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CHAPTER 1
GUIDE TO THIS MANUAL

This manual describes the embedded Intel486™ processors. It is intended for use by hardware
designers familiar with the principles of embedded microprocessors and with the Intel486 pro-

cessor architecture.

1.1 MANUAL CONTENTS

This manual contains 10 chapters and an index. This section summarizes the contents of the re
maining chapters. The remainder of this chapter describes conventions and special terminolog
used throughout the manual and provides references to related documentation.

Chapter 2:
“Introduction”

Chapter 3:
“Internal
Architecture”

Chapter 4:
“Bus Operation”

Chapter 5:
“Memory Subsystem
Design”

Chapter 6:
“Cache Subsystem”

This chapter provides an overview of the current embedded Intel486
processor family, including product features, system components,
system architecture, and applications. This chapter also lists product
frequency, voltage and package offerings.

This chapter describes the Intel486 processor internal architecture, with
a description of the processor’s functional units.

This chapter describes the features of the processor bus, including bus
cycle handling, interrupt and reset signals, cache control, and floating-
point error control.

This chapter designing a memory subsystem that supports features of
the Intel486 processor such as burst cycles and cache. This chapter also
discusses using write-posting and interleaving to reduce bus cycle
latency.

This chapter discusses cache theory and the impact of caches on perfor-
mance. This chapter details different cache configurations, including di-
rect-mapped, set associative, and fully associative. In addition, write-
back and write-through methods for updating main memory are de-
scribed.
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Chapter 7: This chapter describes the connection of peripheral devices to the

“Peripheral Intel486 processor bus. Design techniques are discussed for interfacing

Subsystem” a variety of devices, including a LAN controller and an interrupt
controller.

Chapter 8: This chapter provides an overview of system bus design considerations,

“System Bus Design” including implementing of the EISA and PCI system buses.

Chapter 9: This chapter focuses on the system parameters that affect performance.
“Performance External (L2) caches are also examined as a means of improving

Considerations” memory system performance.

Chapter 10: The higher clock speeds of Intel486 processor systems require design

“Physical Design and guidelines. This chapter outlines basic design considerations, including
System Debugging” power and ground, thermal environment, and system debugging issues.
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1.2 TEXT CONVENTIONS

The following notations are used throughout this manual .

#

Variables

New Terms

I nstructions

Numbers

Units of Measure

The pound symbol (#) appended to a signal name indicates that the signal
isactive low.

Variables are shown in italics. Variables must be replaced with correct
values.

New terms are shown in italics. See the Glossary for a brief definition of
commonly used terms.

Instruction mnemonics are shown in uppercase. When you are
programming, instructions are not case-sensitive. You may use either
upper- or lowercase.

Hexadecimal numbers are represented by a string of hexadecimal digits
followed by the character H. A zero prefix is added to numbers that begin
with A through F. (For example, FF is shown as OFFH.) Decima and
binary numbers are represented by their customary notations. (That is,
255 is a decimal number and 1111 1111 is a binary number. In some
cases, the letter B is added for clarity.)

The following abbreviations are used to represent units of measure:

A amps, amperes

Gbyte gigabytes

Kbyte kilobytes

KQ kilo-ohms

mA milliamps, milliamperes
Mbyte megabytes

MHz megahertz

ms milliseconds

mw milliwatts

ns nanoseconds

pF picofarads

W waltts

\% volts

MA microamps, microamperes
uF microfarads

VES microseconds

uw microwatts
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Register Bits

Register Names

Signal Names

When the text refers to more that one bit, the range of bits is represented

by the highest and lowest numbered bits, separated by a long dash
(example: A15-A8). The first bit shown (15 in the example) is the most-
significant bit and the second bit shown (8) is the least-significant bit.

Register names are shown in uppercase. If a register name contains a
lowercase italic character, it represents more than one register. For
example, RCFG represents three registers: P1CFG, P2CFG, and P3CFG.

Signal names are shown in uppercase. When several signals share a
common name, an individual signal is represented by the signal name
followed by a number, while the group is represented by the signal name
followed by a variablen). For example, the lower chip-select signals are
named CSO#, CS1#, CS2#, and so on; they are collectively callgd CS

A pound symbol (#) appended to a signal name identifies an active-low
signal. Port pins are represented by the port abbreviation, a period, and
the pin number (e.g., P1.0, P1.1).

1.3 SPECIAL TERMINOLOGY

The following terms have special meanings in this manual.

Assert and Deassert

DOSI/O Address

The termsassert anddeassert refer to the acts of making a signal
active and inactive, respectively. The active polarity (high/low) is
defined by the signal name. Active-low signals are designated by the
pound symbol (#) suffix; active-high signals have no suffix. To
assert RD# is to drive it low; to assert HOLD is to drive it high; to
deassert RD# is to drive it high; to deassert HOLD is to drive it low.

Peripherals that are compatible with PC/AT system architecture can
be mapped into DOS (or PC/AT) addresses OH—03FFH. In this
manual, the termBOSaddress andPC/AT address are synonymous

Expanded I/O Address All peripheral registers reside at I/0 addresses OFO00H-OFFFFH.

PC/AT Address

Set and Clear

1-4

PC/AT-compatible integrated peripherals can also be mapped into
DOS (or PC/AT) address space (OH—03FFH).

Integrated peripherals that are compatible with PC/AT system
architecture can be mapped into PC/AT (or DOS) addresses OH—
03FFH. In this manual, the terr@OS address andPC/AT address

are synonymous.

The termsset andclear refer to the value of a bit or the act of giving
it a value. If a bit isset, its value is “1”;setting a bit gives it a “1”
value. If a bit isclear, its value is “0”;clearing a bit gives it a “0”
value.
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1.4 ELECTRONIC SUPPORT SYSTEMS

Intel's FaxBack* service provides up-to-date technical information. Intel also offers a variety of
information on the World Wide Web. These systems are available 24 hours a day, 7 days a weel
providing technical information whenever you need it.

1.4.1 FaxBack Service

FaxBack is an on-demand publishing system that sends documents to your fax machine. You ca
get product announcements, change notifications, product literature, device characteristics, de
sign recommendations, and quality and reliability information from FaxBack 24 hours a day, 7

days a week.

1-800-525-3019 (US or Canada)
+44-1793-496646 (Europe)
+65-256-5350 (Singapore)
+852-2-844-4448 (Hong Kong)
+886-2-514-0815 (Taiwan)
+822-767-2594 (Korea)
+61-2-975-3922 (Australia)
1-503-264-6835 (Worldwide)

Think of the FaxBack service as a library of technical documents that you can access with your
phone. Just dial the telephone number and respond to the system prompts. After you select a do
ument, the system sends a copy to your fax machine.

