache (known as L1 cache), which handles most of the read requests.
The performance gain is highly dependent on the application—some applications benef
than 5% with an external cache. Most applications benefit 10-15% in performance, while
benefit as much as 40%. An external cache is not required for many Intel486 processor a
tions.

A high-performance Intel486 processor design needs to consider all of these issues in the m
design. The following sections provide more detail on the activity of the Intel486 processo
ing typical program execution. The memory activity of the CPU needs to be understood t
design the memory subsystem.

9.2 INSTRUCTION EXECUTION PERFORMANCE

The Intel486 processor was designed to execute instructions in fewer clocks than e
Intel386™ family microprocessors. The reduced clock counts increase performance rela
earlier products. This section reviews how the Intel486 processor accomplishes this and
pares it to earlier Intel microprocessors.

The instruction execution rate and internal design is important to understand when des
memory systems. It accounts for the heavy write traffic on the Intel486 processor as compa
earlier microprocessors. It also explains how memory bandwidth and latency affect perform

9.2.1 Intel486™ Processor Execution Times

The Intel486 processor uses several techniques to execute many frequent instructions in a single
clock. The processor has an on-chip code/data cache and a five stage pipelined execution unit.
The Intel486 processor decodes many simple instructions directly into hardware actions and uses
write buffers to match the execution rate to memory bus speed.

One high-level way to examine the impact of these techniques is to compare the execution time
of a typical application. To do so, Intel has measured a set of applications for the frequency of
instruction usage. For each instruction we multiply the frequency times the clocks required to ex-
ecute. The sum of these products then yields the typical number of clocks required to execute an
instruction.

Table 9-1 shows such a comparison. The Intel486 processor requires 1.95 clocks for a typical in-
struction while the Intel386 microprocessor requires 4.919 clocks. This is a 2.5x improvement
for integer programs. The floating-point instructions have an even larger improvement, as dis-
cussed later. The numbers in Table 9-1 do not include effects of cache misses for the Intel486
processor.

One implication of these numbers is that the Intel486 processor cannot sustain that rate of execu-
tion with the cache disabled. The bus bandwidth required for the Intel486 processor with cache
disabled would be 2.5 times that of the Intel386 CPU. The Intel486 processor bus has 60% more
data bandwidth for reads than the Intel386 CPU, but the same bandwidth for writes. The on-chip
cache of the Intel486 processor handles most (90-95%) of the read requests. The external bus
9-2

PERFORMANCE CONSIDERATIONS
must handle all of the writes. A later section examines bus utilization and on-chip cache hit rates
in more detail.

Table 9-1. Typical Instruction Mix and Execution Times for
the Intel486™ Processor

Instruction
Percentage
Utilization

Intel486™
Processor

Clocks

Intel486™
Accumulated

Clocks

Move R,M 16.2% 1.16 0.188

Move M,R 6.9% 1 0.069

Push R 6.1% 1 0.061

Move R,R 5.7% 1 0.057

Move R,I 5.5% 1 0.055

JCC taken 4.6% 3.4 0.156

JCC fail 4.5% 1 0.045

ALU2 R,R 4.3% 1 0.043

POP R 4.0% 1.16 0.046

JMP M 2.9% 3.4 0.099

ALU2 R,M 2.9% 2.16 0.063

ALU2 M,I 2.9% 3.16 0.092

Call 2.8% 3.4 0.095

Shift R 2.8% 2 0.056

ALU2 R,I 2.8% 1 0.028

RET 2.7% 5.56 0.028

String 2.6% 3.16 0.150

ALU1 R 1.2% 1 0.082

LDS 1.4% 12 0.020

ALU2 M,R 1.3% 3.16 0.168

ALU1 M 1.2% 3.16 0.041

Push M 1.1% 2.16 0.024

NOP 1.1% 1 0.011

Others 11.7% 2.25 0.263

Average clocks per instruction 1.95

NOTE: All percentages are approximate.
9-3

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
9.2.2 Application Programs Used in Analysis

For the bus utilization and cache statistics presented later, a series of five programs were used.
Each was traced to record the address access pattern. These patterns were then used in a cache
simulator to measure how many accesses could be handled in the on-chip cache of the Intel486
processor. The cache simulator is an accurate representation of on-chip cache. External bus traffic
was also measured to give bus utilization statistics. An external DRAM controller and external
cache can also be simulated to measure their effect on program execution.

The programs represent different types of work. Each was run in the UNIX environment. Some
are 16-bit DOS applications run under a DOS emulator. Each had 16 million memory references
recorded.

9.3 INTERNAL CACHE PERFORMANCE ISSUES

The Intel486 processor is capable of high speed operations, as fast as 1 clock for many common
instructions. Since external memory cannot provide data for the CPU every clock, an on-chip
cache that can be accessed very quickly is necessary to enhance the overall performance. The
cache eases the bandwidth differences between the external bus and the CPU. The size, organi-
zation, write policy, miss replacement, and busing of the Intel486 processor on-chip cache were
chosen to support a broad range of applications.

9.3.1 On-Chip Cache Organization Issues

The Intel486 processor contains an 8-Kbyte (16-Kbyte on the IntelDX4 processor) on-chip cache.
The cache is unified (containing both code and data), and is organized as 4-way set-associative,
with four 2-Kbyte (4-Kbyte on the IntelDX4 processor) sets. Each set contains 128 lines (256
lines on the IntelDX4 processor). Cache lines are 16 bytes long. Lines in the cache are either valid
or not valid. There is no provision for partially valid lines.

Read requests are generated either by program flow (data request) or an instruction prefetch (code
request). The great majority of the time, these requests are usually satisfied by the on-chip cache.
However, if a cache miss occurs, an external bus request is generated. For reads to non-cacheable
areas of memory, the read is completely normal. If, however, the read request is to a cacheable
portion of memory, then the CPU initiates a cache bus line fill. Cache line fills require the exe-
cution of additional bus cycles in order to read the remainder of the 16-byte line into the CPU.

Cache line size can impact system performance. If the line size is too large, then the number of
blocks that can fit in the cache is reduced. In addition, as the line length is increased, the latency
for the external memory system to fill a cache line increases, reducing overall performance.

However, the Intel486 processor bus is optimized for a line size of 16 bytes. Because the Intel486
processor can access four bytes in each bus cycle and the cache lines are 16 bytes long, four bus
cycles are necessary to fill a cache line. To reduce latency of reading cache lines, the CPU uses
burst cycles. During burst cycles, four bytes of data can be read into the CPU every clock. With
the use of burst cycles, a 16-byte cache line can be read into the CPU in as few as five clock cy-
cles. Static column DRAMs can be implemented to support burst cycles to the CPU.

During writes, the main memory update method utilized by the Intel486 processor (except for the
IntelDX4 processor) is the write-through policy. All writes from the Intel486 processor initiate
9-4

PERFORMANCE CONSIDERATIONS
an external bus cycle. In addition, the internal cache is updated when the address written to is con-
tained in the cache. This policy ensures consistency between the on-chip cache and the external
memory. The IntelDX4 processor can be configured to update main memory using the write-back
policy. During writes, the cache is updated when the address being written to is contained in the
cache. The write is not propagated through the system to memory, but is stored and written to
memory during a future update.

9.3.2 Performance Effects of the On-Chip Cache

If all program operations use on-chip resources, the fastest possible execution is achieved, as the
on-chip registers and cache satisfy all requests. However, on cache read misses or any memory
write operation, the external bus has to be accessed, reducing system performance.

A hit rate of approximately 95% is realized from the on-chip cache, depending on the application.
The high level of cache hits has three main effects.

1. Performance is improved. The Intel486 processor can access data from its on-chip cache
every clock. This high bandwidth allows the execution unit of the Intel486 processor to
execute many common instructions in one clock.

2. The system bus utilization decreases. Because a high percentage of reads are satisfied by
the cache, the Intel486 processor bus is idle a large percentage of the time. Additional bus
masters can reside in the system without bus saturation and the resulting performance
degradation.

3. The ratio of writes to reads is increased on the external bus. The number of reads is
decreased but the amount of writes remains constant. Therefore, main memory systems
should have low latency on write operations.

Internally, two separate 128-bit wide prefetch buffers interface to the L1 cache unit. These can
be filled with data fetched from the on-board cache in one clock cycle, or by external memory in
as few as four clock cycles. Because the wide prefetch buffers satisfy multiple prefetches, the
usual degradation caused by a combined code cache and data cache scheme is avoided.

To optimize performance during cache line fills, a technique called bypassing is used. The first
cycle of a cache line fill satisfies the original request. Data read in during the first cycle is sent
directly to the requesting unit. Because of this, it is not necessary to wait for the entire cache line
to fill before the requested data can be used.

Figure 9-1 shows the on-chip hit rates for prefetch and read operations when running the pro-
grams shown in Table 9-2.
9-5

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 9-1. Cache Hit Rate for Various Programs

9.3.3 Bus Cycle Mix with and without On-Chip Cache

Microprocessors that lack an on-chip cache must devote a significant portion of execution time
to external bus accesses. Code prefetches and data reads must come from the external memory
system; subsequently a high percentage of bus accesses are reads. Traditional memory systems
are optimized for reads because of this mix of bus cycles.

With the Intel486 processor’s on-chip cache, however, the high hit rate reduces the number of ex-
ternal reads. As the on-chip cache implements a write-through policy, the number of writes to the
bus is not reduced. As a result, external bus read cycles are now a minor portion of the overall

Table 9-2. Programs Used

Name Description

A FRAME Desktop publishing package

B PHONGS4 Small benchmark program

C Sunview Window manager

D INVFRAME Desktop publishing package

E TPASCAL Pascal compiler

F TROFF Text Formatter

On-Chip Cache Hit Rates

A B C D E

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

H
it

R
at

e

Program

Prefetches

Reads
9-6

PERFORMANCE CONSIDERATIONS
bus cycles, as shown in Figure 9-3. For best performance, memory systems that use the Intel486
processor should be optimized for write cycles.

Figure 9-2. Intel486™ Processor Bus Cycle Mix with On-Chip Cache

9.4 ON-CHIP WRITE BUFFERS

As previously discussed, low write latency is more critical for Intel486 processor systems than in
previous processors. The Intel486 processor has four write buffers to allow CPU execution with-
out latency for write operations. The buffers can be filled at the rate of one per clock cycle until
all four are filled.

When all four write buffers are empty and the bus is idle, a write request propagates to the exter-
nal bus, bypassing the write buffers directly. If the bus is not available when the write cycle is
generated internally, then the write is buffered and propagated as soon as the bus is available. If
a cache hit occurs on a write, then the on-chip cache is updated immediately.

Writes are normally executed on the external bus in the same order in which they are received by
the write buffers, as in a FIFO. Under certain conditions a memory read can take priority, and the
sequence of external bus cycles can be reordered, even though the writes occurred earlier in pro-
gram execution.

A memory read will only be reordered before all writes under the following conditions. If all
writes in the buffers are cache hits and the read is a cache miss, then the read is guaranteed not to
conflict with the pending writes. In this case, the bus cycles can be reordered to allow the read
operation to occur before the write buffers have been retired.

Intel486 processor performance is enhanced because of the write buffers and bus cycle reorder-
ing. The write buffers decouple the internal execution unit from the bus. Program execution can
continue without delay of write latency. In addition, reordering allows program execution to con-
tinue in some cases even if some write buffers are filled.

 A5441-01

Writes

77%

Reads

8%

Prefetches

15%
9-7

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
9.5 EXTERNAL MEMORY CONSIDERATIONS

9.5.1 Introduction

A well-designed external memory system is needed to optimize Intel486 processor system per-
formance. A system can be designed using different combinations of SRAMs and DRAMs to pro-
vide different price/performance levels. SRAMs have faster access times and do not require
precharging between accesses or refresh cycles. DRAMs offer higher densities and are less ex-
pensive, but they require refresh circuitry, and require the addition of wait states due to the longer
access times.

The overall performance of a microprocessor system is directly related to the performance of the
memory subsystem. The great majority of bus cycles are used to access memory for instructions
and data. As processor speeds increase, so does the demand for higher-speed memories because
a high-performance processor that is coupled with a low performance memory offers no better
throughput than a low-performance processor.

The cost of using only fast memories in a system may be prohibitive. Yet as slower devices are
added to lower the overall cost, the performance penalty of added wait states increases. At fre-
quencies of 25 MHz or more, optimum memory performance can only be achieved by using very
fast memory devices.

The cost performance trade-off can be compromised by partitioning functions and using a com-
bination of both fast and slow memories. The most frequently used functions are placed in a faster
memory. A common use of faster memory devices is implementation of an external cache, built
of fast SRAM devices.

Fast SRAM devices have high enough bandwidth to achieve optimum performance. An external
cache (also called L2 cache) can also be used for higher performance. Chapter 6 covers L2 cache
concepts.

Regardless of the use of an external cache, the external memory system consists of a combination
of EPROM and DRAM devices. EPROM devices tend to have a long access time. Being nonvol-
atile, EPROMs are used primarily for initialization routines. After initialization EPROMs are ac-
cessed infrequently. Thus, system performance is not dependent upon EPROM latency. If a high-
level of performance is desired, EPROM contents may be copied to the DRAM memory array.
This technique is called shadowing.

Organization of the DRAM memory array is more critical to system performance. DRAM opti-
mization techniques can be used to reduce the average latency of accesses to DRAM devices.

Several of the memory design concepts described in this chapter depend on the principle of lo-
cality for high performance. The locality principle basically states that when a program referenc-
es a particular location in memory, there is a high probability that nearby locations will then also
be referenced. Caches and paged memory DRAM design techniques offer high performance be-
cause of locality.
9-8

PERFORMANCE CONSIDERATIONS

CPU
les each.
ate bus
rease.

proces-
y reads
ps the
rm a
DY#.
es non-
tem is

essor's
perfor-
rmance
system

s. For
 cycles
ve to

e wait
in direct
struc-

t a high
ng, and
9.5.2 Wait States in Burst and Non-Burst Modes

The Intel486 processor can execute non-burst cycles in as little as two clocks. These cycles are
called 2-2 cycles, as read and write cycles take two cycles each. The first 2 refers to read cycle
time and the second 2 to write cycle time. Accesses to devices that cannot respond by the end of
the second clock require the addition of wait states. If a wait state must be added to write cycles,
then a 2-3 system is created. The external system generates RDY# and the RDY# signal is sam-
pled at the end of the second clock. If it is asserted (low) at the sample time, it indicates that the
external system has placed valid data on the pins for reads, or that the system has accepted the
data for writes. Wait states are inserted by driving RDY# inactive (high) at the end of the second
clock.

The Intel486 processor non-burst cycles are very similar to non-pipelined Intel386™ DX
cycles. In the Intel386 DX processor, the read and write accesses can be as fast as two cyc
Thus, adding a wait state increases the bus cycle time by 50 percent of the zero wait st
cycle time. Overall performance does not degrade in direct proportion to the bus cycle inc

To enhance read performance, the Intel486 processor supports burst cycles. The Intel486
sor bus can burst successive words from memory into the cache every clock. Most memor
can be performed in bursts as indicated by the BLAST# pin. The Intel486 processor kee
BLAST# output inactive in the second clock of the cycle, indicating that it is able to perfo
burst cycle. The external system indicates that it will initiate a burst cycle by asserting BR
If BRDY# is not asserted at the second clock, wait states are inserted. If a system execut
burst reads in two clocks, burst reads in one clock, and writes in three clocks, a 2-1-3 sys
indicated.

Because of the on-chip cache, the addition of external wait states affects the Intel486 proc
performance less than previous processors. A wait state in a Intel386 DX system incurs a
mance degradation of about 20 percent. The Intel486 processor achieves optimum perfo
through a 2-1-2, zero wait state bus cycle. Adding one wait state in an Intel486 processor
causes a performance degradation of only about 6 percent.

The Intel486 processor can execute an external bus cycle in as little as two clock cycle
achieving the optimum system performance, memory accesses must also execute in two
to eliminate wait states. At higher frequencies, however, it is impractical and cost-prohibiti
implement zero wait states for all memory.

At 25 MHz, a wait state adds 40 ns to the available access time. While an operation with on
state increases the bus cycle time by 50 percent, system performance does not degrade
proportion. The amount of degradation incurred is application-dependent and varies with in
tion mix, external cache size, and the number of memory references.

Several DRAM design techniques can reduce wait states and keep system performance a
level using slower memory devices. These techniques, page mode design and interleavi
their impact on performance, are discussed in Chapter 5.
9-9

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
9.5.3 Impact of Wait States on Performance

There are many benchmarks used to evaluate the performance of microprocessor systems. Figure
9-3 demonstrates the performance of Intel486 processor systems using different bus cycle imple-
mentations. The 100 percent performance level is an Intel486 processor with an external memory
that operates a 2-1-2 cycle. The 2-1-2 cycle achieves the highest level of performance while a 5-
1-4 cycle achieves the lowest.

Figure 9-3. Effect of Wait States on Performance

Note that the performance effect of the four on-chip write buffers is apparent. Since more than
75% of external cycles are writes, write latency due to slower external memory should impact
overall performance more than read latency. However, the on-chip write buffers reduce the de-
pendence on write latency.

9.5.4 Bus Utilization and Wait States

Figure 9-4 demonstrates external bus utilization versus systems with different wait state config-
urations. The percentage figures were calculated by dividing the number of bus cycles in which
the processor required the bus by the total number of bus cycles. A smaller percentage is better
because it indicates that the external bus is accessed less frequently. In the benchmarks used in
this demonstration, the percentages varied from 39 percent for a 2-1-2 cycle system to 90 percent
for a 5-1-4 cycle system.

2-1-2 3-1-2 4-1-2 2-1-3 3-1-3 2-2-2 4-1-4 5-1-4

75%

80%

85%

90%

95%

100%

Memory Latency

E
xe

cu
tio

n
R

at
e

 (
no

rm
al

iz
ed

) Intel486™ Processor Performance vs. Memory Latency
9-10

PERFORMANCE CONSIDERATIONS
Figure 9-4. Effect of External Bus Utilization versus Wait States

The bus utilization percentage is not critical for single-processor systems. However, when con-
sidering multi-processing systems, the amount of time that each CPU needs the bus becomes very
important.

9.6 SECOND-LEVEL CACHE PERFORMANCE CONSIDERATIONS

9.6.1 Advantages of a Second-Level Cache

As previously described, approximately 90%-95% of the read cycles generated internally by the
Intel486 processor will be satisfied by the processor’s on-chip cache. However, the remaining
5%-10% that miss the internal cache will result in external read bus cycles being executed. For
best system performance, an external (L2) cache reduces wait states for these read cycles.

This section discusses the use of a L2 cache. Different applications and operating environments
experience varying performance benefits from use of an L2 cache. Hit rates for L2 caches depend
on the application being executed and the randomness with which the application addresses mem-
ory. Systems which make extensive use of multi-tasking should see a very beneficial gain in sys-
tem performance with use of a L2 cache.

2-1-2 3-1-2 4-1-2 2-1-3 3-1-3 2-2-2 4-1-4 5-1-4

50%

60%

75%

80%
90%

100%

Memory Latency

E
xe

cu
tio

n
B

us
 U

til
iz

at
io

n
Intel486™ Processor External Bus Utilization

vs. Memory Latency

40%

30%

20%
10%
9-11

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
9.6.2 An Example of a Second-Level Cache

The 485Turbocache* Module was a high performance cache designed for the Intel486 processor.
This Module provides 64- or 128-Kbytes of cache depth. Multiple 485Turbocache Modules could
be cascaded to give 256 Kbyte or 512-Kbyte cache depths. The 485Turbocache Module is orga-
nized as a 64- or 128-Kbyte, 2-way set-associative memory. Like the processor, the
485Turbocache Module has a line size of four doublewords. On a cache read operation the ad-
dress is presented to the 485Turbocache Module, and the tags are compared. If they match, a hit
condition has occurred and the data is burst to the Intel486 processor. Data can be sent over in
two cycles for the first word, and one cycle for each of the subsequent three doublewords. This
implies the fastest read cycle time for cache hits on the 485Turbocache Module. For cache miss-
es, the data is fetched from the main memory, and then sent to both the Intel486 processor and
the 485Turbocache Module. On write operations, the 485Turbocache Module operates like the
Intel486 processor’s cache by updating write hits and not updating write misses. The main mem-
ory is updated on all writes, because of the write-through policy.

9.6.3 System Performance with a Second-Level Cache

The performance of an example L2 cache is shown in Figure 9-5. The 1.0 level of performance
reflects an Intel486 processor system that operates with 2-1-2 memory accesses. For example, a
system which has 4-2-4 cycles for page hits and 7-2-5 cycles for page misses may result in less
than 0.6 of optimum (2-1-2) performance with no cache. Adding 256 K of external cache and one
level of write buffering to this system increases the performance level to greater than 0.9 optimum
performance.
9-12

PERFORMANCE CONSIDERATIONS
Figure 9-5. L2 Cache Performance Data with One Write Buffer

9.6.4 Impact of Second-Level Cache on Bus Utilization

A second-level cache reduces the number of processor reads to main memory, lowering external
system bus utilization. The benefit is more bandwidth available to other bus master devices like
DMA or LAN controllers. Systems with multiple CPUs are sensitive to the amount of bus band-
width used by each CPU. Note that with a write-through cache the minimum bus bandwidth is
the number of writes performed.

0.0

0.1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.3

0.2

3-1-3 Page Hit 5-1-4 4-2-4 Page Hit

7-1-5 Page Miss 7-2-5 Page Miss

L2 Cache Performance Data with One Write Buffer

Intel486™ CPU without L2 cache

64 K

128 K

256 K

R
el

at
iv

e
P

er
fo

rm
an

ce
 to

 2
-1

-2
 M

em
or

y

Note: The performance figures are approximations.
9-13

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

mple,
 many
which
cussed

 CPU
uential
sses are
ot dis-
 again.
 then

nd new

le than
, the
e next
 mem-
 which

sible
 high-
n

cessed)
sses for
 is in-
ed, the
9.7 DRAM DESIGN TECHNIQUES

An efficient DRAM memory design is needed for a high-performance Intel486 processor system.
For some applications, the principle of locality will not be as applicable. A common technique of
improving performance with DRAMs uses the commonly seen attribute of locality of reference
in programs. This works well with the fast access modes offered by DRAMs that use the same
row address. As a result, system performance is more dependent upon DRAM latency.

Normally, a DRAM access is made by first asserting RAS# (Row Address Strobe) to latch the
presented row address into the DRAM device. As the DRAM devices have multiplexed address
pins, the address must then be externally switched to present the column address. Finally, the
CAS# (Column Address Strobe) is asserted to latch the column address and enable the DRAM
output buffers. Refer to Chapter 5, “Memory Subsystem Design” for specific details of memory
accessing.

The simplest DRAM design offers a fixed number of wait states for each access. As an exa
a system could be designed such that all DRAM accesses occur in six clocks. However,
DRAMs offer special modes of operation based on the policy of updating the row address
have higher performance. Some of these modes and their impact on performance are dis
below.

9.8 EXTENDED DATA OUTPUT RAM (EDO RAM)

In Extended Data Output (EDO) RAM designs, a set of gates latch the output data until the
reads the data. This is important for high-speed designs because EDO RAM handles seq
reads better than Fast Page Mode (FPM) RAM. Extended Data-Out page mode read acce
similar to FPM read accesses, except that when CAS is driven high, the data outputs are n
abled, and the data latch is used to guarantee that the valid data is held until CAS goes low
With EDO RAM, the data latch is controlled during page-mode accesses by CAS. Data is
captured in the latch as a result of CAS going high. A new address can then be applied, a
data accessed, without corrupting the output data from the previous access.

The advantage of an EDO RAM design is that EDO memory has a shorter Page Mode cyc
standard FPM DRAM. Since EDO RAM does not turn the data off by the rising edge of CAS
data is available longer, enabling the system to read the output data while readying for th
cycle, thus saving one clock cycle for every page access. By eliminating data cycles, EDO
ory designs offer an increased peak bandwidth and simplified constraints on access timing,
increase memory performance.

9.8.1 Interleaving

A more complicated DRAM design technique is called interleaving. Interleaving is pos
when more than one memory bank is used. Effective implementation of interleaving brings
er performance to a design. Chapter 5, “Memory Subsystem Design” discusses design issues i
detail.

Interleaving controls each bank separately. As an access is occurring, the other (non-ac
banks are being readied for their next access. Interleaving can help provide fast burst acce
designs. In addition, another use of interleaving is to hide the RAS# precharge time, which
curred on page misses for paged memory designs. As the number of banks is increas
9-14

PERFORMANCE CONSIDERATIONS

rites.
chance for hiding the precharge time is increased. As a result, the performance increases with ad-
ditional banks.

Figure 9-6 demonstrates the performance differences between an interleaved system supporting
one clock bursting and a non-interleaved system in two applications. The performance levels are
measured with respect to a zero wait state (2-1-2 bus). Interleaving can improve system perfor-
mance as much as 15%.

Figure 9-6. Performance in Interleaved and Non-Interleaved Systems

9.8.2 Impact of Performance for Posted Write Cycles

In an Intel486 processor system, the on-board cache reduces the external read cycles so that as
much as 77 percent of the external bus cycles are write cycles. In program execution, writes occur
in strings of two about 60 to 70% of the time. Writes occur in strings of three 40-50% of the time.
The DRAM subsystem must be optimized for write strings; one method is to support posted
writes with write buffers. Posting writes means that RDY# is returned to the CPU before the write
transaction is completed. This avoids the CPU depending on the write latency time. This is dis-
cussed further in Chapter 5, “Memory Subsystem Design.” Figure 9-6 demonstrates the perfor-
mance in two different applications and shows the improvement gained by using posted w

60

70

80

90

100

P
er

fo
rm

a
nc

e

Application A
Interleaved

Application A
Non-Interleaved

Application B
Interleaved

Application B
Non-Interleaved

Intel486™ CPU Performance vs. Interleaving
9-15

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 9-7. Performance in Systems with and without Posted Writes

9.9 FLOATING-POINT PERFORMANCE

9.9.1 Floating-Point Execution Sequences

The floating-point unit on the Intel486 processor contains the logic to execute the floating-point
instruction set that is 100% binary compatible to Intel math coprocessors. The floating-point unit
operates in parallel with the arithmetic and logic unit, and provides arithmetic functions and tran-
scendental functions. The enhanced floating-point unit provides three to four times the perfor-
mance of a non-integrated Intel math coprocessor.

An overlap of floating-point instruction execution and non-floating point instruction execution
increases the overall throughput.

The floating-point unit can take advantage of pipelined instruction execution. Within the Intel486
processor, the floating-point instructions share the microcode ROM with integer instructions.
However, floating-point operations do not utilize the microcode ROM after the operation has
been prepared for execution. For example, only the first three clocks of the floating-point add,
multiply and divide instructions use the microcode ROM. After the third clock, the floating-point
unit completes the operations independently, and the microcode ROM can be utilized by non-
floating-point instructions.

Another feature that enhances performance is an efficient on-chip interface. The Intel386 DX
CPU and the Intel math coprocessor communicate asynchronously, whereas the Intel486 proces-
sor communicates with its on-chip floating-point unit synchronously, allowing higher perfor-
mance.

40

50

60

70

80

P
er

fo
rm

an
ce Application C with

Posted Writes

Application C without
Posted Writes

Application D with
Posted Writes

Application D without
Posted Writes

Intel486™ CPU Performance vs. Optimized Write
9-16

PERFORMANCE CONSIDERATIONS
The Intel486 processor’s on-chip cache dramatically speeds floating-point loads and stores. For
the Intel386 processor with a math coprocessor, instructions such as FLD (floating-point load)
will take 14-20 clock cycles if any external memory addressing is required. Once operands are
on the internal stack, it takes 23 to 31 cycles to execute the floating-point add instruction, depend-
ing on the value of the operands. Finally an external memory store can take up to 11-44 cycles.

Because the floating-point unit of the Intel486 processor is integrated, the entire operation exe-
cutes in fewer cycles. Data from the external memory can be cached. After that it can be accessed
by the floating-point unit, and loaded into the stack in three cycles on a cache hit. The floating-
point add instruction takes between 8 to 20 cycles depending on the value of the operands. Final-
ly, the store instruction takes 7 clocks.

Because the Intel486 processor provides a higher performance not only for floating point loads
and stores, but also for floating-point compute operations, a 3x to 4x performance boost is real-
ized for numerics-intensive routines. A large portion of the performance improvement is attrib-
uted to the fact that synchronous floating-point transfers occur on-chip.

9.9.2 Performance of the Floating-Point Unit

To achieve three to four times the floating-point performance of a non-integrated math coproces-
sor, the Intel486 processor’s floating-point circuitry has been enhanced to reduce the number of
clock counts needed to execute frequently used instructions. Also, the interface to the processor’s
registers and buses is much more efficient since all of the interacting units are on the same chip.

Table 9-3 shows the number of clock counts per instruction on the Intel486 processor.

Table 9-3. Floating-Point Instruction Execution

Instruction
Clock Counts

Intel486™ Processor

FLD-Load 3

FST-Store 3

FADD/FSUB 8-20

FMUL
Floating multiply 16

FDIV
Floating divide 73
9-17

10
Physical Design and
System Debugging

Chapter Contents

10.1 General System Guidelines ...10-1

10.2 Power Dissipation and Distribution10-1

10.3 High-Frequency Design Considerations10-9

10.4 Latch-Up ...10-30

10.5 Clock Considerations ..10-30

10.6 Thermal Characteristics ..10-33

10.7 Derating Curve and its Effects ..10-36

10.8 Building and Debugging the Intel486™
Processor-Based System ...10-37

logic,
y sys-
ng from
essor.

and de-
system

umber
igher
MHz
 to the
ecting

 respon-

s over-

hape
is task
. It is
ection

 main
is that
cause
ls on
f the
ower
ache
CHAPTER 10
PHYSICAL DESIGN AND SYSTEM DEBUGGING

An Intel486™ processor system can easily be implemented using standard interface
DRAMs, EPROMs or Flash, and I/O devices. The clock speeds of Intel486 processor famil
tems require some design guidelines. This chapter outlines the basic design issues, rangi
power and ground issues to achieving the proper thermal environment for the Intel486 proc

10.1 GENERAL SYSTEM GUIDELINES

The proper operation of any system depends on proper physical layout. The layout issues
sign guidelines presented in this chapter are relevant to both higher- and lower-frequency
design implementation.

The improvement of integrated circuit technology has led to an enormous increase in the n
of functions that are being implemented on a single chip. Improved technology allows h
clock frequencies. The Intel486 processor, with bus operating frequencies of 25 MHz/33
and corresponding high edge rates and internal clock multiplication, presents a challenge
conventional interconnection technologies which to date have been adequate for interconn
less sophisticated devices. This challenge especially applies to system designers who are
sible for providing suitable interconnections at the system level.

The interconnections in a circuit behave like transmission lines which degrade the system'
all speed and distort output waveforms.

In laying out a conventional printed circuit board, there is freedom in defining the length, s
and sequence of interconnections. But with devices such as the Intel486 processor, th
should be carried out with careful planning, evaluation, and testing of the wiring patterns
also critical to understand the physical properties of transmission lines because interconn
at high edge rates is analogous to a transmission line.

10.2 POWER DISSIPATION AND DISTRIBUTION

The Intel486 processor uses one-micron or smaller CHMOS IV process technology. The
difference between the previous HMOS microprocessors and the more recent versions
power dissipation is primarily capacitive, and there is almost no D.C. power dissipation. Be
power dissipation is directly proportional to frequency, accommodating high-speed signa
printed circuit boards and through the interconnections is critical. The power dissipation o
Very Large Scale Integration (VLSI) device in operation is expressed by the sum of the p
dissipation of the circuit elements, which include internal logic gates, I/O buffers and c
RAMs. It is also a function of the operating conditions.
10-1

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
The worst-case power dissipation of any VLSI device is estimated in the following manner:

• Estimate typical power dissipation for each circuit element:

PG: Typical power dissipation for internal logic gates (mW)
PIO: Typical power dissipation for I/O buffers (mW)
PCRAM: Typical power dissipation for instruction/data cache RAMs (mW)

• To estimate total typical power dissipation for the device:

(1) PT = PG + PIO + PCRAM (mW),

where PT is the total typical power dissipation (mW)

• To estimate the worst case power dissipation:

(2) Pd = PT x CV (mW),

where Pd is the worst case power dissipation (mW) and CV is a multiplier that is
dependent upon power supply voltage.

Internal logic power dissipation varies with operating frequency and to some extent with wait
states and software. It is directly proportional to supply voltage. Process variations in manufac-
turing also affect the internal logic power dissipation, although to a lesser extent than with the
NMOS processes.

The I/O buffer power dissipation, which accounts for roughly 10 to 25 percent of the overall pow-
er dissipation, varies with the frequency and the supply voltage. It is also affected by the capaci-
tive bus loading. The capacitive bus loading for all output pins is specified in the Intel486
processor family datasheets. The Intel486 processor’s output valid delays increase if these load-
ings are exceeded. The addressing pattern of the software can affect I/O buffer power dissipation
by changing the effective frequency at the address pins. The frequency variations at the data pins
tend to be smaller; a varying data pattern should not cause a significant change in the total power
dissipation.