1.4.2 World Wide Web

Intel offers a variety of information through the World Wide Web (http://www.intel.com/).

1.5 TECHNICAL SUPPORT

In the U.S. and Canada, technical support representatives are available to answer your questiol
between 5 a.m. and 5 p.m. PST. You can also fax your questions to us. (Please include your voic
telephone number and indicate whether you prefer a response by phone or by fax). Outside th
U.S. and Canada, please contact your local distributor.

1-800-628-8686 U.S. and Canada
916-356-7599 U.S. and Canada
916-356-6100 (fax) U.S. and Canada

I 1-5
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1.6 PRODUCT LITERATURE

Y ou can order product literature from the following Intel literature centers.

1-800-548-4725 U.S. and Canada
708-296-9333 U.S. (from overseas)
44(0)1793-431155 Europe (U.K.)
44(0)1793-421333 Germany
44(0)1793-421777 France
81(0)120-47-88-32 Japan (fax only)

1.6.1 Related Documents

The following Intel documents contain additional information on designing systems that incor-

porate the Intel486 processors.

Intel Document Name

Intel Order Number

Datasheets
Embedded Intel486™ SX Processor datasheet 272769-001
Embedded IntelDX2™ Processor datasheet 272770-001
Embedded Ultra-Low Power Intel486™ SX Processor datasheet 272731-001
Embedded Ultra Low-Power Intel486™ GX Processor datasheet 272755-001
Embedded Write-Back Enhanced IntelDX4™ Processor datasheet 272771-001
MultiProcessor Specification 242016-005
Manuals

Intel Architecture Software Developer's Manual, Volumes 1 and 2 243190-001

243191-001
Embedded Intel486™ Processor Family Developer's Manual 273021.001
Ultra-Low Power Intel4d86 ™ SX Processor Evaluation Board Manual 272815-001
Intel486™ Processor Family Programmer’s Reference Manual 240486-003

Application Notes/Performance Briefs

AP-505-Picking Up the Pace: Designing the IntelDX4™ Processor into 242034-001
Intel486 ™ Processor-Based Designs
Intel486™ Microprocessor Performance Brief 241254-002
IntelDX4™ Processor Performance Brief 242446-001

1-6




Intel® GUIDE TO THIS MANUAL

Y ou can obtain the following resources from the Word Wide Web at the sites listed.

Document Name Web Site
Standard 1149.1—1990, IEEE Standard Test Access Port and Boundary- Contact the |IEEE at
Scan Architecture and its supplement, Standard 1149.1a—1993 http://iwww.ieee.org.
PCI Local Bus Specification, Revisions 2.0 and 2.1 Contact the PCI Special

Interest Group at
http://www. pcisig.com
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CHAPTER 2
INTRODUCTION

The Intel486™ processor family enables a range of low-cost, high-performance embedded sys
tem designs capable of running the entire installed base of DOS*, Windows*, OS/2*, and UNIX*
applications written for the Intel architecture. This family includes the following processors:

¢ ThelntelDX4™ processoris the fastest Intel486 processor (up to 50% faster than an
IntelDX2™ processor). The IntelDX4 processor integrates a 16-Kbyte unified cache and
floating-point hardware on-chip for improved performance.

The IntelDX4 processor is also available with a write-back on-chip cache for improved
entry-level performance.

¢ ThelntelDX2™ processorintegrates an 8-Kbyte unified cache and fl oating-point
hardware on-chip.

The IntelDX4 and IntelDX 2 processors use Intel’s speed-multiplying technology, alowing
the processor core to operate at frequencies higher than the external memory bus.

* Thelntel486 SX processor offers the features of the IntelDX2 processor without floating-
point hardware and clock multiplying.

e TheUltra-Low Power Ultra-L ow Power Intel486 SX andUltra-L ow Power
Intel486 GX processors provide additional power-saving features for use in battery-
operated and hand-held embedded designs. The Ultra-Low Power Intel486&ssor,
like the other Intel486 processors, supports dynamic data bus sizing for 8-, 16-, or 32-bit
bus sizes, whereas the Ultra-Low Power Intel486 GX processor has a 16-bit external data
bus.

The entire Intel486 processor family incorporates energy efficient “SL Technology” for mobile
and fixed embedded computing. SL Technology enables system designs that exceed the Enviror
mental Protection Agency’s (EPA) Energy Star program guidelines without compromising per-
formance. It also increases system design flexibility and improves battery life in all Intel486
processor-based hand-held applications. SL Technology allows system designers to differentiat
their power management schemes with a variety of energy efficient, battery life enhancing fea-
tures.

Intel486 processors provide power management features that are transparent to application ar
operating system software. Stop Clock, Auto HALT Power Down, and Auto Idle Power Down
allow software-transparent control over processor power management.

Equally important is the capability of the processor to manage system power consumption.
Intel486 processor System Management Mode (SMM) incorporates a non-maskable Systern
Management Interrupt (SMI#), a corresponding Resume (RSM) instruction and a new memory
space for system management code. Although transparent to any application or operating systen
Intel's SMM ensures seamless power control of the processor core, system logic, main memory
and one or more peripheral devices.
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Intel486 processors are availablein afull range of speeds (16 MHzto 100 MHz), packages (PGA,
SQFP, PQFP, TQFP), and voltages (5V, 3.3V, 3.0V and 2.0 V) to meet many system design
reguirements.

2.1 PROCESSOR FEATURES

All Intel486 processors consist of a 32-hit integer processing unit, an on-chip cache, and a mem-

ory management unit. These ensure full binary compatibility with the 8086, 8088, 80186, 80286,
Intel386™ SX, and Intel386 DX processors, and with all versions of Intel486 processors. All
Intel486 processors offer the following features:

« 32-bit RISC integer core — The Intel486 processor performs a complete set of arithmetic
and logical operations on 8-, 16-, and 32-bit data types using a full-width ALU and eight
general purpose registers.

¢ Single Cycle Execution — Many instructions execute in a single clock cycle.

« Instruction Pipelining — The fetching, decoding, address translation, and execution of
instructions are overlapped within the Intel486 processor.

¢ On-Chip Floating-Point Unit — The InteIDX2 and Intel DX4 processors support the 32-,
64-, and 80-bit formats specified in IEEE standard 754. The unit is binary compatible with
the 8087, Intel287, and Intel387 coprocessors, and with the Intel Ové@ﬂuﬁmr.