To calculate the total power dissipated by a system board, the following formulas can be used to
calculate the maximum statistical power:

PT1 + PT2 + ... + (Pmax1 – Ptypical1)2 + (Pmax2 – Ptypical2)2....

where PT1 and Pmax1 are the typical and maximum power dissipation of each of the integrated
circuits on the board.

10.2.1 Power and Ground Planes

Today’s high-speed CMOS logic devices are susceptible to ground noise and the problems this
noise creates in digital system design. This noise is a direct result of the fast switching speed and
high drive capability of these devices, which are requisites in high-performance systems. Logic
designers can use techniques designed to minimize this problem. One technique is to reduce ca-
pacitance loading on signal lines and provide optimum power and ground planes.

Power and ground lines have inherent inductance and capacitance, which affect the total imped-
ance of the system. Higher impedances reduce current and therefore offer reduced power con-
sumption, while low impedance (ground plane) minimizes problems such as noise and
10-2

PHYSICAL DESIGN AND SYSTEM DEBUGGING

address
0 mV.

-layer
electromagnetic interference (EMI). It is very important for a designer to have a controlled im-
pedance design where high speed signals are involved. The formula for impedance is as follows:

Impedance = (L/C)1/2

The total characteristic impedance for the power supply can be reduced by adding more lines. The
effect of adding more lines to reduce impedance is illustrated in Figure 10-1 which shows that
two lines in parallel has half the impedance of a single line. To reduce impedance even further,
more lines should be added. To lower the impedance, the number of lines or planes should be in-
creased.

Figure 10-1. Reduction in Impedance

For multi-layer boards, power and ground planes must be used in the Intel486 processor family
designs. The ground plane allows best performance at high speeds. It serves two purposes. First
it provides a constant characteristic impedance to signal interconnections. Second, it provides a
low impedance path for ground currents on the V supply. The advantage of a power plane is to
reduce EMI. For example, when adjacent signal lines are switching, EMI may occur. The power
plane is used to separate adjacent layers of signal lines, which reduces EMI.

All power and ground pins must be connected to their respective planes. Ideally, the Intel486 pro-
cessor should be placed at the center of the board to take full advantage of these planes. Although
Intel486 processors generally demand less power than conventional devices, the possibility of
power surges is increased due to the processor’s higher operating frequency and its wide
and data buses. Peak-to-peak noise relative to V should be maintained at no more than 20

Although power and ground planes are preferable to power and ground traces, double
boards present a need for routing of the power and ground traces.

A5284-01

C0C0

L0

Z0 =
L0
C0

L0
C0

2 = 1/2

C0

L0

Z0 =
L0
C0

L0

C0
10-3

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
The inductive effect of a printed-circuit board (PCB) trace can be reduced by bypassing. Careful
layout procedures should be observed to minimize inductance. Figure 10-2 shows methods for
reducing the inductive effects of PCB traces. The power and ground trace layout has a low resis-
tance. This is because the loop area between the integrated circuits (ICs) and the decoupling ca-
pacitors is small and the power and ground traces are physically close. This results in lower
characteristic impedance, which in turn reduces the line voltage drop.
10-4

PHYSICAL DESIGN AND SYSTEM DEBUGGING
Figure 10-2. Typical Power and Ground Trace Layout for Double-Layer Boards

Decoupling†

Capacitors

IC Packages

GND

VCC

VCC

VCC

GND

GND

~ ~GND VCC

†Typical values should range between .01 µF and .1 µF
10-5

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Another placement technique is called orthogonal arrangement, which requires more area than
the previous technique but produces similar results. This arrangement is shown in Figure 10-3.
These techniques reduce the electromagnetic interference (EMI), which is discussed in Section
10.3.3.1, “Electromagnetic Interference (EMI).”

Figure 10-3. Decoupling Capacitors

VCC

GND

VCC Trace

GND

GNDGND

GND

GND

VCC
Return or
GND Trace

†Typical values should range between .01 µF and .1 µF
10-6

PHYSICAL DESIGN AND SYSTEM DEBUGGING

itional

equired
High-speed CMOS logic families have much higher edge rates than slower logic technologies.
The switching speeds and drive capability for high performance also increase noise levels. The
switching activity of one device can propagate to other devices through the power supply. For
example, in the TTL NAND gate shown in Figure 10-4, both the Q3 and the Q4 transistors are
on for a short time while the output is switching. This increased loading causes a negative spike
on VCC and a positive spike on VSS.

Figure 10-4. Circuit without Decoupling

In synchronous systems where several gates switch simultaneously, the result is a significant
amount of noise on the power and ground lines. This noise can be removed by decoupling the
power supply. First, it is necessary to match the power supply’s impedance to that of the individ-
ual components. Any power supply presents a low source impedance to other circuits, whether
they are individual components on the same board or other boards in a multi-board system. It is
necessary to match the supply’s impedance to that of the components in order to lessen the poten-
tial for voltage drops that can be caused by IC edge rates, ground- or signal-level shifting, noise
induced currents or voltage reflections.

This mismatch can be minimized using suitable high-frequency capacitors for bulk decoupling
of major circuitry sections, or for decoupling entire printed circuit boards in multi-board systems.
This capacitor is typically placed at the supply’s entry point to the board. It should be an alumi-
num or tantalum-electrolytic type capacitor with a low equivalent series capacitance and low
equivalent series inductance. This capacitor’s value is typically 10 to 47µF. Placing several ca-
pacitors in parallel provides the lowest effective series resistance (ESR) in the system. Add
0.1µF capacitors may be needed if supply noise is still a problem.

Additional decoupling capacitors can be used across the devices between VCC and VSS lines. The
voltage spikes that occur due to the switching of gates are reduced since the extra current r

Q4

R4

Q1

R1

A
Q3Q2

R2 R3

Y

B

VCC

D1 D2

D3
10-7

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

 good
 supply
ributed
m the

cause
cted as
kes to

d ca-
limited
during switching is supplied by the decoupling capacitors. These capacitors should be placed
close to their devices, as the inductance of lengthier connection traces reduces their effectiveness.

Most popular logic families require that a capacitor of 0.01 µF to 0.1µF be placed between every
two to five packages, depending on the exact application. For high-speed CMOS logic, a
rule of thumb is to place one of these bypasses between every two ICs, depending on the
voltage, the operating speed and EMI requirements. The capacitors should be evenly dist
throughout the board to be most effective. In addition, the board should be decoupled fro
external supply line with a 10 to 47µF capacitor. In some cases, it might be helpful to add a 1µF
tantalum capacitor at major supply trace branches, particularly on large PCBs.

Surface mount (chip) capacitors are preferable for decoupling the Intel486 processor be
they exhibit lower inductance and require less total board space. They should be conne
shown in Figure 10-5. These capacitors reduce the inductance, which keeps the voltage spi
a minimum.

Figure 10-5. Decoupling Chip Capacitors

NOTE
Using Tantalum capacitors allows for smaller capacitance values. Aluminum
capacitors in the same applications should be two to five times larger to
account for aluminum’s higher ESR.

Inductance is also reduced by the parallel inductor relationships of multiple pins. Six leade
pacitors are required to match the effectiveness of one chip capacitor, but because only a
number can fit around an Intel486 CPU, the configuration shown in Figure 10-6 is recommended.

Intel486™
Processor

Under the
Device

= 0.1 µF

= 1.0 µF
10-8

PHYSICAL DESIGN AND SYSTEM DEBUGGING
Figure 10-6. Decoupling Leaded Capacitors

10.3 HIGH-FREQUENCY DESIGN CONSIDERATIONS

The overwhelming concern in dealing with high speed technologies is the management of trans-
mission lines. As the edge rates of the signal increase, the physical interconnections between de-
vices behave like transmission lines. Although transmission line theory is straightforward, the
difference between ordinary interconnection and transmission line is fairly complex. Transmis-
sion lines have distributed elements which are hard to define and designers tend to over-compen-
sate for the effects of these elements.

Efficient Intel486 CPU designs require the identification of the transmission lines over backplane
wiring, printed circuit board traces, etc. Once this task is accomplished, the designer’s next con-
cern should be to deal with three major problems which are associated with electromagnetic prop-
agation: impedance control, propagation delay, and coupling (electromagnetic interference).

The following sections discuss the negative effects of a transmission line that occur when oper-
ating at higher frequencies.

10.3.1 Transmission Line Effects

As a general rule, any interconnection is considered a transmission line when the time required
for the signal to travel the length of the interconnection is greater than one-eighth of the signal
rise time. The rise time can be either rise time or fall time, whichever is smaller, and it corre-

Intel486™
Processor

= 0.1 µF

= 1.0 µF
10-9

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
sponds to the linear ramp amplitude from 0% to 100%. Normally the rise times are specified be-
tween 10% to 90% or 20% to 80% amplitude points. The respective values are multiplied by 1.25
or 1.67 to obtain the linear-ramp duration from 0% to 100% amplitude.

For example in a PCB using G-10 and polymide (the two main dielectric systems available for
printed circuit boards) signals travel at approximately 5 to 6 inches per nanosecond (ns).

When Tr/l x v ≥ 8, the signal path is not a transmission line but it is a lumped element,
where:

Tr = rise time 0% - 100%;

V = speed of propagation (5 to 6 inches/sec); and

L = length of interconnection (one-way only).

The calculation is given by:

Tr/L x 6 ≤ 8, so

L ≥ (Tr x 6)/8 ≥ (1.25 x 4 x 6)/8 ≥ 3.75 inches

This calculation is based on the fact that the maximum rise time of the signals for the Intel486
processor is 4 ns. For L ≥ 3.75 inches, interconnections act as transmission lines.

Every conductor that carries an AC signal and acts as a transmission line has a distributed resis-
tance, an inductance and a capacitance which combine to produce the characteristic impedance
(Z). The value of Z depends upon physical attributes such as cross-sectional area, the distance
between the conductors and other ground or signal conductors, and the dielectric constant of the
material between them. Because the characteristic impedance is reactive, its effect increases with
frequency.

10.3.1.1 Transmission Line Types

Although many different types of transmission lines exist, those most commonly used on the
printed circuit boards are micro-strip lines, strip lines, printed circuit traces, side-by-side conduc-
tors and flat conductors.

10.3.1.2 Micro-Strip Lines

The micro-strip trace consists of a signal plane that is separated from a ground plane by a dielec-
tric as shown in Figure 10-7. G-10 fiberglass epoxy, which is common, has an er = 5,
where:

er is the dielectric constant of the insulation;

w is the width of signal line (inches);

t is the thickness of copper (.0015 inches for 1 oz. Cu/.003 inches for 2 oz. Cu);

h is the height of dielectric for controlled impedance (inches).

The characteristic impedance Z0, is a function of dielectric constant and the geometry of the
board. This is theoretically given by the following formula:

Z0 = ln (5.98h/.8w + t) ohms87 er 1.41+()⁄[]
10-10

PHYSICAL DESIGN AND SYSTEM DEBUGGING
where er is the relative dielectric constant of the board material and h, w, and t are the dimensions
of the strip. Knowing the line width, the thickness of Cu and the height of dielectric, the charac-
teristic impedance can be easily calculated.

The propagation delay (tpd) associated with the trace is a function of the dielectric only. This is
calculated as follows:

tpd = 1.017 ns/ft

For G-10 fiberglass epoxy boards (er = 5.0), the propagation delay of micro-strip is calculated to
be 1.77 ns/ft.

Figure 10-7. Micro-Strip Lines

10.3.1.3 Strip Lines

A strip line is a flat conductor centered in a dielectric medium between two voltage planes. The
characteristic impedance is given theoretically by the equation below:

Z0 = [60/] ln (5.98b/π (0.8w + t)) ohms,

where b = distance between the planes for controlled impedance as shown in Figure 10-8

0.475er 0.67+()

wMicro-strip

hDielectric

Ground
Plane

t

er
10-11

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 10-8. Strip Lines

The propagation delay is given by the following formula:

tpd = 1.017 ns/ft

For G-10 fiberglass epoxy boards (er = 5.0), the propagation delay of the strip lines is 2.26 ns/ft.

Typical values of the characteristic impedance and propagation delay of these types of lines are
as follows:

Z0 = 50 ohms

tpd = 2 ns/ft (or 6"/ns)

The three major effects of transmission line phenomenon are impedance mismatch, coupling and
skew. The following section discusses them briefly and provide solutions to minimize their ef-
fects. For more information on high-frequency design, refer to High-Speed Digital Design, A
Handbook of Black Magic by Howard W. Johnson and Martin Graham (Publisher: Prentice-Hall
Inc.).

10.3.2 Impedance Mismatch

As mentioned earlier, the impedance of a transmission line is a function of the geometry of the
line, its distance from the ground plane, and the loads along the line. Any discontinuity in the im-
pedance causes reflections.

Impedance mismatch occurs between the transmission line characteristic impedance and the in-
put or output impedances of the devices that are connected to the line. The result is that the signals
are reflected back and forth on the line. These reflections can attenuate or reinforce the signal de-
pending upon the phase relationships. The results of these reflections include overshoot, under-
shoot, ringing and other undesirable effects.

t

Ground
Planes

Strip Line

w

h
bDielectric

Insulating

er
10-12

PHYSICAL DESIGN AND SYSTEM DEBUGGING
At lower edge rates, the effects of these reflections are not severe. However at higher edge rates,
the rise time of the signal is short with respect to the propagation delay. Thus it can cause prob-
lems as shown in Figure 10-9.

Figure 10-9. Overshoot and Undershoot Effects

Figure 10-10. Loaded Transmission Line

Overshoot is caused by poor matching, which occurs when the voltage level exceeds the maxi-
mum (upper) limit of the output voltage. Undershoot occurs when the level exceeds the minimum
(lower) limit. These conditions can cause excess current on the input gates which results in per-
manent damage to the device.

A5285-02

V
ol

ta
ge

Undershoot

Time

Overshoot

Expected Output Signal
Output Signal Received

ZL

B

Z0 C0.
X

A

ZS

VS

L

10-13

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

tion.
ers
The amount of reflection voltage can be easily calculated. Figure 10-10 shows a system exhibit-
ing reflections.

The magnitude of a reflection is usually represented in terms of a reflection coefficient. This is
illustrated in the following equations:

t = vr/vi = Reflected voltage/Incident voltage

tL = tLoad = (ZL – Z0)/ (ZL + Z0)

tS = tSource = (ZS – Z0)/ (ZS + Z0)

Reflection voltage vr is given by vi, the voltage incident at the point of the reflection, and the re-
flection coefficient.

The model transmission line can now be completed. In Figure 10-10, the voltage seen at point A
is given by the following equation:

VA = VS * Z0/(Z0 + ZS)

This voltage VA enters the transmission line at “A” and appears at “B” delayed by tpd.

VB = VA(t – x/v) H(t – x/v)

where x = distance along the transmission line from point “A” and H(t) is the unit step func
The waveform encounters the load ZL, and this may cause reflection. The reflected wave ent
the transmission line at “B” and appears at point “A” after time delay (tpd):

Vr1 = tL ·VB

This phenomenon continues infinitely, but it is negligible after 3 or 4 reflections. Hence:

Vr2 = tS ·Vr1

Each reflected waveform is treated as a separate source that is independent of the reflection co-
efficient at that point and the incident waveform. Thus the waveform from any point and on the
transmission line and at any given time is as follows:

V(x,t) = Z0/(Z0 + ZS) { [VS(t-x/v)H(t-x/v)]

tL [VS(t-(2L-x)/v)] [H(t-(2L-x)/v)]

tL tS [VS(t-(2L + x)/v)] [H(t-(2L + x)/v)]

t1
2 tS [VS(t-(4L-x)/v)] [H(t-(4L-x)/v)]

t1
2 tS

2 [VS(t - (4L+x)/v)] [H(t(4L+x)/v)]

+.............}

Each reflection is added to the total voltage through the unit step function H(t). The above equa-
tion can be rewritten as follows:
10-14

PHYSICAL DESIGN AND SYSTEM DEBUGGING
V(x,t) = Z0/(Z0+ZS) { [VS(t–tpdx) H(tpd–tx)]

+ tL [VS(t–tpd (2L–x)) H[t–tpd(2L–x))]

+ tL TS [VS (t–tpd(2L+x))H(t–tpd(2L+x))]

+...............}

This can be further explained by an example.

Let: VS = sin(2π 109 t)

ZS = 35 ohms

ZL = 20 ohms

Z0 = 50 ohms

L = 14 in

x = 6 inches

tpd = 2 ns/ft = .17 ns/in

v = [2 ns/ft) = .5 ft/ns = 6 in/ns

tL = (20 – 50)/(20 + 50) = .43

tS = .18

at t = .5 ns

V(x,t) = V(6 in, .5 ns)

= 50/(50+35){[sin (2π109(0.5–0.17ns/in(6in))ns)}

 + (–0.43) {sin (2π109(0.5–0.17(6))ns)H(0.5–0.17(6))}

= .59 {sin (-1.04π) +0} at t = .5 ns

Voltage at A with the transmission line properties accounted for. There is no reflection yet.

V(x,t) = V(6 in, 5 ns)

= [50/50 + 35] {sin[2π 109 (5 – (.17)(6)]

 + (–.43) {sin [2π 109 (5 – .17 (28 – 6))] H [5 – .17 (28 – 6)]}

 + (–.43)(–.18) {sin [2π 10 (5 – 17 (28 + 6))] H [5 –.17(28 + 6)]}

= .59 {sin (–1.04 π) –.43 sin (2.52 π) + .08 sin (–1.56 π)}

The lattice diagram is a convenient visual tool for calculating the total voltage due to reflections
as described in the previous equations. Two vertical lines are drawn to represent points A and B
on the horizontal dimension, x. The vertical dimension represents time.

A waveform travels back and forth between points A and B of the transmission line in time, pro-
ducing the lattice diagram shown in Figure 10-11. The voltage at a given point is the sum of all
the individual reflected voltages up to that time. Notice that at each endpoint, two waves are con-
verging, the incident wave and the reflected wave. Therefore, the voltage at the end points A and
B at the time of the waveform reflection are calculated by summing both the incident and reflect-
ed waves up to and including the point in question.
10-15

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 10-11. Lattice Diagram

As an example, let the simple configuration shown in Figure 10-10 be assumed. Assume the fol-
lowing:

VS = 3.70 H(t)v

Z0 = 75 ohms

ZS = 30 ohms

ZL = 100 ohms

The appropriate reflection coefficients can be calculated as follows:

source = (30–75)/(30+75)= 0.42857

load = (100–75)/(100+75)= 0.14286

X t

5tpd

3tpd

tpd

 t= 0

2tpd

4tpd

6tpd

Vr6

VA

rL vA = Vr1

rL
2 rS vA = Vr3

rL
3 rS

2 vA = Vr5

rS rL vA = Vr2

rS
2 rL

2 vA = Vr4

A B
10-16

PHYSICAL DESIGN AND SYSTEM DEBUGGING
Va = VS · {75/(75+30)} = 2.64286 V

Vr1 = 2.64286 x 0.14286 = 0.37755 V

Vr2 = 0.37755 x –0.42875 = –0.16181 V

Vr3 = –0.16181 x 0.14286 = –0.02312 V

Vr4 = –0.02312 x –0.42857 = 0.00991 V

Vr5 = 0.00991 x 0.14286 = 0.00142 V

Vr6 = 0.00142 x –0.42857 = –0.00061 V

Vr7 = –0.00061 x 0.14286 = –0.00009 V

Figure 10-12 shows the corresponding lattice diagram.

Figure 10-12. Lattice Diagram Example

Impedance discontinuity problems are managed by imposing limits and control during the rout-
ing phase of the design. Design rules must be observed to control trace geometry, including spec-
ification of the trace width and spacing for each layer. This is very important because it ensures
the traces are smooth and constant without sharp turns.

5tpd 2.847 V

3tpd 2.835 V

tpd 3.02 V

V(A,t) t = 0

2.857 V 2tpd

2.845 V 4tpd

2.846 V 6tpd
Vr6 = 0.00061

VA = 2.64

Vr1 = 0.378

Vr3 = -0.0231

Vr5 = 0.00142

Vr2 = -0.162

Vr4 = 0.0099

A B
V(B,t)

7tpd 2.846 V
10-17

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

 that of
ot and
om the
uce a
cteristic

ted cir-
, 30–200

 place
ne im-

 be-

resses
here

. In the
In case
ystem.

also
n line
There are several techniques which can be employed to further minimize the effects caused by an
impedance mismatch during the layout process:

1. Impedance matching.

2. Daisy chaining.

3. Avoidance of 90° corners.

4. Minimization of the number of vias.

10.3.2.1 Impedance Matching

Impedance matching is the process of matching the impedance of the source or load with
the trace and it is accomplished with a technique called termination. The reflection, oversho
undershoot of signals are reduced by terminating the remote end of the transmission line fr
source. The terminating impedance combines with the destination input circuitry to prod
load that closely matches the characteristic impedance of the line (board traces have chara
impedances in the range of 30 ohms to 200 ohms).

The calculation of characteristic impedance was already discussed. Impedance of the prin
cuit board backplane connectors have the impedance in the same range as the traces (i.e.
ohms).

Depending upon the length of the conductors or when using twisted pairs of coaxial cable in
of printed circuit traces, the characteristic impedance of a backplane may change. Backpla
pedance is also affected by the number of boards plugged into the backplane.

Need for Termination

The transmission line should be terminated when the tpd exceeds one-third of tr (risetime). If the
tpd ≥ 1/3 tr (rise time), the line can be left un-terminated, provided the capacitive coupling
tween the traces does not cause electromagnetic interference.

Termination thus eliminates impedance mismatches, increases noise immunity, supp
RFI/EMI and helps to ensure that signals reach their destination with minimum distortion. T
are five methods for terminating traces on the board:

1. Series

2. Parallel

3. Thevenin

4. AC

5. Active

Terminations usually cost money, because they require additional components and power
case of passive terminations, extra drivers are needed to deliver more current to the line.
of active terminations extra power is needed, which increases the power dissipation of the s

Series Termination

One way of controlling ringing on longer lines is with the series termination technique
known as damping. This is accomplished by placing a resistor in series with the transmissio
10-18

PHYSICAL DESIGN AND SYSTEM DEBUGGING
at the driving device end. The receiver has no termination. The value of the impedance looking
into the driving device (Rdriver + Rline = Z0) should approximate the impedance of the line as
closely as possible. In this circuit the ringing dampens out when the reflection coefficient goes to
zero. Figure 10-13 illustrates the series termination.

Figure 10-13. Series Termination

One main advantage of series termination is that only logic power dissipation results so that lower
overall power is required. There is one penalty, however, in that the distributed loading along the
transmission line cannot be used because only half of the voltage waveform is travelling down
the line. There is no limit on the number of loads that can be placed at the end of the series ter-
minated connection. However, the drop in voltage across a series terminating resistor limits load-
ing to maximum 10.

Parallel Terminated Lines

Parallel termination is achieved by placing a resistor of an appropriate value between the input of
the loading device and the ground as shown in Figure 10-14. To determine an appropriate value,
the currents required by all inputs and the leakage currents of the drivers are summed. A resistor
should be selected so that its addition to the circuit does not exceed the output capacity of the
weakest driver. For the type of termination shown in Figure 10-14, only high logic levels need to
be calculated.

Figure 10-14. Parallel Termination

Since the input impedance of the device is high compared to the characteristic line impedance,
the resistor and the line function as a single impedance with a magnitude that is defined by the
value of the resistor.

L = g"

Z0 = 75 Ω

ReceiverDriver RL

A B C

Z0 = 75 Ω

ReceiverDriver
10-19

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
When the resistor matches the line impedance, the reflection coefficient at the load approaches
zero, and no reflection occurs. One useful approach is to place the termination as close to the
loading device as possible.

Parallel terminated lines are used to achieve optimum circuit performance and to drive distributed
loads, which is an important benefit of using parallel terminations.

There are two significant advantages of using the parallel termination. First, it provides an undis-
tributed waveform along the entire line. Second, when a long line is loaded in parallel termina-
tion, it does not affect the rise and fall time or the propagation delay of the driving device. Note
that parallel termination can also be used with wire wrap and backplane wiring where the char-
acteristic impedance is not exactly defined. If the designer approximates the characteristic imped-
ance, the reflection coefficient is very small. This results in minimum overshoot and ringing.
Parallel termination is not recommended for characteristic impedances of less than 100 ohms be-
cause of large DC current requirements.

Thevenin’s Equivalent Termination

This technique is an extension of parallel termination technique. It consists of connecting one re-
sistor from the line to the ground and another from the line to the VCC. Each resistor has a value
of twice the characteristic impedance of the line, so the equivalent resistance matches the line im-
pedance. This scheme is shown in Figure 10-15.

Figure 10-15. Thevenin’s Equivalent Circuit

If there were no logic devices present, the line would be placed halfway between the VCC and the
VSS. When the logic device is driving the line, a portion of the required current is provided by the

VCC

ReceiverDriver
10-20

PHYSICAL DESIGN AND SYSTEM DEBUGGING

 over-

and is
alent

 occur

ip to
fer se-
y addi-
nation
l am-
ng the
ic de-

e high
ists of
e par-
nt of

timum
egins
cal to
resistors, so the drivers can supply less current than needed in parallel termination. The resistor
value can be adjusted to bias the lines towards the VCC or VSS. Ordinarily it is adjusted such that
the two are equal, providing balanced performance. The Thevenin’s circuit provides good
shoot suppression and noise immunity.

Due to power dissipation, this technique is best suited for bipolar and mix MOS devices
not suitable for pure CMOS implementations. The reasons for not having Thevenin’s equiv
for the pure CMOS system design are as follows:

CMOS circuits have very high impedance to both ground and VCC and their switching threshold
is 50% of the supply voltage. Besides dissipating more power, multiple input crossing may
creating output oscillations.

The main problem is high power dissipation through the termination resistors in relationsh
the total power consumption of all of the CMOS devices on the board. Most designers pre
ries terminations for CMOS to CMOS connections, because as this does not introduce an
tional impedance from the signal to the ground. The main advantage of the series termi
technique, apart from its reduced power consumption, is its flexibility. The received signa
plitude can be adjusted to match the switching threshold of the receiver simply by changi
value of the terminating resistor. This is a very useful technique for interconnecting the log
vices with long lines.

AC Termination

AC termination is another technique which can be used for designs which cannot tolerat
power dissipation of parallel termination and delays created by series termination. It cons
a resistor and a capacitor connected in series from the line to the ground. It is similar to th
allel termination technique in functionality except that the capacitor blocks the DC compone
the signal and thus reduces the power dissipation. This technique is shown in Figure 10-16.

Figure 10-16. AC Termination

The main disadvantage of this technique is that it requires two components. Further the op
value of the RC time constant of the termination network is not easy to calculate. It usually b
as a resistive value which is slightly larger than the characteristic line impedance. It is criti

ReceiverDriver

R

C

10-21

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
determine the capacitor value. If the value of RC time constant is small, the RC circuit acts as an
edge generator and creates overshoot and undershoot. Increasing the capacitor value reduces the
overshoot and undershoot, but it increases power consumption. As a rule of thumb, the RC time
constant should be greater than twice the delay line. The power dissipation of the AC termination
is a function of the frequency.

Active Termination

These terminations consist of resistors that are connected between the inputs and outputs of a
buffer driver as shown in Figure 10-17.

Figure 10-17. Active Termination

The main advantage of this technique is that it can tolerate large impedance variations and this
tolerance is valuable when three-state drivers are connected to backplane buses. However, the ter-
minations are costly, and the signals that are produced are not as clean as other terminations. A
common solution is to place active terminations at both ends of the bus. This helps to maintain
the uniform drive levels along the entire length of the bus, and it reduces EMI and ringing.

Table 10-1 shows the comparisons of different termination techniques.

Beyond matching impedances, there are other techniques that can help avoid reflections. These
are discussed in the following sections.

Table 10-1. Comparison of Various Termination Techniques

Termination # of Extra
Components RL Power Consumption Prop Delay

Series 1 Z0 - ZOUT Low Yes

Parallel 1 Z0 High No

Thevenin 2 2Z0 High No

AC† 2 2Z0 Medium No

Active 1 2Z0 Medium No

PCBs in
backplane

Connectors

One line of backplane bus

Active Termination Active Termination
10-22

PHYSICAL DESIGN AND SYSTEM DEBUGGING

ch the
 or use
Impedance Matching Example

We have already discussed the techniques for calculating characteristic impedances (using trans-
mission line theory) and the termination procedures used to avoid impedance mismatching. This
section describes an impedance matching example that utilizes these techniques. Figure 10-18
shows a simple interconnection which acts like a transmission line, as shown by the calculations.

Figure 10-18. Impedance Mismatch Example

In this example the different values are given as follows:

ZS = source impedance = 10 ohms

trs = source rise-time = 3 ns (normalized to 0% to 100%)

ZL = load impedance = 10 Kohms

trl = load rise-time = 3 ns (normalized to 0% to 100%)

L = length of interconnection = 9"

trace = micro-strip

e = dielectric constant = 5.0

H = .008"

W = .01"

T = .0015" Cu (1 oz. Cu) thickness

v = 6"/ns

The interconnection acts as a transmission line if (as was shown in Section 10.3.1, “Transmission
Line Effects”).

l ≥ (tr x v) / 8 ≥ (3 x6)/8 ≥ 3".

The value of l = 9", thus the interconnection acts like a transmission line.

The impedance of the transmission line is calculated as follows:

Z0 = 87 / x ln (5.98H/(.8W +T))

= 34.39 ln 5.05 = 55.6 ohms

Because ZS = 10 ohms, the termination techniques described previously are needed to mat
difference of 45.6 ohms. One method is to use a series terminating resistor of 45.6 ohms
AC termination where r = 55.6 ohms and c = 300 pF. The terminated circuit of Figure 10-18 is
shown in Figure 10-19.

Source Load

ZS = 10 Kohms

L = g"

ZL = 10 Kohms
trt = 3 nsTrace is Micro-striptrs = 3 ns

er 1.41+
10-23

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 10-19. Use of Series Termination to Avoid Impedance Mismatch

10.3.2.2 Daisy Chaining

In laying out printed circuit boards, a stub or T-connection is another source of signal reflection.
These types of connections act as inductive loads in the signal path. In daisy chaining, a single
trace is run from the source, and the loads are distributed along this trace. This is shown in Figure
10-20.

Figure 10-20. “Daisy” Chaining

An alternative to this technique is to run multiple traces from the source to each load. Each trace
has unique reflections. These reflections are then transmitted down other traces when they return
to the source. In such cases a separate termination is required for each branch. To eliminate these
T-connections, high-frequency designs are routed as daisy chains.

Along the chain, each gate provides its own impedance load; thus it is necessary to distribute
these loads evenly along the length of the chain. Hence, the impedance along the chain changes
in a series of steps and it is easier to match. The overall speed of this line is faster and predictable.
Also, all loads should be placed at equal distances (regular intervals).

10.3.2.3 90-Degree Angles

Another major cause of reflections are 90-degree angles in the signal paths, which cause an abrupt
change in the signal direction. It promotes signal reflection. For high-frequency layout of designs,
avoid 90-degree trace angles and use 45- or 135-degree trace angles as shown in Figure 10-21.

ZS = 10 Ω 45.6 Ω Z0 = 55.6 Ω ZL = 10 KΩ

Load Load Load

Source

. . .
10-24

PHYSICAL DESIGN AND SYSTEM DEBUGGING
Figure 10-21. Avoiding 90-Degree Angles

10.3.2.4 Vias (Feed-Through Connections)

Another impedance source that degrades high-frequency circuit performance is vias. Expert lay-
out techniques can eliminate vias to avoid reflection sites on PCBs.

10.3.3 Interference

We have discussed reflections in high-frequency design, their causes and techniques to minimize
them. The following sections discuss additional issues related to high-frequency design, includ-
ing interference. In general, interference occurs when electrical activity in one conductor causes
transient voltage to appear in another conductor. Two main factors increase the interference in
any circuit:

1. Variation of current and voltage in the lines causes frequency interference. This
interference increases with the frequency.

2. Coupling occurs when conductors are in close proximity.

Two types of interference are observed in high-frequency circuits:

1. Electromagnetic Interference (EMI)

2. Electrostatic Interference (ESI)

10.3.3.1 Electromagnetic Interference (EMI)

Electromagnetic Interference (EMI) is a problem at high operating frequencies: when operating
frequency increases, signal wavelength becomes comparable to the lengths of some of the inter-
connections on the printed circuit board. EMI is a phenomenon of a signal in one trace which in-
duces another similar signal in an adjacent trace. There are two types of coupling between parallel
traces which determine the amount of EMI in a circuit. These are called the inductive coupling
and the radiative coupling.

Driver

Receiver

Bad

Driver

Receiver

Good
10-25

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Inductive coupling occurs when a current in one trace produces current in a parallel trace. This
current reduces with the distance from the source. Hence, closely spaced wires or traces incur the
greatest degree of inductive coupling. Both traces in this case act like normal conductors.