¢ On-Chip Cache with Cache Consistency SuppoAr8-Kbyte (16-Kbyte on the IntelDX4
processor) internal cacheisused for both dataand instructions. Cache hits provide zero wait
state access times for data within the cache. Bus activity istracked to detect alterationsin
the memory represented by the internal cache. The internal cache can be invalidated or
flushed so that an external cache controller can maintain cache consistency.

« External Cache Control — Write-back and flush controls for an external cache are provided
so the processor can maintain cache consistency.

¢ On-Chip Memory Management Unit — Address management and memory space protection
mechanisms maintain the integrity of memory in a multi-tasking and virtual memory
environment. The memory management unit supports both segmentation and paging.

* Burst Cycles— Burst transfers allow a new doubleword to be read from memory on each
bus clock cycle. This capability is especially useful for instruction prefetch and for filling
the internal cache.

« Write Buffers — The processor contains four write buffers to enhance the performance of
consecutive writes to memory. The processor can continue internal operations after a write
to these buffers, without waiting for the write to be completed on the external bus.

« Bus Backoff — If another bus master needs control of the bus during a processor-initiated
bus cycle, the Intel486 processor floats its bus signals, then restarts the cycle when the bus
becomes available again.

¢ Instruction Restart — Programs can continue execution following an exception that is
generated by an unsuccessful attempt to access memory. This feature is important for
supporting demand-paged virtual memory applications.
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Dynamic Bus Szing — External controllers can dynamically alter the effective width of the
data bus. Bus widths of 8, 16, or 32 bits can be used (the 8-bit and 32-bit bus widths are not
available on the Ultra-Low Power Intel486 GX processor).

Boundary Scan (JTAG) -Boundary Scan providesin-circuit testing of components on
printed circuit boards. The Intel Boundary Scan implementation conforms with the IEEE
Standard Test Access Port and Boundary Scan Architecture.

SL Technology provides the following features:

Intel System Management Mode — A unique Intel architecture operating mode provides a
dedicated special purpose interrupt and address space that can be used to implement
intelligent power management and other enhanced functions in a manner that is completely
transparent to the operating system and applications software.

I/0O Restart — An I/O instruction interrupted by a System Management Interrupt (SMI#)
can automatically be restarted following the execution of the RSM instruction.

Stop Clock — The Intel486 processor has a stop clock control mechanism that provides two
low-power states: a “fast wake-up” Stop Grant state and a “slow wake-up” Stop Clock state
with CLK frequency at 0 MHz.

Auto HALT Power Down — After the execution of a HALT instruction, the Intel486
processor issues a normal Halt bus cycle and the clock input to the Intel486 processor core
is automatically stopped, causing the processor to enter the Auto HALT Power Down state.

Upgrade Power Down Mode — When an Intel486 processor upgrade is installed, the
Upgrade Power Down Mode detects the presence of the upgrade, powers down the core,
and three-states all outputs of the original processor, so the Intel486 processor enters a ver
low current mode.

Auto Idle Power Down — This function allows the processor to reduce the core frequency
to the bus frequency when both the core and bus are idle. Auto Idle Power Down is
software-transparent and does not affect processor performance. Auto Idle Power Down
provides an average power savings of 10% and is only applicable to clock-multiplied
processors.

Enhanced Bus Mode Features (for the Write-Back Enhanced InteIDX4 processor only):

Write Back Internal Cache — The Write-Back Enhanced IntelDX4 processor adds write-
back support to the unified cache. The on-chip cache is configurable to be write-back or
write-through on a line-by-line basis. The internal cache implements a modified MESI
protocol, which is most applicable to single processor systems.

Enhanced Bus Mode — The definitions of some signals have been changed to support the
new Enhanced Bus Mode (Write-Back Mode).

Write Bursting — Data written from the processor to memory can be burst to provide zero
wait state transfers.
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2.2 Intel486™ PROCESSOR PRODUCT FAMILY

Table 2-1 showsthe Intel486 processors available by clock mode, supply voltage, maximum fre-
quency, and package. An individual product has either a 5V supply voltage or a 3.3V supply
voltage, but not both. Likewise, an individual product may have 1x, 2x, or 3x clock. Please con-
tact Intel for the latest product availability and specifications.

Table 2-1. Product Options

intel.

Processor

Vee 168- 208- | 196- | 176-
Intel486™ Processor Frequency (MHz) Pin Lead | Lead | Lead

Veep | 16|20 | 25| 33| 40{ 50| 66 | 75| 100 | PCA | SQFP | PQFP| TQFP
1x Clock
Intel486 SX 33V 0
Processor 5V O O
Ultra-Low Power 2.4-3.3 m]
Intel486 SX
Processor 2.7-33 U U

2.0-3.3| O O
Ultra-Low Power 22-33 O O
Intel486 GX
Processor 24-33 O O

2.7-3.3 0 O
2x Clock

3.3 O
IntelDX2™ Processor

5 O O

3x Clock
Write-Back Enhanced 3.3 m] m] m] m]

IntelDX4™ Processor
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1 Operating Modes and Compatibility

TheIntel486 processor can run in modesthat give it object-code compatibility with software writ-
ten for the 8086, 80286, and Intel 386 processor families. The operating mode is set in software
as one of the following:

Real Mode: When the processor is powered up or reset, it is initialized in Real Mode. This
mode has the same base architecture as the 8086 processor but allows access to the 32-bi
register set of the Intel486 processor. The address mechanism, maximum memory size

(1 Mbyte), and interrupt handling are identical to the Real Mode of the 80286 processor.
Nearly all Intel486 processor instructions are available, but the default operand size is 16
bits; in order to use the 32-bit registers and addressing modes, override instruction prefixes
must be used. The primary purpose of Real Mode is to set up the processor for Protected
Mode operation.

Protected Mode (also called Protected Virtual Address Mode): The complete capabilities of

the Intel486 processor become available when programs are run in Protected Mode. In
addition to segmentation protection, paging can be used in Protected Mode. The linear

address space is four gigabytes and virtual memory programs of up to 64 terabytes can be

run. All existing 8086, 80286, and Intel386 processor software can be run under the

Intel486 processor’s hardware-assisted protection mechanism. The addressing mechanism

is more sophisticated in Protected Mode than in Real Mode.

« Virtual 8086 Mode, a sub-mode of Protected Mode, allows 8086 programs to be run with
the segmentation and paging protection mechanisms of Protected Mode. This mode offers
more flexibility than the Real Mode for running 8086 programs. Using this mode, the
Intel486 processor can execute 8086 operating systems and applications simultaneously
with an Intel486 operating system and both 80286 and Intel486 processor applications.