Radiative coupling occurs when two parallel traces act as a dipole antenna which radiates signals
that parallel wires can pick up. This results in the corruption of signal that is already present in
the trace. The intensity of this type of coupling is directly proportional to the current present in
the trace. However, it is inversely proportional to the distance between the radiating source and
the receiver.

10.3.3.2 Minimizing Electromagnetic Interference

When laying out a board for an Intel486 processor-based system, several guidelines should be
followed to minimize EMI.

One source of EMI is the presence of a common impedance path. Figure 10-22 shows a typical
layout which does not have the same earth ground or the signal ground.

Figure 10-22. Typical Layout

To reduce EMI, it is necessary to minimize the common impedance paths, which are Z2, Z3 and
Z4 shown primarily as ground impedances. During current switching, the ground line voltage
drops, causing noise emission. By enlarging the ground conductor (which reduces its effective
impedance), this noise can be minimized. This technique also provides a secondary advantage in
that it forms a shield which reduces the emissions of other circuit traces, particularly in multi-
layer circuit boards.

GND

Z2

VCC

GND

Z4

VCC

Parasitic
Capacitance

C

Z3

(Parasitic
Capacitance)

C Chassis Ground
10-26

PHYSICAL DESIGN AND SYSTEM DEBUGGING
The impedances Z2 through Z4 depend upon thickness of copper printed circuit board foil, the
circuit switching speeds and the effective lengths of the traces. The current flowing through these
common impedance paths radiates more noise as its value increases. The amount of voltage gen-
erated by these switching currents and multiplied by the impedance is difficult to predict.

An effective way to reduce EMI is to decouple the power supply by adding bypass capacitors be-
tween VCC and Ground. This technique is similar to the general technique discussed earlier. (The
goal of the previous technique was to maintain correct logic levels.)

The design of effective coupling and bypass schemes centers on maximizing the charge stored in
the circuit bypass loops while minimizing the inductances in these loops. Some other precautions
that can minimize the EMI are as follows:

• Running a ground line between two adjacent lines. The lines should be grounded at both
ends.

• The address and data busses can be separated by a ground line. This technique may be
expensive due to large number of address and data lines.

• Removing closed loop signal paths, which create inductive noise as shown in Figure 10-23.
10-27

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Figure 10-23. Removing Closed Loop Signal Paths

Minimizing EMI involves first examining the circuit’s interconnection with its nearest neighbors
since parallel and adjacent lines can interact and cause EMI. It is necessary to maximize the dis-
tance between adjacent parallel wires.

10.3.3.3 Electrostatic Interference

We have discussed two types of coupling, namely inductive and radiative coupling which are re-
sponsible for creating electromagnetic interference. A third, known as capacitive coupling, oc-
curs when two parallel traces are separated by a dielectric and act as a capacitor. According to the
standard capacitor equation, the electric field between the two capacitor surfaces varies with the
permittivity of the dielectric and with the area of the parallel conductors.

D3D4

D2D1
10-28

PHYSICAL DESIGN AND SYSTEM DEBUGGING

 does
 cou-
 wires

nd the
circuit,

 wire.
use re-

for the
etween

n. This
 of one
 same
e con-

route
cause
rogram

ugging
hysical
design
Electrostatic interference (ESI) is caused by this type of coupling. The charge built on one plate
of the capacitor induces opposite charge on the other. To minimize the ESI, the following steps
should be taken.

• Separate the signal lines so that the effect of capacitive coupling is negated.

• Run a ground line between the two lines to cancel the electrostatic fields.

For high-frequency designs, a rule of thumb is to include ground planes under each signal layer.
Ground planes limit the EMI caused by a capacitive coupling between small sections of adjacent
layers that are at equipotentials. Additionally, when the width and the thickness of signal lines
and their distance from the ground is constant, the effect of capacitive coupling upon impedance
remains uniform within approximately ±5 percent across the board. Using fixed impedance
not reduce capacitive coupling, but it does simplify the modeling of propagation delays and
pling effects. In addition, capacitive coupling can cause interference between layers, so the
should be routed orthogonally on neighboring board layers.

10.3.4 Propagation Delay

The propagation delay of a circuit is a function of the loads on the line, the impedance, a
line segments. The term propagation delay means the signal rise time delay in the entire
including the delay in the transmission line (which is a function of the dielectric constant).

Also, the printed circuit interconnection adds to the propagation delay of every signal on the
These interconnections not only decrease the operating speed of the circuits, but also ca
flection, which produces undershoot and overshoot.

When the propagation delays in the circuit are significant, the design must compensate
signal skew. Signal skew occurs when the wire lengths (and thus the propagation delays) b
each source and each corresponding load are unequal.

Another negative aspect of propagation delay is that it causes a generation of race conditio
condition occurs when two signals must reach the same destination within one clock pulse
another. To avoid race conditions, it is necessary to have the signals travel through the
length traces. But if one route is shorter, the signals arrive at different timings, causing rac
ditions.

One way to minimize this is by decreasing the length of the interconnections. Overall
lengths are shorter in multi-layer printed circuit boards than in double-layer boards be
ground and power traces are not present. In addition to adding ground planes, a routing p
can help to shorten the routing paths.

The guidelines discussed thus far are prominent at the higher operating frequencies. Deb
an Intel486 processor-based system at higher frequencies requires careful layout of the p
design. This section also covers latch-up and thermal characteristics which are system
considerations that stem from the device itself.
10-29

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

ternal
-up.
10.4 LATCH-UP

“Latch-up” is triggered when the voltage limits on the I/O pins are exceeded, causing the in
PN junction to become forward-biased. The following steps ensure the prevention of latch

• Observe the maximum input voltage rating of I/O pins.

• Never apply power to an Intel486 processor pin or to any device connected to it before
applying power to the Intel486 processor.

• Use good termination techniques to prevent overshoot and undershoot.

• Ensure proper layout to minimize reflections and to reduce noise on the signals.

10.5 CLOCK CONSIDERATIONS

For best performance, the clock signal (CLK) for the Intel486 CPU must be free of noise and
within the specifications listed in the individual Intel486 datasheets. The transmission line effects
must also be considered for the clock paths. These paths should be suitably terminated to mini-
mize signal reflections and prevent overshoot and undershoot.

Skew is an effect of unequal transmission line length and matching. This is very important in a
synchronous system. Long traces add propagation delay. A longer trace or a load placed further
down a trace experiences more delay than a short trace or loads very close to the source. This must
be taken into account when doing the worst case timing analysis. In a system where events must
occur synchronous to a clock signal, it is important to make sure the signal is available to all in-
puts a sufficient amount of time prior to the corresponding clock edge. When performing the
component placement this is one of the considerations that must be accounted for.

To maintain proper logic levels, all digital signal outputs have a maximum load, they are capable
of driving. DC loading is the constant current required by an input in either the high or the low
state. It limits the ability of a device driving the bus to maintain proper logic levels. For an
Intel486 processor-based system, a careful analysis must be performed to ensure that in a worst
case situation no loading limits are exceeded. Even if a bus is loaded slightly beyond its worst
case limit, problems may result if a batch of parts whose input loading is close to maximum is
encountered. The proper logic level may not be maintained and unreliable operation may result.
Marginal loading problems are particularly troublesome, since the effect is often erratic operation
and non-repetitive errors that are difficult to track down. For both the high and low logic levels,
the sum of the currents required by all the inputs and the leakage currents of all outputs (drivers)
on the bus must be added together. This sum must be less than the output capability of the weakest
driver. Since the Intel486 processor is a CHMOS device having negligible DC loading, the main
contributors to D.C. loading are the TTL devices.

The AC or capacitive loading is caused by the input capacitance of each device and limits the
speed at which a device driving a bus signal can change the state from high to low or low to high.

For high-frequency designs, the component and system margins are no longer available to the de-
signer. With less than 1 ns of timing margin, even the small amount of trace capacitance can make
a circuit path critical.

A more accurate calculation of capacitive loading can be derived by modeling the device loads
and system traces as a series of Transmission Lines Theory. Transmission Line Theory provides
10-30

PHYSICAL DESIGN AND SYSTEM DEBUGGING
a more accurate picture of system loading in high-frequency systems. In addition, it allows new
factors to be considered, such as inductance and the effect of reflections upon the quality of the
signal waveform.

10.5.1 Requirements

The Intel486 processor facilitates an easy-to-implement 1x clock interface. An external, TTL-
compatible 25/33 MHz clock synchronizes both the internal functional blocks of the micropro-
cessors and the external signals. Most of the Intel486 processor’s board logic circuitry also uses
this clock.

The clock input requirements for Intel486 processor systems are more stringent than those for
many commonly used TTL devices, however. The specifications are -0.3 Volts to 0.8 volts for a
logic low and 2.0 volts to VCC plus 0.3 volts for a logic high.

The minimum high and low times are specified as 11 ns at 25 MHz and 5 ns at 33 MHz. The typ-
ical clock timings are shown in Figure 10-24.

Figure 10-24. Typical Clock Timings

10.5.2 Routing

Achieving the proper clock routing around a 25/33 MHz (or higher) printed circuit board is del-
icate because problems can arise if certain design guidelines are not followed. For example fast
clock edges cause reflections from high impedance terminations. These reflections can cause sig-
nificant signal degradations in the systems operating at 25/33 MHz clock rates. This section cov-
ers some design guidelines for properly laying out the clock lines for efficient Intel486 processor
operation.

Since the rise/fall time of the clock signal is typically in the range of 2-4 ns, the reflections at this
speed could result in undesirable noise and unacceptable signal degradation. The degree of re-
flection depends on the impedance of the trace of the clock connection. These reflections can be

t2

t4

t1

t3
1.5 V

t5

0.8 V
1.5 V
1.5 V

t4

ty

1.5 V

tx

tx = Input Setup Times
ty = Input Hold Times, Output Float, Valid and Hold Times

CLK
10-31

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
optimized by using proper terminations and by keeping the length of the traces as short as possi-
ble. The preferred method is to connect all of the loads via a single trace as shown in Figure 10-25,
thus avoiding the extra stubs associated with each load. The loads should be as close to one an-
other as possible. Multiple clock sources should be used for distributed loads.

Figure 10-25. Clock Routing

A less desirable method is the star connection layout in which the clock traces branch to the load
as closely as possible (Figure 10-26). In this layout, the stubs should be kept as short as possible.
The maximum allowable length of the traces depends upon the frequency and the total fanout, but
the length of all of the traces in the star connection should be equal. Lengths of less than one inch
are recommended.

Figure 10-26. Star Connection

Clock
Source

Load 1 Load 2 Load 3

Thevenin’s
Termination

Clock
Source

Load 1

Load 3 Load 2

Series
Termination
10-32

PHYSICAL DESIGN AND SYSTEM DEBUGGING
10.6 THERMAL CHARACTERISTICS

There are thermal and electrical limitations associated with all the operating electronic devices.
In an Intel486 processor-based system, these limitations must be accommodated to achieve prop-
er system performance due to power dissipation concerns.

Generally, thermal and electrical characteristics are interrelated, and actual constraints depend
upon the application of a particular device.

To help the user, most of the general information on case temperature (TC), maximum current
and voltage ratings, maximum thermal resistance (θ) at various airflows, and package thermal
specifications are given in the individual Intel486 processor datasheets. Despite the wealth of in-
formation presented in the datasheet, it is impossible to provide graphs and reference tables to
cover all applications. The designer must accurately calculate several factors such as junction
temperature (Tj) and total power dissipation (Pd) in particular applications.

This section explains how to perform these calculations, thereby making designing with the
Intel486 processor more straightforward.

The thermal specifications for the Intel486 processor are designed to ensure a tolerable tempera-
ture at the surface of the Intel486 chip. This temperature, called Junction Temperature (Tj), can
be determined from external measurements using the known thermal characteristics of the pack-
age.

The following two equations facilitate the calculation of the Junction Temperature (Tj):

Let Tj = junction temperature

Ta = Ambient temperature

Tc = Case temperature

θjc = Junction to Ambient temperature co-efficient

θja = Junction to Ambient temperature co-efficient

Pd = Power Dissipation (worst case Pd = lCC * VCC)

Then:

Tj = Ta + (θ * Pd)

and

Tj = Tc + (θ * Pd)

Given a heat sink with a thermal resistance of θsa (sink to ambient), and given the thermal resis-
tance from the junction to the case θjc, then the equation for calculating Tj is as follows:

Tj = Pd(θjc + θcs + θsa) + Ta

Case temperature calculations offer many advantages over ambient temperature calculations:

• Case temperature is more easily measured compared to ambient temperature because the
measurement is localized to a single point (the center of the package).
10-33

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
• The worst case junction temperature (Tj) is lower when calculated with case temperature for
two reasons. First, the junction-to-case thermal coefficient (θjc) is lower than the junction-
to-ambient thermal coefficient (θja). Therefore, the calculated junction temperature varies
less with power dissipation (Pd). Second, the junction-to-case coefficient (θjc) is not
affected by the airflow in the system, whereas the junction-to-ambient coefficient (θja) does
vary.

Given the case temperature specification, a designer can either set the ambient temperature or use
fans to control the case temperature. Finned heatsinks or conductive cooling may also be used in
an environment which prohibits the use of fans.

A designer has considerable freedom in designing the heatsink and faces only practical and eco-
nomic limits. Multiple parallel devices may be helpful in reducing θsa because if the heat input
to the heat sink is dispersed rather than concentrated, the effective thermal impedance is lower.

To approximate the case temperature for varying environments, the two equations discussed ear-
lier should be combined by making the junction temperature the same for both, resulting in the
following equation:

Ta = Tc – [(θja θjc) Pd]

Refer to the Intel486 processor datasheets to determine the values of θja (per the system’s airflow
requirement) and the ambient temperature that will yield the desired case temperature. The proper
calculations are important in achieving an efficient and reliable Intel486 processor system.

One packaging option for the Intel486 processors is a 168-pin ceramic PGA. The recommended
heatsinks for the device are offered in the pin fin design that utilizes air cooling. Ta is greatly im-
proved by adding a heat sink. The heat sink is mounted on the PGA package with a frame and
spring. A typical heat sink is shown in Figure 10-27. The dimensions are shown in Figure 10-28.
10-34

PHYSICAL DESIGN AND SYSTEM DEBUGGING
Figure 10-27. Typical Heat Sinks

A5286-01

Spring

Heat Sink

PGA

Frame

Add conductive grease or a thermal pad
10-35

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

e volt-
erature

ng val-
s are
signal
lues,
d only
rized.
Figure 10-28. Heat Sink Dimensions

10.7 DERATING CURVE AND ITS EFFECTS

A derating curve is a graph that plots the output buffer delay against the capacitive load. The
curve is used to analyze a signal delay without necessitating a simulation every time the proces-
sor’s loading changes. This graph assumes the lumped-sum capacitance model to calculate the to-
tal capacitance. The delay in the graph should be added to the specified AC timing value for the
device that is driving the load. The derating curve is device-dependent because each device has
different output buffers.

A derating curve is generated by tying the chip’s output buffers to a range of capacitors. Th
age and resistance values chosen for the output buffers are at the highest specified temp
and are rising (worst case) values. The value of the capacitors centers around the AC timi
ues for the chip. For 25 MHz and above, this is 50 pF. Since the AC timing specification
measured for a signal reaching 1.5 V, the output buffer delay is the time that it takes for a
to rise from 0 V to 1.5 V. A curve is then drawn from the range of time and capacitance va
with 50 pF representing the average, with nominal or zero derating. These curves are vali
for a 25 pF–150 pF load range. Beyond this range the output buffers are not well characte
The derating curves for the Intel486 processor are shown in Figure 10-29. These curves use the

Airflow-Ft/Min (M/Sec)

0
(0)

200
(1)

400
(2)

600
(3)

800
(4)

1000
(5)

θCA with Heat Sink (°C/W) 12 7.5 5.5 4.5 3.5 3.0

θCA without Heat Sink (°C/W) 15.5 13.0 11.0 9.5 8.5 8.0

Heat Sink Dimensions

1.58"

.120".050"

.300"
10-36

PHYSICAL DESIGN AND SYSTEM DEBUGGING
lumped capacitance model for circuit capacitance measurements and must be modified slightly
when doing worst-case calculations that involve transmission line effects. The amount of modi-
fications required can be calculated by performing SPICE simulation or by using other simulation
packages.

Figure 10-29. Derating Curves for the Intel486™ Processor

10.8 BUILDING AND DEBUGGING THE Intel486™ PROCESSOR-BASED
SYSTEM

Although an Intel486 processor-based system designer should plan the entire system, it is neces-
sary to begin building different elements of the core and begin testing them before building the
final system. If a printed circuit board layout has to be done, the whole system may be simulated
before generating the net list for the layout vendor. It is advisable to work with a preliminary lay-
out to avoid the problems associated with wire wrap boards that operate at high frequencies. A
typical Intel486 processor-based system is shown in Figure 10-30.

NOM+6

NOM+4

NOM+2

NOM

NOM-2

25 50 75 100 125 150

T
yp

ic
al

 O
ut

pu
t D

el
ay

 (
ns

)

CL(pF)
10-37

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

em
ng

igh

state.
Figure 10-30. Typical Intel486™ Processor-Based System

An optional second-level cache can also be added to the system. The following steps are usually
carried out in designing with the Intel486 processor.

1. Clock circuitry should consist of an oscillator and fast buffer. The CLK signal should be
clean, without any overshoot or undershoot.

2. The reset circuitry should be designed as shown in Chapter 4, “Bus Operation.” This
circuitry is used to generate the RESET # signal for the Intel486 processor. The syst
should be checked during reset for all of the timings. The clock continues to run duri
these tests.

3. The INT and HOLD pins should be held low (deasserted). The READY# pin is held h
to add additional delays (wait states) to the first cycle. At this instance, the Intel486
processor is reset, and the signals emitted from it are checked for the validity of the

Intel486™
Processor

Processor Bus

System Bus

External Bus

Memory Bus Controller
 LAN

Coprocessor

Bus
Controller

External
Cache

(Optional)
10-38

PHYSICAL DESIGN AND SYSTEM DEBUGGING

0,

uggers.
ted. In

 points
ftware
3

e.

ag bit
 auto-
pical-
ansfer
 IRET
am.

S:EIP
 which

ns, in-
n the
The Intel486 processor starts executing instructions at location FFFFFFF0H after reset.
The address latch is connected and the address is verified.

4. The PAL implementing the address decoder should be connected to the Intel486
processor.

10.8.1 Debugging Features of the Intel486™ Processor

The Intel486 processor provides several features which simplify the debugging process for the
system hardware designer. The device offers three on-chip debugging aids:

• The code execution breakpoint opcode.

• The single-step capability provided by the TF bit in the flag register.

• The code and data breakpoint capability as provided by the debug registers (DR3–DR
DR6 and DR7).

10.8.2 Breakpoint Instruction

The Intel486 processor provides a breakpoint instruction that can be used by software deb
This instruction is a single byte opcode and generates an exception 3 trap when it is execu
a typical environment a debugger program can place the breakpoint instruction at various
in the program. The single-byte breakpoint opcode is an alias for the two-byte general so
interrupt instruction, INTn where n=3. The only difference between INT 3 and INT n is that INT
is never IOPL-sensitive but INTn is IOPL-sensitive in Protected Mode and Virtual 8086 Mod

10.8.3 Single-Step Trap

The Intel486 processor supports x86-compatible single-step feature. If the single stepfl
(bit 8, TF) is set to 1 in the EFLAG register, a single step exception occurs. This exception is
vectored to exception 1 and occurs immediately after completion of the next instruction. Ty
ly a debugger sets the TF bit of the EFLAG register on the debugger's stack followed by tr
of the control to the user program. The debugger also loads the flag image (EFLAG) via the
instruction. The single-step trap occurs after execution of one instruction of the user progr

Since the exception 1 occurs right after the execution of the instruction as a trap, the C
pushed onto the debugger's stack points to the next unexecuted instruction of the program
is being debugged, merely by ending with an IRET instruction.

After MOV to SS and POP to SS instructions, the Intel486 processor masks some exceptio
cluding single-step trap exceptions. Refer to the “Exceptions and Interrupts” chapter i
Intel486™ Processor Family Programmer’s Reference Manual for an explanation of this pro-
cess.

10.8.4 Debug Registers

The Intel486 processor has an advanced debugging feature. It has six debug registers that allow
data access breakpoints as well code access breakpoints. Since the breakpoints are indicated by
10-39

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

ith the
ear ad-

anslated
 break-
on-chip registers, an instruction execution breakpoint can be placed in ROM code or in code
shared by several tasks. Neither of these is supported by the INT3 breakpoint opcode.

The debug register provides the ability to specify four distinct breakpoint addresses, control op-
tions, and read breakpoint status. When the CPU goes through reset, the breakpoints are all in the
disabled state. Hence the breakpoints cannot occur unless the debug resisters are programmed.

It is possible to specify up to four breakpoint addresses by writing into debug registers. The debug
registers are shown in Figure 10-31. The addresses specified are 32-bit linear addresses. The pro-
cessor hardware continuously compares the linear breakpoint addresses in DR3–DR0 w
linear addresses generated by executing software. When the paging is disabled then the lin
dress is equal to the physical address. If the paging is enabled then the linear address is tr
to a 32-bit address by the on-chip paging unit. Whether paging is enabled or disabled, the
point register holds linear addresses.
10-40

PHYSICAL DESIGN AND SYSTEM DEBUGGING
Figure 10-31. Debug Registers

31 16 15 0

Breakpoint 0 Linear Address DR0

Breakpoint 1 Linear Address DR1

Breakpoint 2 Linear Address DR2

Breakpoint 3 Linear Address DR3

Intel Reserved. Do not define. DR4

Intel Reserved. Do not define. DR5

0 B
T

B
S

B
D 0 0 0 0 0 0 0 0 0

B
3

B
2

B
1

B
0 DR6

LEN
3

R
3

W
3

LEN
2

R
2

W
2

LEN
1

R
1

W
1 LEN0

R
0

W
0 0 0

G
D 0 0 0

G
E

L
E

G
3

L
3

G
2

L
2

G
1

L
1

G
0

L
0 DR7

31 16 15 0

Note: 0 indicates Intel reserved: Do not define.

LENi
Encoding

Breakpoint
Field Width

Usage of Least Significant Bits in
Breakpoint Address
Register i, (i = 0–3)

00 1 Byte All 32 bits used to specify a single-
byte breakpoint field.

01 2 Byte A31–A1 used to specify a two-byte
word-aligned breakpoint field. A0 in
breakpoint address register is not
used.

10 Undefined
–Do not
use this

encoding.

11 4 Byte A31–A2 used to specify a four-byte
dword-aligned breakpoint field. A0
and A1 in breakpoint address
register are not used.

DR2 = 00000005H; LEN2 = 00B

DR2 = 00000005H; LEN2 = 01B

DR2 = 00000005H; LEN2 = 11B

31 0

00000008H

BKPT FLD2 00000004H

00000000H

31 0

00000008H

00000004H

00000000H

31 0

00000008H

00000004H

00000000H

BKPT FLD2

BKPT FLD2
10-41

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

icro-
s of the
 that
10.8.5 Debug Control Register (DR7)

A debug control register, DR7 shown in Figure 10-31 allows several debug control functions such
as enabling the breakpoints and setting up several control options for the breakpoints. There are
several fields within the debug control register. These are discussed below:

LENi (breakpoint length specification bits). A 2-bit LEN field exists for each of the four break-
points. It specifies the length of the associated breakpoint field. It is possible to have three differ-
ent choices: 1 byte, 2 bytes and 4 bytes. LENi field encoding is shown in Table 10-2.

The LENi field controls the size of the breakpoint field i by controlling whether all the low order
linear address bits in the breakpoint address register are used to detect the breakpoint event.
Therefore, all breakpoint fields are aligned: 2-byte breakpoint fields begin on word boundaries,
and 4-byte breakpoint fields begin on dword boundaries.

A 2-bit RW field exists for each of the four breakpoints. The 2-bit field specifies the type of usage
which must occur in order to activate the associated breakpoint.

RW encoding 00 is used to setup an instruction execution breakpoint. RW encodings 01 or 11 are
used to setup write only or read-only or read/write data breakpoints. The data breakpoint can be
setup by writing the linear address into DRi. For data breakpoints, RWi can:

= 01 M write only

= 11 M read/write

LENi = 00, 01, 11.

An instruction execution breakpoint can be setup by writing the address of the beginning of the
instruction into DRi. RWi must equal 00 and LENi must equal 00 for instruction execution break-
points. If the instruction beginning at the breakpoint address is about to be executed, the
instruction execution breakpoint has occurred, and the breakpoint is enabled, an exception 1 fault
occurs before the instruction is executed.

GD (Global Debug Register access detect). The debug registers can only be accessed in real
mode or at privilege level 0 in Protected Mode. The GD bit when set provides extra protection
against any debug register access even in Real Mode or at privilege level 0 in Protected Mode.
This additional protection feature is provided to guarantee that a software debugger can have full
control over the debug register resources when required.

The breakpoint mechanism of the Intel486 processors differs from that of the Intel386™ m
processor. The Intel486 processor always does exact data breakpoint matching regardles
GE/LE bit settings. Any data breakpoint trap is reported after completion of the instruction

Table 10-2. LENi Fields

RW Encoding Usage Causing Breakpoint

00 Instruction execution only

01 Data writes only

10 Undefined—Do not use this encoding

11 Data reads and writes only
10-42

PHYSICAL DESIGN AND SYSTEM DEBUGGING

. Most
soft-
caused the operand transfer. Reporting is provided by forcing the Intel486 processor execution
unit to wait for the completion of data operand transfers before beginning execution of the next
instruction.

When the Intel486 processor switches to a new task, the LE bit is cleared. Thus, LE enables fast
switching from one task to another task. To avoid having exact data breakpoint match enabled in
the new task, the LE bit is cleared by the processor during the task switch. Note that exact data
breakpoint match must be re-enabled under software control.

The GE bit supports exact data breakpoint match that is to remain enabled during all tasks exe-
cuting in the system. The Intel486 processor GE bit is unaffected during a task switch.

NOTE
Note that instruction execution breakpoints are always reported.

G, L (breakpoint enable, global and local). Associated breakpoints are enabled when either G or
L are set. When this happens the Intel486 processor detects the ith breakpoint condition, then the
exception 1 handler is invoked.

Debug status register. A debug status register, DR6 allows the exception 1 handler to easily de-
termine why it was invoked. Exception 1 handler can be invoked as a result of one of the several
events as documented in the Intel486 processor datasheets. This register contains single-bit flags
for each of the possible events invoking exception 1. Some of these events are faults while others
are traps.

10.8.6 Debugging Overview

Once the Intel486 processor-based system is designed and the printed circuit board is fabricated
and stuffed, the next step is to debug the hardware in increments.

The design of a microprocessor-based system can be subdivided into several phases. The design
starts with preparation of the system specification followed by conceptual representation in the
form of block diagram. The next phase is implementing the design, which consists of the hard-
ware design and the software design occurring in parallel. Hardware debugging usually begins
by testing the system with short test programs. Initially the power and ground lines are tested for
opens and shorts followed by the testing of the reset function. After the hardware passes these
programs, the hardware/software integration phase begins. The test programs are then replaced
by the application software and complete system is debugged.

When there are both hardware and software problems, it can be difficult to isolate each. Several
types of testing systems are available to assist in this process. The most common type is the in-
circuit emulator, which plugs into the microprocessor socket and allows the operation of the sys-
tem to be controlled and monitored. In-circuit emulators usually include memory that can be used
in place of the prototype memory. Another useful test tool is the logic analyzer, which captures
the “trace” of the bus activity and displays the sequence of bus cycles that were executed
in-circuit emulators also provide this function, which is invaluable for both hardware and
ware debugging. Test programs can be run from an ICE or a monitor.
10-43

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

rma-
The Intel486 processors contain a JTAG (Joint Test Action Group) test-logic unit, which you can
use to test the processor and its connections to the system. The JTAG specifications with which
this unit complies are documented in Standard 1149.1-1990, IEEE Standard Test Access Port
and Boundary Scan Architecture and its supplement, Standard 11.49.1a-1993. You can also refer
to the “Boundary Scan” section of the individual Intel486 processor datasheets for more info
tion on using the JTAG unit.
10-44

INDEX
#, defined, 1-3
16-bit bus cycles, 4-29
16-bit I/O interface, 7-10 to 7-12
16-bit memories, 4-3
2-2 cycles, 7-22
32-bit I/O interface, 7-14 to 7-16
32-bit memories, 4-3
386

see Intel386 processor
485Turbocache module, 9-12
486

see Intel486 processor
82357 integrated system peripheral (ISP), 8-7
82420EX PCIset

block diagram, 8-20
DMA controller, 8-33
host interface, 8-24
IB component, 8-22
ISA interface, 8-30

82557 LAN controller
block diagram, 7-52
bus operation, 7-52
control, 7-53
features, 7-51
initializing, 7-52
overview, 7-50
PCI bus interface, 7-52

82596CA coprocessor, 7-38 to 7-41
interfacing to Intel486 processor, 7-44 to 7-45
memory structure, 7-46
performance issues, 7-49
signals, 7-42

82C59A programmable interrupt
controller, 7-35 to 7-36

8-bit bus cycles, 4-29
8-bit I/O interface, 7-7 to 7-9
8-bit memories, 4-3

A
A.C. termination, 10-21
Active termination, 10-22
Address bus

interface to I/O devices, 7-6
Address decoding, 7-23

for I/O devices, 7-5
Address signals, 4-1

ALU, 3-14
Applications of the Intel486 processor, 2-11
Assert, defined, 1-4

B
Block diagrams

82420EX PCIset, 8-20
82557 LAN Controller, 7-52
lntel486 SX processor, 3-3
lntelDX2 and IntelDX4 processors, 3-2
peripheral subsystem example, 7-17
ULP lntel486 SX and ULP Intel486 GX

processors, 3-4
Block size, in cache, 6-10
Breakpoint instruction, 10-39
Broadcasting cache data, 6-14
Burst cycles, 4-50 to 4-52

access lengths of CPU functions, 5-2
memory logic and, 5-1
typical cycle, 5-3
writes, 5-2

Burst mode, 4-26 to 4-29
wait states in, 9-9

Bus arbitration
in a multi-processor system, 4-14 to 4-15
in a single-processor system, 4-12 to 4-13

Bus contention, 7-26
Bus control logic, 7-20 to 7-23
Bus control signals, 7-21 to 7-22
Bus cycles

access length, 5-2
mix of, with cache, 9-6

Bus hold, 4-38
Bus interface unit, 3-7 to 3-8
Bus masters, multiple, 4-14
Bus throttle timers, 82596CA coprocessor, 7-49
Bus, see Processor bus or System bus
Byte enables, 4-1
Byte swapping, 4-8
Index-1

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
C
Cache

see also Level-1 cache or Second-level cache
4-way set associative, 6-9
block size, 6-10
broadcasting, 6-14
configuration options, 3-13
consistency, 4-52, 6-13, 7-28
defined, 6-1
direct mapped, 6-6
effect on bus cycles, 9-6
external

see Second-level cache
fully associative, 6-5
hardware transparency, 6-14
hit rates (L1), 6-3, 9-6
invalidating lines, 3-12
memory hierarchy and, 6-19
memory mapped I/O devices, 7-27
multi-processor systems, 6-16
non-cacheable regions, 3-12
on-chip, 2-6, 3-4, 7-28, 9-4
organization on-chip, 3-11, 9-4
performance issues, 6-2 to 6-5, 9-4
replacement, 3-12, 6-11
sector buffering, 6-9
set associative, 6-8
single vs. multiple processor systems, 6-16
structure, 3-10
two-way set associative, 6-8
updating, 3-12
updating main memory, 6-11
write-back, 3-12, 6-13
write-through, 3-12, 6-12

Cache enable (KEN#) signal, 5-2 to 5-4
Cache transparency, 6-16
Cache unit, 3-10
Cacheable cycles, 4-21, 5-2 to 5-4
Chapter summaries, 1-1
Chip capacitors, decoupling, 10-8
CHMOS IV process, 10-1
Clear, defined, 1-4
Clock (CLK) signal

skew, 10-30

Clock considerations, 10-30 to 10-32
Clock routing, 10-32
Clock timings, 10-31
Control registers

debug, 10-42
Control unit, 3-14
Controllers, embedded, 2-12
Cross-talk, 10-25
Customer service, 1-5

D
Daisy chaining, 10-24
Data access rate, 5-1
Data buffers, 7-32
Data bus

dynamic bus sizing, 2-1, 4-3
Data transceivers, 7-26
Data transfer, 3-8, 4-1
Datapath unit, 3-14
Deassert, defined, 1-4
Debug control register, 10-42
Debug registers, 10-39 to 10-41
Debugging, 10-37, 10-43

features of the Intel486 processor, 10-39
Decoupling capacitors, 10-6
Derating curve, 10-36
Direct mapped cache, 6-6
DMA

cache and, 6-16
in multiple processor system, 4-14 to 4-15
in single processor system, 4-12 to 4-13

DMA controller
82420EX PCIset, 8-33
in EISA designs, 8-16

Documents, related, 1-6
DOS address, defined, 1-4
DRAM

clock latencies, 5-6
design, 9-14
interleaving, 9-14

Dynamic data bus sizing, 2-1, 4-3, 7-3
Index-2

INDEX
E
EBC host bus interface, 8-9 to 8-11
EDO DRAM, 9-14
EISA

bus buffers (EBB), 8-8
bus controller, 8-6
bus interface to the EBC, 8-11 to 8-13
overview, 8-2