The hardware offers additional modes, which are described in greater detailEmtibdded
Intel486™ Processor Family Developer’'s Manual

2.2.2 Memory Management

The memory management unit supports both segmentation and paging. Segmentation provides
several independent, protected address spaces. This security feature limits the damage aprogram
error can cause. For example, a program’s stack space should be prevented from growing into its
code space. The segmentation unit maps the separate address spaces seen by programmers into
one unsegmented, linear address space.

Paging provides accessto data structures larger than the available memory space by keeping them
partly in memory and partly on disk. Paging breaks the linear address space into unitsof 4 Kbytes
called pages. When aprogram makesitsfirst reference to a page, the program can be stopped, the
new page copied from disk, and the program restarted. Programs tend to use only a few pages at
a time, so a processor with paging can simulate a large address space in RAM using a small
amount of RAM plus storage on a disk.
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2.2.3 On-chip Cache

A software-transparent 8-Kbyte cache (16-Kbyte on the IntelDX4 processor) stores recently ac-
cessed information on the processor. Both instructions and data can be cached. If the processor
needsto read data that is available in the cache, the cache responds, thereby avoiding atime-con-
suming external memory cycle. Thisallowsthe processor to complete transfersfaster and reduces
traffic on the processor bus.

Theinternal cache on all members of the Intel486 processor family uses awrite-through protocol .
The IntelDX4 processor can also be configured to implement awrite-back protocol. With awrite-
through protocol, all writes to the cache areimmediately written to the external memory that the
cache represents. With a write-back protocol, writes to the cache are stored for future memory
updating. To reduce the impact of writes on performance, the processor can buffer its write cy-
cles; an operation that writes data to memory can finish before the write cycle is actually per-
formed on the processor bus.

The processor performs a cache line fill to place new information into the on-chip cache. This
operation reads four doublewords into a cache line, the smallest unit of storage that can be alo-
cated in the cache. Most read cycles on the processor bus result from cache misses, which cause
cachelinefills.

The Intel486 processor provides mechanisms to maintain cache consistency between memory
and cached data in multiple bus master environments. These mechanisms protect the Intel486
processor from reading invalid datafrom its own internal cache or from external caches. For ex-
ample, when the Intel486 processor attempts to read an operand from memory that isalso held in
the cache of another bus master, the other bus master is forced to write its cached data back to
memory before the Intel 486 processor can completeits read from memory. Thisis done because
the cached version of the data may have been updated, and so may now be different from the ver-
sion stored in memory.

Most memory systems optimize the speed of access on aread cycle. Thisisbecause thelarge ma
jority of al memory accesses in atypical system are read accesses. The Intel486 processor’s in-
ternal cache changesthisratio. Most read requests result in cache hits, so most memory accesses
on the processor bus are write cycles. Memory optimization should be done with thisin mind.

2.2.4 Floating-Point Unit

The internal floating-point unit performs floating-point operations on the 32-, 64- and 80-bit
arithmetic formats as specified in |EEE Standard 754. Like the integer processing unit, the float-
ing-point unit architecture is binary-compatible with the 8087 and 80287 coprocessors. The ar-
chitecture is 100% compatible with the Intel 387 DX and Intel387 SX coprocessors.

Floating-point instructions execute fastest when they are entirely internal to the processor. This
occurs when all operands are in the internal registers or cache. When data needs to be read from
or written to external locations, burst transfers minimize the time required and a bus locking
mechanism ensures that the bus is not relinquished to other bus masters during the transfer. Bus
signals are provided to monitor errorsin floating-point operations and to control the processor’s
response to such errors.

2-6 I



u
Intel® INTRODUCTION

2.2.5 Upgrade Power Down Mode

Upgrade Power Down Mode on the Intel486 processor is initiated by the Intel OverDrive® pro-

cessor using the UP# (Upgrade Present) pin. Upon sensing the presence of the Intel OverDrive
Processor, the Intel486 processor three-states its outputs and enters the “Upgrade Power Dow
Mode,” lowering its power consumption. The UP# pin of the Intel486 processor is driven active
(low) by the UP# pin of the Intel OverDrive processor. (Inetbedded Intel486 processor fam-

ily, the UP# pin has been renamed Reserved, with no changes in functionality.)

2.3 SYSTEM COMPONENTS

Intel offers several chips that are highly compatible with the Intel486 processor. These compo-
nents can be used to design high-performance embedded systems with a minimum of effort an
cost. For components not directly connectable to the Intel486 processor bus, industry-standar
interfaces can be used.

The Intel486 processor provides all integer and floating-point CPU functions plus many of the
peripheral functions required in a typical computer system. It executes the complete instruction
set of the Intel386 processor and Intel387 DX numerics coprocessor, with some extensions. The
processor eliminates the need for an external memory management unit, and the on-chip cach
minimizes the need for external cache and associated control logic.

The remaining chapters of this manual detail the Intel486 processor’s architecture, hardware
functions, and interfacing. For more information on the architecture and software interface, see
theEmbedded Intel486™ Processor Family Developer’'s Manwat the Intel Architecture Soft-

ware Developer’'s ManuaVolumes 1 and 2.

24 SYSTEM ARCHITECTURE

The Intel486 processor can be the foundation for single-processor or multi-processor embedded
systems. A single-processor system might be an embedded persona computer designed to usethe
Intel 486 processor. A system design of this type offers higher performance through the integra-
tion of floating-point processing, memory management, and caching. More complex embedded
systems may use multiple processors that provide, at chip-level, the equivalent of board-level
functions. Designs of thistype are typically used in multi-user machines, scientific workstations,
and engineering workstations.

A typical Intel486 design is shown in Figure 2-1. This example uses a single Intel 486 processor
with external cache. Other examples of system design are illustrated in the figures that follow.
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Intel486™
Processor

U

Processor Bus

U

T

External Cache

Optional

Bus
Processor

g

g

g

System Bus
Memory Bus LAN
Controller Coprocessor

External Bus

Figure 2-1. A Typical Intel486™ Processor System

2.4.1 Single Processor System

In single-processor systems, the processor handles all peripheral resources and intelligent devic-
es, and executes all software. The Intel486 processor does thisin amore efficient way and for a
wider range of task complexity than earlier processors. Single-processor systems offer small size
and low cost in exchange for flexibility in upgrading or expanding the system. Typical applica
tions include personal computers, small desktop workstations, and embedded controllers. Such
applications are implemented as a single board, usually called a motherboard; the processor bus
does not extend beyond the board occupied by the Intel486 processor.