Electromagnetic interference, 10-25
Electrostatic interference, 10-28
Embedded controllers, 2-12
Embedded personal computers, 2-12
Enhanced bus mode features, 2-3, 4-50
Expanded address, defined, 1-4
External cache

see Second-level cache

F
FaxBack service, 1-5
Features

debugging, 10-39
enhanced bus mode, 2-3
Intel486 processor, 2-2 to 2-3
SL technology, 2-3

Floating-point cycles, 4-33
Floating-point error handling, 4-46
Floating-point unit

overview, 2-6, 3-15
performance considerations, 9-16

Flush cycles, 4-69
Fully associative cache, 6-5
Functional units, 3-1

bus interface, 3-7 to 3-8
cache, 3-10
control, 3-14
datapath, 3-14
floating-point, 3-15
instruction decode, 3-14
instruction prefetch, 3-13
integer (datapath), 3-14
memory management, 3-5
paging, 3-16
segmentation, 3-15

G
General-purpose registers, 3-14
Ground planes, 10-2 to 10-3

double layer boards, 10-3 to 10-5

H
HALT cycle, 4-41
Hardware transparency, with cache, 6-14
Heatsink, 10-34 to 10-36

I
I/O cycles, 7-27
I/O devices

address decoding, 7-5
non-cacheable, 7-27

I/O interface
16-bit, 7-10 to 7-12
32-bit, 7-14 to 7-16
8-bit, 7-7 to 7-9

I/O mapping vs. memory-mapping, 7-2
I/O memory space, 4-1
I/O transfers, 3-9
Impedance, 10-3

matching, 10-18, 10-23
mismatch, 10-12

Instruction decode unit, 3-14
Instruction execution performance, 9-2
Instruction pipelining, 3-6
Instruction prefetch unit, 3-13
Instructions, notational conventions, 1-3
Integer (datapath) unit, 3-14
Intel386 processor

bus cycle mix, 5-5
differences with Intel486

processor, 7-33 to 7-34
Index-3

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
Intel486 processor
debugging, 10-37
differences with Intel386

processor, 7-33 to 7-34
execution times, 9-2
features, 2-2 to 2-3
functional units, 3-1
instruction mix, 9-3
interfacing to 8042 devices, 7-34
overview of embedded processors, 2-1
product options, 2-4
thermal characteristics, 10-33

Interference, 10-25
electromagnetic, 10-25
electrostatic, 10-28

Interleaving, 9-14
Internal cache

see Level-1 cache or Cache, 6-19
Interrupt acknowledge cycles, 4-40
Interrupt controllers

82C59A, 7-35 to 7-36
cascaded, 7-37 to 7-38
single, 7-35

Interrupts
handling more than 64, 7-38

Invalidate cycles, 4-33 to 4-37
ISA bus, interface signals with EBC, 8-12
ISP

functions of, 8-16
interface to EISA system bus, 8-17
interface to host, 8-17
interface wit EBC, 8-13

K
KEN#, 5-2

L
L2 cache

see Second-level cache
LAN controller

82596CA, 7-38
Latches, 7-32
Latch-up, 10-30
Lattice diagram, 10-16
Leaded capacitors, decoupling, 10-9

Level-1 cache
see also Cache
hit rates, 6-3

Line size, in cache, 6-10
Literature, 1-6
Literature, ordering, 1-6, 1-7
Locked cycles, 3-9, 4-31
Loosely coupled multiprocessor system, 2-9
LRU cache replacement, 3-12

M
Machine status register, 3-12, 4-47
Manual contents, 1-1
Measurements, defined, 1-3
Media access through 82596CA

coprocessor, 7-46
Memory

16-bit, 4-3
8-bit, 4-3
external, 9-8
I/O space and, 4-2
management, 2-5
mapping techniques, 7-1
non-cacheable, 6-15
performance, 9-1, 9-8
updating from cache, 6-11

Memory management unit, 3-5
Micro strip lines, 10-10
Multiple bus masters, 4-14
Multiprocessor system, 2-9

N
Non-cacheable memory, 6-15
Notational conventions, 1-3

O
On-chip cache, 2-6

see also Cache
performance, 9-5

On-chip floating-point unit, 3-15
Operating modes, 2-5
Overlapping write cycles, 5-5
Overshoot, 10-13
Index-4

INDEX
P
Page tables, 3-16
Paging unit, 3-5, 3-16
Paging, overview, 2-5
Parallel termination, 10-19
PC/AT address, defined, 1-4
PCI

example of system design, 8-19 to 8-34
interface to the 82557, 7-52
overview of architecture, 8-19

Peripheral subsystem, components of, 7-17
Personal computers, embedded, 2-12
Posted write

circuit timings, 7-32
cycles, 9-15

Power dissipation, 10-1
Power management features, 2-1
Processor bus

basic 2-2 cycle, 4-16
basic 3-3 cycle, 4-17
burst cycles, 4-17
cacheable cycles, 4-21
features, 5-1
restart cycles, 4-43
snooping, 6-14

Product family, 2-4
Propagation delay, 10-29
Protected mode, 2-5, 3-6
Pseudo locked cycles, 4-70 to 4-73
Pseudo-LRU, 3-12

R
Read cycles

timing, 7-29 to 7-30
Real mode, 2-5, 3-6
Reflection voltage, 10-14
Registers

CR0, 4-22, 4-46
CR3, 3-17
debug, 10-39 to 10-41
general purpose, 3-14
machine status, 3-12, 4-47
notational conventions, 1-4

Related documents, 1-6
Restart cycles, 4-43

S
Second-level cache, 2-10, 5-6

memory hierarchy, 6-19
overview, 6-16 to 6-18
see also Cache

Sector buffering cache, 6-9
Segmentation unit, 3-5, 3-15
Segmentation, overview, 2-5
Series termination, 10-18
Set associative cache, 6-8
Set, defined, 1-4
Shutdown indication cycle, 4-41
Signals

82596CA coprocessor, 7-42
address, 3-8, 4-1
bus control, 7-21 to 7-22
byte enables, 4-1
Cache Enable (KEN#), 5-2
KEN#, 5-2
notational conventions, 1-4
SMI#, 2-3
UP#, 2-7
wait state generation, 7-22

Single processor system, 2-8 to 2-9
SL technology, 2-1, 2-3
Snoop cycles, 4-52 to 4-73, 6-14
Star connection, 10-32
Stop grant bus cycle, 4-42
Strip lines, 10-11
Sub-block cache, 6-9
System architecture overview, 2-7 to 2-8
System Management Mode, 3-6

T
Technical support, 1-5
Terminology, 1-4
Thermal characteristics, 10-33
Thevenins equivalent circuit, 10-20
Translation lookaside buffer (TLB), 3-16 to 3-17
Transmission lines

loaded, 10-13
micro strip, 10-10
strip, 10-11
Index-5

EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL
U
Undershoot, 10-13
Units of measure, defined, 1-3
Upgrade Power Down Mode, 2-7

V
Vias, 10-25
Virtual 8086 mode, 2-5

W
Wait states

inserting, 4-17
logic, 7-22
performance considerations, 9-9
signals, 7-22

World Wide Web, 1-5
Write buffers, 3-8

in I/O cycles, 7-27
on-chip, 9-7

Write bursting, 2-3
Write cycles

overlapping, 5-5
timings, 7-31 to 7-33

Write posting, 5-5
Write-back cache, 2-3, 6-13
Write-through cache, 3-12, 6-12
Index-6

	EMBEDDED INTEL486™ PROCESSOR HARDWARE REFERENCE MANUAL
	Copyright Page
	Table of Contents

	CHAPTER 1 GUIDE TO THIS MANUAL
	1.1 Manual Contents
	1.2 Text Conventions
	1.3 Special Terminology
	1.4 Electronic Support Systems
	1.4.1 FaxBack Service
	1.4.2 World Wide Web

	1.5 Technical Support
	1.6 Product Literature
	1.6.1 Related Documents

	CHAPTER 2 Introduction
	2.1 Processor Features
	2.2 Intel486™�Processor Product Family
	2.2.1 Operating Modes and Compatibility
	2.2.2 Memory Management
	2.2.3 On-chip Cache
	2.2.4 Floating-Point Unit
	2.2.5 Upgrade Power Down Mode

	2.3 System Components
	2.4 System Architecture
	2.4.1 Single Processor System
	2.4.2 Loosely Coupled Multi-Processor System
	2.4.3 External Cache

	2.5 Systems Applications
	2.5.1 Embedded Personal Computers
	2.5.2 Embedded Controllers

	CHAPTER 3 Internal Architecture
	3.1 Instruction Pipelining
	3.2 Bus Interface Unit
	3.2.1 Data Transfers
	3.2.2 Write Buffers
	3.2.3 Locked Cycles
	3.2.4 I/O Transfers

	3.3 Cache Unit
	3.3.1 Cache Structure
	3.3.2 Cache Updating
	3.3.3 Cache Replacement
	3.3.4 Cache Configuration

	3.4 Instruction Prefetch unit
	3.5 Instruction Decode Unit
	3.6 Control Unit
	3.7 Integer (Datapath) Unit
	3.8 Floating-Point Unit
	3.8.1 IntelDX2™ AND IntelDX4™ PROCESSOR ON-CHIP FL...

	3.9 Segmentation Unit
	3.10 Paging Unit

	CHAPTER 4 Bus Operation
	4.1 Data Transfer Mechanism
	4.1.1 MEMORY AND I/O SPACES
	4.1.1.1 Memory and I/O Space Organization

	4.1.2 DYNAMIC DATA BUS SIZING
	4.1.3 INTERFACING WITH 8-, 16-, AND 32-BIT MEMORIE...
	4.1.4 DYNAMIC BUS SIZING DURING CACHE LINE FILLS
	4.1.5 OPERAND ALIGNMENT

	4.2 Bus Arbitration Logic
	4.3 Bus Functional Description
	4.3.1 NON-CACHEABLE NON-BURST SINGLE CYCLE
	4.3.1.1 No Wait States
	4.3.1.2 Inserting Wait States

	4.3.2 MULTIPLE AND BURST CYCLE BUS TRANSFERS
	4.3.2.1 Burst Cycles
	4.3.2.2 Terminating Multiple and Burst Cycle Trans...
	4.3.2.3 Non-Cacheable, Non-Burst, Multiple Cycle T...
	4.3.2.4 Non-Cacheable Burst Cycles

	4.3.3 CACHEABLE CYCLES
	4.3.3.1 Byte Enables during a Cache Line Fill
	4.3.3.2 Non-Burst Cacheable Cycles
	4.3.3.3 Burst Cacheable Cycles
	4.3.3.4 Effect of Changing KEN# during a Cache Lin...

	4.3.4 BURST MODE DETAILS
	4.3.4.1 Adding Wait States to Burst Cycles
	4.3.4.2 Burst and Cache Line Fill Order
	4.3.4.3 Interrupted Burst Cycles

	4.3.5 8- AND 16-BIT CYCLES
	4.3.6 LOCKED CYCLES
	4.3.7 PSEUDO-LOCKED CYCLES
	4.3.7.1 Floating-Point Read and Write Cycles

	4.3.8 INVALIDATE CYCLES
	4.3.8.1 Rate of Invalidate Cycles
	4.3.8.2 Running Invalidate Cycles Concurrently wit...

	4.3.9 BUS HOLD
	4.3.10 Interrupt Acknowledge
	4.3.11 SPECIAL BUS CYCLES
	4.3.11.1 HALT Indication Cycle
	4.3.11.2 Shutdown Indication Cycle
	4.3.11.3 Stop Grant Indication Cycle

	4.3.12 BUS CYCLE RESTART
	4.3.13 BUS STATES
	4.3.14 FLOATING-POINT ERROR HANDLING FOR THE Intel...
	4.3.14.1 Floating-Point Exceptions

	4.3.15 IntelDX2™ AND IntelDX4™ PROCESSORS FLOATING...

	4.4 Enhanced Bus Mode Operation (Write-Back Mode) ...
	4.4.1 SUMMARY OF BUS DIFFERENCES
	4.4.2 BURST CYCLES
	4.4.2.1 Non-Cacheable Burst Operation
	4.4.2.2 Burst Cycle Signal Protocol

	4.4.3 CACHE CONSISTENCY CYCLES
	4.4.3.1 Snoop Collision with a Current Cache Line ...
	4.4.3.2 Snoop under AHOLD
	4.4.3.3 Snoop During Replacement Write-Back
	4.4.3.4 Snoop under BOFF#
	4.4.3.5 Snoop under HOLD
	4.4.3.6 Snoop under HOLD during Replacement Write�...

	4.4.4 LOCKED CYCLES
	4.4.4.1 Snoop/Lock Collision

	4.4.5 FLUSH OPERATION
	4.4.6 PSEUDO LOCKED CYCLES
	4.4.6.1 Snoop under AHOLD during Pseudo-Locked Cyc...
	4.4.6.2 Snoop under Hold during Pseudo-Locked Cycl...
	4.4.6.3 Snoop under BOFF# Overlaying a Pseudo-Lock...

	CHAPTER 5 Memory Subsystem Design
	5.1 Introduction
	5.2 Processor and Cache Feature Overview
	5.2.1 The Burst Cycle
	5.2.2 The KEN# Input
	5.2.3 Bus Characteristics
	5.2.4 Improving Write Cycle Latency
	5.2.4.1 Interleaving
	5.2.4.2 Write Posting

	5.2.5 Second-Level Cache

	CHAPTER 6 Cache Subsystem
	6.1 Introduction
	6.2 Cache Memory
	6.2.1 What is a Cache?
	6.2.2 Why Add an External Cache?

	6.3 Cache Trade-offs
	6.3.1 Cache Size and Performance
	6.3.2 Associativity and Performance Issues
	6.3.3 Block/Line Size
	6.3.4 Replacement Policy

	6.4 Updating Main Memory
	6.4.1 Write-Through and Buffered Write-Through Sys...
	6.4.2 Write-Back System
	6.4.3 Cache Consistency

	6.5 Non-Cacheable Memory Locations
	6.6 Cache and DMA Operations
	6.7 Cache for Single Versus Multiple Processor Sys...
	6.7.1 Cache in Single Processor Systems
	6.7.2 Cache in Multiple Processor Systems

	6.8 An Intel486™ Processor System Example
	6.8.1 The Memory Hierarchy and Advantages of a Sec...

	CHAPTER 7 Peripheral Subsystem
	7.1 Peripheral/Processor Bus Interface
	7.1.1 Mapping Techniques
	7.1.2 Dynamic Bus Sizing
	7.1.3 Address Decoding for I/O Devices
	7.1.3.1 Address Bus Interface
	7.1.3.2 8-Bit I/O Interface
	7.1.3.3 16-Bit I/O Interface
	7.1.3.4 32-Bit I/O Interface

	7.2 Basic Peripheral Subsystem
	7.2.1 Bus Control and Ready Logic
	7.2.2 Bus Control SIGNAL DESCRIPTION
	7.2.2.1 Processor Interface
	7.2.2.2 Wait State Generation Signals

	7.2.3 Wait State GENERATOR LOGIC
	7.2.4 Address Decoder
	7.2.5 Data Transceivers
	7.2.6 Recovery and Bus Contention
	7.2.7 Write Buffers and I/O Cycles
	7.2.7.1 WRITE BUFFERS AND RECOVERY TIME

	7.2.8 Non-Cacheability of Memory-Mapped I/O Device...
	7.2.9 Intel486™ Processor On-Chip Cache Consistenc...

	7.3 I/O Cycles
	7.3.1 Read Cycle Timing
	7.3.2 Write Cycle Timings

	7.4 Difference Between the Intel486�DX Processor F...
	7.5 Interfacing to x86 Peripherals
	7.5.1 Universal Peripheral Interface
	7.5.2 82C59A Interface
	7.5.2.1 SINGLE INTERRUPT CONTROLLER
	7.5.2.2 CASCADED INTERRUPT CONTROLLERS
	7.5.2.3 HANDLING MORE THAN 64 INTERRUPTS

	7.6 Intel486™ Processor LAN Controller Interface
	7.6.1 82596CA Coprocessor
	7.6.1.1 HARDWARE INTERFACE
	7.6.1.2 PROCESSOR AND COPROCESSOR INTERACTION
	7.6.1.3 MEMORY STRUCTURE
	7.6.1.4 MEDIA ACCESS
	7.6.1.5 TRANSMIT AND RECEIVE OPERATION
	7.6.1.6 BUS THROTTLE TIMERS
	7.6.1.7 DESIGN CONSIDERATIONS
	7.6.1.8 82596 Co-processor PERFORMANCE

	7.6.2 82557 High Speed LAN Controller Interface
	7.6.2.1 82557 Overview
	7.6.2.2 Features and Enhancements
	7.6.2.3 PCI Bus Interface
	7.6.2.4 82557 Bus Operations
	7.6.2.5 Initializing the 82557
	7.6.2.6 Controlling the 82557

	CHAPTER 8 System Bus Design
	8.1 Introduction
	8.2 System Bus Interface
	8.3 EISA Bus: System Design Example
	8.3.1 Introduction to the EISA Architecture
	8.3.2 An Example EISA Chip Set
	8.3.3 EBC Host Bus Interface
	8.3.3.1 Clock, Control and Status Interface
	8.3.3.2 HOST LOCAL MEMORY AND I/O INTERFACE
	8.3.3.3 HOST BUS ACQUISITION AND RELEASE
	8.3.3.4 LOCK, SNOOP, AND ADDRESS GREATER THAN 16 M...