Figure 2-2 shows an example of such a system. In a single-processor system, devices that share
the processor bus must be selected carefully. All components must interact directly with the pro-
cessor busor haveinterfacelogic that allowsthem to do so. Thetotal bus bandwidth requirements
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of other components should be no more than 50% of the avail able processor-bus bandwidth. Traf-
fic above 50% degrades performance of the processor.

Level-2 Intel486™
Cache Processor

g g

Processor Bus

g g g

DMA Peripheral
Controller Controller

Memory

Figure 2-2. Single-Processor System

Two basic design approaches are used to elaborate the single-processor system into a more com-
plex system. Thefirst approach isto add more devices to the processor bus. This can be done up
to the limit mentioned above: no more than 50% of the processor-bus bandwidth should be used
by devices other than the Intel486 processor. The second design approach is to add more buses
to the system. By adding buses, greater bus bandwidth is created in the system as awhole, which
in turn allows more devices to be added to the system. The two approaches go hand-in-hand to
expand the capabilities of a system. The sections below give only a few examples of the great
variety of designs that are possible with Intel486 processor-compatible devices.

2.4.2 Loosely Coupled Multi-Processor System

Loosely coupled multi-processor systems include board-level products that communicate with
one another through a standard system bus. In this architecture, each board contains a processor
and associated logic. There is typically only one processor per board. Components within each
board communicate on either a processor bus or on the buffered system bus. The system bus usu-
ally provides extra bandwidth beyond the processor bus.

A typical system is shown in Figure 2-3. Such system-bus boards typically occur in higher-end
personal computers and embedded systems that allow for modular expansion. A typical design
would include a coprocessor or LAN interface board in a personal computer, or a network-inter-
face board in afile server or gateway. Systems built from these boards can contain amix of pro-
cessor types. Devices attached to the processor bus on a given board make demands that may
affect system performance. For example, atypical system may use up to 3% of the bus bandwidth
to handle 10-Mbit/second Ethernet traffic.
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Bus
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Figure 2-3. Loosely Coupled Multi-processor System

2.4.3 External Cache

Externa cache allows a system to achieve maximum performance. This cache is essential in
tightly coupled multi-processor embedded systems. The external cache consists of cache memory

(usually fast SRAM) and cache control logic.

Externa cache systemstypically provide access to the cache from both the processor and the sys-
tem buses. Thisis shown in Figure 2-4. These caches typically monitor processor memory ac-
cesses, processor access time, and consistency between cache and memory. The cache controller
isresponsible for maintaining an optima mix of data and instructionsin cache.
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Intel486™
Processor

Processor Bus

{

External

Cache > SRAM

Controller

i
i

DRAM DRAM
Controller :> Array

System Bus

lp lopdlpe

A5131-01

Figure 2-4. External Cache

2.5 SYSTEMS APPLICATIONS
Most Intel 486 processor systems can be grouped as one of these types:
 Embedded Personal Computer

¢ Embedded Controller

Each type of system has distinct design goals and constraints, as described in the following sec
tions. Software running on the processor, even in stand-alone embedded applications, should us
a standard operating system such as DOS*, Windows 95*, Windows NT*, OS/2*, or UNIX Sys-
tem V/386*, to facilitate debugging, documentation, and transportability.
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251 Embedded Personal Computers

In single-processor embedded systems, the processor interacts directly with 1/0 devices and
DRAM memory. Other bus masters such as a LAN coprocessor typically reside on the system
bus; conventional personal computer architecture puts most peripherals on separate plug-in
boards. Expansion is typically limited to memory boards and 1/0 boards. A standard /O archi-
tecture such asMCA or EISA isused. System cost and size are very important. Figure 2-5 shows
an example of an embedded persona computer or an embedded controller application.

Optional Intel486™ Local
Level-2 Cache Processor Memory

g ] ¥

Processor Bus

] L

Local Bus
Peripheral Controller
Controller

System Bus
“Slow” Other
Memory Peripheral

Figure 2-5. Embedded Personal Computer and Embedded Controller Example

Externa cacheis optional in such environments, particularly if system performanceisnot acrit-
ical parameter. Where an external cacheisused, memory-access speedsimproveonly if the cache
isdesigned as awrite-back system and memory access has zero to one wait states.

2.5.2 Embedded Controllers

Most embedded controllers perform real-time tasks. The performance of the Intel486 processor
and its compatibility with the extensiveinstalled base of 1ntel 386 processors are important factors
initschoice. Embedded controllersare usually implemented as stand-al one systems, with less ex-
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pansion capability than other applications because they are tailored specifically to asingle envi-
ronment.

If code must be stored in EPROM, ROM, or Flash for non-volatility, but performanceisaso a
critical issue, then the code should be copied into RAM provided specifically for this purpose.
Frequently used routines and variables, such as interrupt handlers and interrupt stacks, can be
locked in the processor’s internal cache so they are always available quickly.

Embedded controllers usually require less memory than other applications, and control programs
are usually tightly written machine-level routines that need optimal performancein alimited va-
riety of tasks. The processor typically interacts directly with I/O devices and DRAM memory.
Other peripherals connect to the system bus.
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CHAPTER 3
INTERNAL ARCHITECTURE

The Intel486™ SX processor has a 32-bit architecture with on-chip memory management and
level-1 cache.

The InteIDX2™ and IntelDX4™ processors also have a 32-bit architecture with on-chip memory

management and cache, but add clock multiplier and floating-point units. The Intel486 SX and
Intel486 DX processors support dynamic bus sizing for the external data bus; that is, the bus siz
can be specified as 8-, 16-, or 32-bits wide.

Internally, the ultra-low power processors are similar to the Intel486 SX processor, but add a
clock control unit. Although the Ultra-Low Power Intel486 SX supports dynamic bus sizing, the
Ultra-Low Power Intel486 GX supports only a 16-bit external data bus. The Ultra-Low Power
Intel486 GX also has advanced power management features.

Table 3-1lists the functional units of the embedded Intel486 processors.

Table 3-1. Intel486™ Processor Family Functional Units

Ultra-Low Power
Functional Unit IntelDX2™ and Intel486™ SX Intel486 SX and
IntelDX4™ Processors Processor Ultra-Low Power
Intel486 GX Processors
Bus Interface O O O
Cache (L1) O O O
Instruction Prefetch O O O
Instruction Decode O O O
Control O O O
Integer and Datapath O O O
Segmentation O O O
Paging O O O
Floating-Point g
Clock Multiplier O
Clock Control O

Figure 3-1is a block diagram of the embedded IntelDX2 and IntelDX4 processors. Note that the
cache unit is 8-Kbytes for the IntelDX2 processor and 16 Kbytes for the IntelDX4 processor.

Figure 3-2is a block diagram of the embedded Intel486 SX processoFignde 3-3is a block
diagram of the Ultra-Low Power Intel486 SX and the Ultra-Low Power Intel486 GX processors.
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Figure 3-1. InteIDX2™ and InteIDX4™ Processors Block Diagram
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Figure 3-2. Intel486™ SX Processor Block Diagram
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Figure 3-3. Ultra-Low Power Intel486™ SX and Ultra-Low Power Intel486 GX Processors
Block Diagram

Signals from the external 32-bit processor bus reach the internal units through the bus interface
unit. On the internal side, the bus interface unit and cache unit pass addresses bi-directionally
through a 32-bit bus. Datais passed from the cache to the bus interface unit on a 32-bit data bus.
The closely coupled cache and instruction prefetch units simultaneously receive instruction
prefetches from the bus interface unit over a shared 32-bit data bus, which the cache a so usesto
receive operands and other types of data. Instructionsin the cache are accessible to theinstruction
prefetch unit, which contains a 32-byte queue of instructions waiting to be executed.

The on-chip cache is 16 Kbytes for the IntelDX4 processor and 8 Kbytes for all other members
of the Intel486 processor family. It is 4-way set associative and follows a write-through policy.
The Write-Back Enhanced Intel DX4 processor can be set to use an on-chip write-back cache pol-
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icy. The on-chip cacheincludesfeaturesto provide flexibility in external memory system design.
Individual pages can be designated as cacheable or non-cacheable by software or hardware. The
cache can aso be enabled and disabled by software or hardware.

Internal cache memory alows frequently used data and code to be stored on-chip, reducing ac-
cesses to the externa bus. RISC design techniques reduce instruction cycle times. A burst bus
feature enables fast cache fills.

When internal requests for data or instructions can be satisfied from the cache, time-consuming
cycles on the external processor bus are avoided. The businterface unit is only involved when an
operation needs access to the processor bus. Many internal operations are therefore transparent
to the external system.

The instruction decode unit trandates instructions into low-level control signals and microcode
entry points. The control unit executes microcode and controls the integer, floating-point, and
segmentation units. Computation results are placed in interna registers within the integer or
floating-point units, or in the cache. Internal storage locations (datapaths) are kept in the integer
unit.

The cache shares two 32-bit data buses with the segmentation, integer, and floating-point units.
These two buses can be used together as a 64-bit inter-unit transfer bus. When 64-bit segment
descriptors are passed from the cache to the segmentation unit, 32 bits are passed directly over
one data bus and the other 32 bits are passed through the integer unit, so that al 64 bits reach the
segmentation unit simultaneously.

The memory management unit (MM U) consists of a segmentation unit and a paging unit which
perform address generation. The segmentation unit translates logical addresses and passes them
to the paging and cache units on a 32-bit linear address bus. Segmentation allows management
of the logica address space by providing easy relocation of data and code and efficient sharing
of globa resources.

The paging mechanism operates beneath segmentation and is transparent to the segmentation
process. The paging unit translates linear addresses into physical addresses, which are passed to
the cache on a 20-bit bus. Paging is optional and can be disabled by system software. To imple-
ment a virtual memory system, the Intel486 processor supports full restartability for all page and
segment faults.

The Intel486 processor instruction set includes the complete Intel386™ processor instruction se
along with extensions to serve new applications and increase performance. The on-chip memor
MMU is completely compatible with the Intel386 processor MMU. Software written for previous
members of the Intel architecture family runs on the Intel486 processor without modification.

Memory is organized into one or more variable length segments, each up to four Ghytes
(232 bytes). A segment can have attributes associated with it that include its location, size, type
(i.e., stack, code, or data), and protection characteristics. Each task on an Intel486 processor ce
have a maximum of 16,381 segments and each are up to four Gbytes in size. Thus, each task h

a maximum of 64 terabytes (trillion bytes) of virtual memory.

The segmentation unit provides four levels of protection for isolating and protecting applications
and the operating system from each other. The hardware-enforced protection allows the desig

of systems with a high degree of software integrity.
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The Intel486 processor has four modes of operation: Real Address Mode (Real Mode), Protected
Mode, Virtual Mode (within Protected Mode), and System Management Mode (SMM). In Real
Mode the Intel486 processor operates as avery fast 8086. Real Mode isrequired primarily to set
up the Intel 486 processor for Protected M ode operation.

Protected Mode provides access to the sophisticated memory management paging and privilege
capabilities of the processor. Within Protected Mode, software can perform atask switch to enter
into tasks designated as Virtual 8086 Mode tasks. Each Virtual 8086 task behaves with 8086 se-
mantics, alowing 8086 processor software (an application program or an entire operating sys-
tem) to execute.

System Management Mode (SMM) provides system designers with a means of adding new soft-
ware-controlled features to their computer products that always operate transparently to the op-
erating system (OS) and software applications. SMM is intended for use only by system
firmware, not by applications software or general purpose systems software.

The Intel486 processor also has features that facilitate high-performance hardware designs. The
1X bus clock input eases high-frequency board-level designs. The clock multiplier on IntelDX2
and Intel DX 4 processors improves execution performance without increasing board design com-
plexity. The clock multiplier enhances all operations operating out of the cache that are not
blocked by external bus accesses. The burst bus feature enables fast cachefills.

3.1 INSTRUCTION PIPELINING

Not every instruction involves all internal units. When an instruction needs the participation of
severa units, each unit operates in parallel with others on instructions at different stages of exe-
cution. Although each instruction is processed sequentially, several instructions are at varying
stages of execution in the processor at any given time. Thisis called instruction pipelining. In-
struction prefetch, instruction decode, microcode execution, integer operations, floating-point
operations, segmentation, paging, cache management, and bus interface operations are all per-
formed simultaneously. Figure 3-4 shows some of this parallelism for asingleinstruction: the in-
struction fetch, two-stage decode, execution, and register write-back of the execution result. Each
stage in this pipeline can occur in one clock cycle.
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Figure 3-4. Internal Pipelining

Theinternal pipelining on the I ntel 486 processor offersan important performance advantage over
many single-clock RISC processors: in the Intel486 processor, data can be loaded from the cache
with one instruction and used by the next instruction in the next clock. This performance advan-
tage results from the stage-1 decode step, which initiates memory accesses before the execution
cycle. Because most compilers and application programs follow load instructions with instruc-
tionsthat operate on the loaded data, this method optimizes the execution of existing binary code.