	8.3.4 EISA/ISA Bus Interface to the EBC
	8.3.4.1 EBC AND EISA BUS INTERFACE SIGNALS
	8.3.4.2 EBC AND ISA BUS INTERFACE SIGNALS

	8.3.5 EBC and ISP Interface
	8.3.6 EBC and EBB Data and Address Buffer Controls...
	8.3.6.1 FUNCTIONS OF THE ISP
	8.3.6.2 ISP-to-Host Interface

	8.3.7 ISP-to-EISA Interface

	8.4 PCI Bus: System Design Example
	8.4.1 Introduction to PCI Architecture
	8.4.2 Example PCI System Design
	8.4.3 Host CPU Interface
	8.4.3.1 Host Bus Slave Device
	8.4.3.2 L1 Cache Support
	8.4.3.3 Control and Status Interface
	8.4.3.4 PCI Bus Cycles Support
	8.4.3.5 Host to PCI Cycles
	8.4.3.6 Exclusive Cycles
	8.4.3.7 Status and Control Interface

	8.4.4 System Controller/ISA Bridge Link Interface
	8.4.4.1 Status and Control Interface

	8.4.5 ISA Interface
	8.4.5.1 I/O Recovery Support
	8.4.5.2 SYSCLK Generation
	8.4.5.3 Data Byte Swapping (ISA Master or DMA to I...
	8.4.5.4 Wait-State Generation
	8.4.5.5 Cycle Shortening
	8.4.5.6 Status and Control Interface

	8.4.6 DMA Controller
	8.4.6.1 DMA Status and Control Interface

	CHAPTER 9 Performance Considerations
	9.1 Introduction
	9.1.1 Memory Performance Factors

	9.2 Instruction Execution Performance
	9.2.1 Intel486™ Processor Execution Times
	9.2.2 Application Programs Used in Analysis

	9.3 Internal Cache Performance Issues
	9.3.1 On-Chip Cache Organization Issues
	9.3.2 Performance Effects of the On-Chip Cache
	9.3.3 Bus Cycle Mix with and without On-Chip Cache...

	9.4 On-Chip Write Buffers
	9.5 External Memory Considerations
	9.5.1 Introduction
	9.5.2 Wait States in Burst and Non-Burst Modes
	9.5.3 Impact of Wait States on Performance
	9.5.4 Bus Utilization and Wait States

	9.6 Second-Level Cache Performance Considerations
	9.6.1 Advantages of a Second-Level Cache
	9.6.2 An Example of a Second-Level Cache
	9.6.3 System Performance with a Second-Level Cache...
	9.6.4 Impact of Second-Level Cache on Bus Utilizat...

	9.7 Dram Design Techniques
	9.8 Extended Data Output RAM (EDO RAM)
	9.8.1 Interleaving
	9.8.2 Impact of Performance for Posted Write Cycle...

	9.9 Floating-Point Performance
	9.9.1 Floating-Point Execution Sequences
	9.9.2 Performance of the Floating-Point Unit

	CHAPTER 10 Physical Design and System Debugging
	10.1 General System Guidelines
	10.2 Power Dissipation and Distribution
	10.2.1 Power and Ground Planes
	Figure 10�1. Reduction in Impedance
	Figure 10�2. Typical Power and Ground Trace Layout...
	Figure 10�3. Decoupling Capacitors
	Figure 10�4. Circuit without Decoupling
	Figure 10�5. Decoupling Chip Capacitors
	Figure 10�6. Decoupling Leaded Capacitors

	10.3 High-Frequency Design Considerations
	10.3.1 Transmission Line Effects
	10.3.1.1 TRANSMISSION LINE TYPES
	10.3.1.2 Micro-Strip Lines
	Figure 10�7. Micro-Strip Lines

	10.3.1.3 Strip Lines
	Figure 10�8. Strip Lines

	10.3.2 Impedance Mismatch
	Figure 10�9. Overshoot and Undershoot Effects
	Figure 10�10. Loaded Transmission Line
	Figure 10�11. Lattice Diagram
	Figure 10�12. Lattice Diagram Example
	10.3.2.1 IMPEDANCE MATCHING
	Figure 10�13. Series Termination
	Figure 10�14. Parallel Termination
	Figure 10�15. Thevenin’s Equivalent Circuit
	Figure 10�16. AC Termination
	Figure 10�17. Active Termination
	Table 10�1. Comparison of Various Termination Tech...
	Figure 10�18. Impedance Mismatch Example
	Figure 10�19. Use of Series Termination to Avoid I...

	10.3.2.2 DAISY CHAINING
	Figure 10�20. “Daisy” Chaining

	10.3.2.3 90-DEGREE ANGLES
	Figure 10�21. Avoiding 90-Degree Angles

	10.3.2.4 VIAS (FEED-THROUGH CONNECTIONS)

	10.3.3 Interference
	10.3.3.1 ELECTROMAGNETIC INTERFERENCE (EMI)
	10.3.3.2 MINIMIZING Electromagnetic Interference
	Figure 10�22. Typical Layout
	Figure 10�23. Removing Closed Loop Signal Paths

	10.3.3.3 ELECTROSTATIC INTERFERENCE

	10.3.4 Propagation Delay

	10.4 Latch-Up
	10.5 Clock Considerations
	10.5.1 Requirements
	Figure 10�24. Typical Clock Timings

	10.5.2 Routing
	Figure 10�25. Clock Routing
	Figure 10�26. Star Connection

	10.6 Thermal Characteristics
	10.7 Derating Curve and its Effects
	10.8 Building and Debugging the Intel486™ Processo...
	10.8.1 Debugging Features of the Intel486™ Process...
	10.8.2 Breakpoint Instruction
	10.8.3 Single-Step Trap
	10.8.4 Debug Registers
	10.8.5 Debug Control Register (DR7)
	10.8.6 Debugging Overview

	FIGURES
	Figure 2�1. A Typical Intel486™�Processor System
	Figure 2�2. Single-Processor System
	Figure 2�3. Loosely Coupled Multi-processor System...
	Figure 2�4. External Cache
	Figure 2�5. Embedded Personal Computer and Embedde...
	Figure 3�1. IntelDX2™ and IntelDX4™ Processors Blo...
	Figure 3�2. Intel486™ SX Processor Block Diagram
	Figure 3�3. Ultra-Low Power Intel486™ SX and Ultra...
	Figure 3�4. Internal Pipelining
	Figure 3�5. Cache Organization
	Figure 3�6. Segmentation and Paging Address Format...
	Figure 3�7. Translation Lookaside Buffer
	Figure 4�1. Physical Memory and I/O Spaces
	Figure 4�2. Physical Memory and I/O Space Organiza...
	Figure 4�3. Intel486™ Processor with 32�Bit�Memory...
	Figure 4�4. Addressing 16- and 8-Bit Memories
	Figure 4�5. Logic to Generate A1, BHE# and BLE# fo...
	Figure 4�6. Data Bus Interface to 16- and 8-Bit Me...
	Figure 4�7. Single Master Intel486™ Processor Syst...
	Figure 4�8. Single Intel486™ Processor with DMA
	Figure 4�9. Single Intel486™ Processor with Multip...
	Figure 4�10. Basic 2-2 Bus Cycle
	Figure 4�11. Basic 3-3 Bus Cycle
	Figure 4�12. Non-Cacheable, Non-Burst, Multiple-Cy...
	Figure 4�13. Non-Cacheable Burst Cycle
	Figure 4�14. Non-Burst, Cacheable Cycles
	Figure 4�15. Burst Cacheable Cycle
	Figure 4�16. Effect of Changing KEN#
	Figure 4�17. Slow Burst Cycle
	Figure 4�18. Burst Cycle Showing Order of Addresse...
	Figure 4�19. Interrupted Burst Cycle
	Figure 4�20. Interrupted Burst Cycle with Non-Obvi...
	Figure 4�21. 8-Bit Bus Size Cycle
	Figure 4�22. Burst Write as a Result of BS8# or BS...
	Figure 4�23. Locked Bus Cycle
	Figure 4�24. Pseudo Lock Timing
	Figure 4�25. Fast Internal Cache Invalidation Cycl...
	Figure 4�26. Typical Internal Cache Invalidation C...
	Figure 4�27. System with Second-Level Cache
	Figure 4�28. Cache Invalidation Cycle Concurrent w...
	Figure 4�29. HOLD/HLDA Cycles
	Figure 4�30. HOLD Request Acknowledged during BOFF...
	Figure 4�31. Interrupt Acknowledge Cycles
	Figure 4�32. Stop Grant Bus Cycle
	Figure 4�33. Restarted Read Cycle
	Figure 4�34. Restarted Write Cycle
	Figure 4�35. Bus State Diagram
	Figure 4�36. DOS-Compatible Numerics Error Circuit...
	Figure 4�37. Basic Burst Read Cycle
	Figure 4�38. Snoop Cycle Invalidating a Modified L...
	Figure 4�39. Snoop Cycle Overlaying a Line-Fill Cy...
	Figure 4�40. Snoop Cycle Overlaying a Non-Burst Cy...
	Figure 4�41. Snoop to the Line that is Being Repla...
	Figure 4�42. Snoop under BOFF# during a Cache Line...
	Figure 4�43. Snoop under BOFF# to the Line that is...
	Figure 4�44. Snoop under HOLD during Line Fill
	Figure 4�45. Snoop using HOLD during a Non-Cacheab...
	Figure 4�46. Locked Cycles (Back-to-Back)
	Figure 4�47. Snoop Cycle Overlaying a Locked Cycle...
	Figure 4�48. Flush Cycle
	Figure 4�49. Snoop under AHOLD Overlaying Pseudo-L...
	Figure 4�50. Snoop under HOLD Overlaying Pseudo-Lo...
	Figure 4�51. Snoop under BOFF# Overlaying a Pseudo...
	Figure 5�1. Typical Burst Cycle
	Figure 5�2. Burst Cycle: KEN# Normally Active
	Figure 5�3. Intel386™ Processor Bus Cycle Mix/Inte...
	Figure 6�1. A Fully Associative Cache Organization...
	Figure 6�2. Direct Mapped Cache Organization
	Figure 6�3. Two-Way Set Associative Cache Organiza...
	Figure 6�4. Sector Buffer Cache Organization
	Figure 6�5. The Cache Data Organization for the In...
	Figure 6�6. Stale Data Problem in the Cache/Main M...
	Figure 6�7. Bus Watching/Snooping for Shared Memor...
	Figure 6�8. Hardware Transparency
	Figure 6�9. Non-Cacheable Share Memory
	Figure 6�10. Intel486™ Processor System Arbitratio...
	Figure 6�11. A Typical Intel486™ Processor System
	Figure 6�12. Intel486™ Processor System Memory Hie...
	Figure 7�1. Mapping Scheme
	Figure 7�2. Intel486™ Processor Interface to I/O D...
	Figure 7�3. Logic to Generate A1, BHE# and BLE# fo...
	Figure 7�4. Intel486™ Processor Interface to 8-Bit...
	Figure 7�5. Bus Swapping 16-Bit Interface
	Figure 7�6. Bus Swapping and Low Address Bit Gener...
	Figure 7�7. 32-Bit I/O Interface
	Figure 7�8. System Block Diagram
	Figure 7�9. Basic I/O Interface Block Diagram
	Figure 7�10. PLD Equations for Basic I/O Control L...
	Figure 7�11. I/O Address Example
	Figure 7�12. Internal Logic and Truth Table of 74S...
	Figure 7�13. I/O Read Timing Analysis
	Figure 7�14. I/O Read Timings
	Figure 7�15. I/O Write Cycle Timings
	Figure 7�16. I/O Write Cycle Timing Analysis
	Figure 7�17. Posted Write Circuit
	Figure 7�18. Timing of a Posted Write
	Figure 7�19. Intel486™ Processor Interface to the ...
	Figure 7�20. Cascaded Interrupt Controller
	Figure 7�21. 82596CA Coprocessor Block Diagram
	Figure 7�22. 82596CA Application Example
	Figure 7�23. 82596-to-Processor Interfacing
	Figure 7�24. 82596 Shared Memory
	Figure 7�25. Bus Throttle Timers
	Figure 7�26. 596RESET, CA, and PORT# Equations
	Figure 7�27. Intel 82557 Block Diagram
	Figure 8�1. Intel486™ Processor System
	Figure 8�2. Block Diagram of EISA Bus Controller (...
	Figure 8�3. Block Diagram of Integrated System Per...
	Figure 8�4. EBB Byte Transfer
	Figure 8�5. Example System Block Diagram
	Figure 8�6. System Controller Block Diagram
	Figure 8�7. ISA Bridge Block Diagram
	Figure 8�8. Internal DMA Controller
	Figure 9�1. Cache Hit Rate for Various Programs
	Figure 9�2. Intel486™ Processor Bus Cycle Mix with...
	Figure 9�3. Effect of Wait States on Performance
	Figure 9�4. Effect of External Bus Utilization ver...
	Figure 9�5. L2 Cache Performance Data with One Wri...
	Figure 9�6. Performance in Interleaved and Non-Int...
	Figure 9�7. Performance in Systems with and withou...
	Figure 10�27. Typical Heat Sinks
	Figure 10�28. Heat Sink Dimensions
	Figure 10�29. Derating Curves for the Intel486™ Pr...
	Figure 10�30. Typical Intel486™ Processor-Based Sy...
	Figure 10�31. Debug Registers

	TABLES
	Table 2�1. Product Options
	Table 3�1. Intel486™ Processor Family Functional U...
	Table 3�2. Cache Configuration Options
	Table 4�1. Byte Enables and Associated Data and Op...
	Table 4�2. Generating A31–A0 from BE3#–BE0# and A3...
	Table 4�3. Next Byte Enable Values for BSx# Cycles...
	Table 4�4. Data Pins Read with Different Bus Sizes...
	Table 4�5. Generating A1, BHE# and BLE# for Addres...
	Table 4�6. Generating A0, A1 and BHE# from the Int...
	Table 4�7. Transfer Bus Cycles for Bytes, Words an...
	Table 4�8. Burst Order (Both Read and Write Bursts...
	Table 4�9. Special Bus Cycle Encoding
	Table 4�10. Bus State Description
	Table 4�11. Snoop Cycles under AHOLD, BOFF#, or HO...
	Table 4�12. Various Scenarios of a Snoop Write-Bac...
	Table 5�1. Access Length of Typical CPU Functions
	Table 5�2. Clock Latencies for DRAM Functions
	Table 6�1. Level-1 Cache Hit Rates (Sheet 2 of 2)
	Table 7�1. Next Byte-Enable Values for the BSx# Cy...
	Table 7�2. Valid Data Lines for Valid Byte Enable ...
	Table 7�3. PLD Input Signals
	Table 7�4. Equations
	Table 7�5. 32-Bit to 8-Bit Steering (Sheet 2 of 2)...
	Table 7�6. PLD Input Signals
	Table 7�7. PLD Output Signals
	Table 7�8. Equation
	Table 7�9. 32-Bit to 16-Bit Bus Swapping Logic Tru...
	Table 7�10. 32-Bit to 32-Bit Bus Swapping Logic Tr...
	Table 7�11. Bus Cycle Definitions
	Table 7�12. 82596 Signals�(Sheet 2 of 2)
	Table 7�13. 82596 Bus Bandwidth Utilization
	Table 8�1. AENx Decode Table
	Table 8�2. Supported PCI Bus Commands��
	Table 8�3. DMA Data Swap
	Table 8�4. 16-bit Master to 8-bit Slave Data Swap
	Table 9�1. Typical Instruction Mix and Execution T...
	Table 9�2. Programs Used
	Table 9�3. Floating-Point Instruction Execution
	Table 10�2. LENi Fields