The method has a performance trade-off: an instruction sequence that changes register contents
and then uses that register in the next instruction to access memory takes three clocks rather than
two. This trade-off is only a minor disadvantage, however, since most instructions that access
memory use the stable contents of the stack pointer or frame pointer, and the additional clock is
not used very often. Compilers often place an unrelated instruction between one that changes an
addressing register and one that uses the register. Such code is compatible with the Intel 386 pro-
cessor, and the Intel486 processor provides special stack increment/decrement hardware and an
extraregister port to execute back-to-back stack push/pop instructions in a single clock.

3.2 BUSINTERFACE UNIT

The bus interface unit prioritizes and coordinates data transfers, instruction prefetches, and con-
trol functions between the processor’s internal units and the outside system. Internally, the bus
interface unit communicates with the cache and the instruction prefetch units through three 32-
bit buses, as shown in Figure 3-1. Externally, the bus interface unit provides the processor bus
signals, described in Chapter 3. Except for cycle definition signals, all external bus cycles, mem-
ory reads, instruction prefetches, cache linefills, etc., look like conventional microprocessor cy-
clesto external hardware, with all cycles having the same bus timing.
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The businterface unit contains the following architectural features:

* Address Transceivers and Drivers — The A31-A2 address signals are driven on the
processor bus, together with their corresponding byte-enable signals, BE3#-BEO#. The
high-order 28 address signals are bidirectional, allowing external logic to drive cache
invalidation addresses into the processor.

e Data Bus Transceivers — The D31-D0 data signals are driven onto and received from the
processor bus (for the Ultra-Low Power Intel486 GX processor, signals D15-D0 comprise
the data bus transceivers).

* Bus Size Control — Three sizes of external data bus can be used: 32, 16, and 8 bits wide.
Two inputs from external logic specify the width to be used. Bus size can be changed on a
cycle-by-cycle basis. The Ultra-Low Power Intel486 GX does not support dynamic bus
sizing; its external data bus is 16 bits wide.

* Write Buffering — Up to four write requests can be buffered, allowing many internal
operations to continue without waiting for write cycles to be completed on the processor
bus.

* Bus Cycles and Bus Control — A large selection of bus cycles and control functions are
supported, including burst transfers, non-burst transfers (single- and multiple-cycle), bus
arbitration (bus request, bus hold, bus hold acknowledge, bus locking, bus pseudo-locking,
and bus backoff), floating-point error signalling, interrupts, and reset. Two software-
controlled outputs enable page caching on a cycle-by-cycle basis. One input and one output
are provided for controlling burst read transfers.

¢ Parity Generation and Control — Even parity is generated on writes to the processor and
checked on reads. An error signal indicates a read parity error.

* Cache Control — Cache control and consistency operations are supported. Three inputs
allow the external system to control the consistency of data stored in the internal cache unit.
Two special bus cycles allow the processor to control the consistency of external cache.

3.2.1 Data Transfers

To support the cache, the bus interface unit reads 16-byte cacheable transfers of operands, in-
structions, and other data on the processor bus and passes them to the cache unit. When cache
contents are updated from an internal source, such as a register, the bus interface unit writes the
updated cache information to the external system. Non-cacheable read transfers are passed
through the cache to the integer or floating-point units.

During instruction prefetch, the bus interface unit reads instructions on the processor bus and
passes them to both the instruction prefetch unit and the cache. The instruction prefetch unit may
then obtain its inputs directly from the cache.

3.2.2 Write Buffers

The bus interface unit has temporary storage for buffering up to four 32-bit write transfers to
memory. Addresses, data, or control information can be buffered. Single 1/0-mapped writes are
not buffered, although multiple 1/0O writes may be buffered. The buffers can accept memory

3-8 I



u
Intel® INTERNAL ARCHITECTURE

writes as fast as one per clock. Once awrite request is buffered, the internal unit that generated
the request is free to continue processing. If no higher-priority request is pending and the bus is
free, the transfer is propagated as an immediate write cycle to the processor bus. When al four
write buffersare full, any subsequent write transfer stallsinside the processor until awrite buffer
becomes available.

The businterface unit can re-order pending readsin front of buffered writes. Thisisdone because
pending reads can prevent an internal unit from continuing, whereas buffered writes need not
have a detrimental effect on processing speed.

Writes are propagated to the processor busin thefirst-in-first-out order in which they arereceived
from theinternal unit. However, a subsequently generated read request (data or instruction) may
be re-ordered in front of buffered writes. As a protection against reading invalid data, this re-or-
dering of reads in front of buffered writes occurs only if al buffered writes are cache hits. Be-
cause an external read is generated only for a cache miss, and is re-ordered in front of buffered
writesonly if all such buffered writes are cache hits, any read generated on the externa buswith
this protection never reads a location that is about to be written by a buffered write. This re-or-
dering can only happen once for a given set of buffered writes, because the data returned by the
read cycle could otherwise replace data about to be written from the write buffers.

To ensure that no more than one such re-ordering is done for a given set of buffered writes, al
buffered writes are re-flagged as cache misses when aread request is re-ordered ahead of them.
Buffered writes thus marked are propagated to the processor bus before the next read request is
acted upon. Invalidation of datain theinternal cache also causes all pending writesto be flagged
as cache misses. Disabling the cache unit disables the write buffers, which eliminates any possi-
bility of re-ordering bus cycles.

3.2.3 Locked Cycles

The processor can generate signals to lock a contiguous series of bus cycles. These cycles can
then be performed without interference from other bus masters, if external logic observes these
lock signals. One example of alocked operation is a semaphor read-modify-write update, where
aresource control register is updated. No other operations should be allowed on the bus until the
entire locked semaphor update is completed.

When alocked read cycle is generated, the internal cache is not read. All pending writesin the
buffer are completed first. Only then is the read part of the locked operation performed, the data
modified, the result placed in awrite buffer, and a write cycle performed on the processor bus.
This sequence of operations ensuresthat all writes are performed in the order in which they were
generated.

3.2.4 1/O Transfers
Transfersto and from I/O locations have some restrictions to ensure data integrity:

® Caching — /O reads are never cached.

* Read Re-ordering — /O reads are never re-ordered ahead of buffered writes to memory.
This ensures that the processor has completed updating all memory locations before readinc
status from a device.
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* Writes — Single 1/O writes are never buffered. When processing an OUT instruction,
internal execution stops until all buffered writes and the 1/0 write are completed on the
processor bus. This allows time for external logic to drive a cache invalidate cycle or mask
interrupts before the processor executes the next instruction. The processor completes
updating all memory locations before writing to the I/O location. Repeated OUT
instructions may be buffered.

The write buffers and the cache unit determine I/O device recovery time. In the Intel386 proces-
sor, back-to-back write recovery time could be guaranteed to exceed a certain value by inserting

a jump to the next instruction that writes to the 1/0O device. This forced an instruction prefetch
cycle that could only be performed after the preceding write was completed. This technique is not
used in the Intel486 processor because a prefetch can be satisfied internally by the cache and re-
covery time may be too short. The same effect is achieved in the Intel486 processor by explicitly
generating a read to an area of memory that is not cacheable. Because the Intel486 processor does
not buffer single I/O writes, such a read is not done until the 1/O write is completed.

3.3 CACHEUNIT

The cache unit stores copies of recently read instructions, operands, and other data. When the pro-
cessor requests information already in the cache, called a cache hit, no processor-bus cycle is re-
quired. When the processor requests information not in the cache, called a cache miss, the
information is read into the cache in one or more 16-byte cacheable data transfers, called cache
line fills. An internal write request to an area currently in the cache causes two distinct actions if
the cache is using a write-through policy: the cache is updated, and the write is also passed
through the cache to memory. If the cache is using a write-back policy, then the internal write
request only causes the cache to be updated and the write is stored for future main memory up-
dating.

The cache transfers data to other units on two 32-bit buses, as shbigari 3-1 The cache
receives linear addresses on a 32-bit bus and the corresponding physical addresses on a 20-bit
bus. The cache and instruction prefetch units are closely coupled. 16-Byte blocks of instructions
in the cache can be passed quickly to the instruction prefetch unit. Both units read information in
16-byte blocks.

The cache can be accessed as often as once each clock. The cache acts on physical addresses,
which minimizes the number of times the cache must be flushed. When both the cache and the
cache write-through functions are disabled, the cache may be used as a high-speed RAM.

3.3.1 Cache Structure

The cache has a four-way set associative organization. There are four possible cache locations to
store data from a given area of memory. Four-way association is a compromise between the speed
of a direct-mapped cache during cache hits and the high cache-hit ratio of a fully associative
cache. As shown iRigure 3-5 the 8-Kbyte data block is divided into four data ways, each con-
taining 128 16-byte sets, or cache lines (the DX4 processor has 256 16-byte sets). Each cache line
holds data from 16 successive byte addresses in memory, beginning with an address divisible
by 16.
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Figure 3-5. Cache Organization

Cache addressing is performed by dividing the high-order 28 hits of the physical address into
three parts, as shown in Figure 3-5. The 7 bits of the index field specify the set number, one of
128, within the cache. The high-order 21 bits (20 on the IntelDX4 processor) are the tag field;
these bitsare compared with tags for each cachelinein theindexed set, and they indicate whether
a 16-byte cache line is stored for that physical address. The low-order 4 bits of the physical ad-
dress select the byte within the cache line. Finally, a 4-bit valid field, one for each way within a
given set, indicates whether the cached data at that physical address is currently valid.
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3.3.2 Cache Updating

When a cache miss occurs on a read, the 16-byte block containing the requested information is
written into the cache. Data in the neighborhood of the required datais also read into the cache,
but the exact position of datawithin the cache line dependson itslocation in memory with respect
to addresses divisible by 16.

Any area of memory can be cacheable, but any page of memory can be declared not cacheable

by setting a bit in its page table entry. The I/O region of memory is hon-cacheable. When aread
from memory isinitiated on the bus, external logic can indicate whether the data may be placed

in cache, as discussed in Chapter 4, “Bus Operationlf the read is cacheable, the processor at-
tempts to read an entire 16-byte cache line.

The cache unit follows a write-through cache policy. The unit on the IntelDX4 processor can be
configured to be a write-through or write-back cache. Cache line fills are performed only for read
misses, never for write misses. When the processor is enabled for normal caching and write-
through operation, every internal write to the cache (cache hit) not only updates the cache but is
also passed along to the bus interface unit and propagated through the processor bus to memory.
The only conditions under which data in the cache differs from the corresponding data in memory
occur when a processor write cycle to memory is delayed by buffering in the bus interface unit,
or when an external bus master alters the memory area mapped to the internal cache. When the
IntelIDX4 processor is enabled for normal caching and write-back operation, an internal write
only causes the cache to be updated. The modified data is stored for the future update of main
memory and is not immediately written to memory.

3.3.3 Cache Replacement

Replacement in the cache is handled by a pseudo-LRU (least recently used) mechanism. This
mechanism maintains three bits for each set in the valid/LRU block, as shbiguiia 3-5 The

LRU bits are updated on each cache hit or cache line fill. Each cache line (four per set) also has
an associated valid bit that indicates whether the line contains valid data. When the cache is
flushed or the processor is reset, all of the valid bits are cleared. When a cache line is to be filled,
a location for the fill is selected by simply finding any cache line that is invalid. If no cache line

is invalid, the LRU bits select the line to be overwritten. Valid bits are not set for lines that are
only partially valid.

Cache lines can be invalidated individually by a cache line invalidation operation on the proces-
sor bus. When such an operation is initiated, the cache unit compares the address to be invalidated
with tags for the lines currently in cache and clears the valid bit if a match is found. A cache flush
operation is also available. This invalidates the entire contents of the internal cache unit.

3.3.4 Cache Configuration

Configuration of the cache unit is controlled by two bits in the processor’s machine status register
(CRO0). One of these bits enables caching (cache line fills). The other bit enables memory write-
through.Table 3-2shows the four configuration optiorGhapter 4, “Bus Operationgives de-

tails.
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Table 3-2. Cache Configuration Options

Write-through .
Cache Enabled Enabled Operating Mode

no no Cache line fills, cache write-throughs, and cache invalidations are
disabled. This configuration allows the internal cache to be used as
high-speed static RAM.

no yes Cache line fills are disabled, and cache write-throughs and cache
invalidations are enabled. This configuration allows software to
disable the cache for a short time, then re-enable it without flushing
the original contents.

yes no INVALID

yes yes Cache line fills, cache write-throughs, and cache invalidations are
enabled. This is the normal operating configuration.

When caching is enabled, memory reads and instruction prefetches are cacheable. These transfers
are cached if external logic assertsthe cache enable input in that bus cycle, and if the current page
table entry alows caching. During cycles in which caching is disabled, cache lines are not filled
on cache misses. However, the cache remains active even though it is disabled for further filling.
Datadready in the cacheisused if it is still valid. When all data in the cache is flagged invalid,
as happensin acacheflush, al internal read requests are propagated as bus cycles to the external
system.

When cache write-through is enabled, all writes, including those that are cache hits, are written
through to memory. Invalidation operations remove a line from cache if the invaidate address
maps to a cache line. When cache write-throughs are disabled, an internal write request that is a
cache hit does not cause a write-through to memory, and cache invalidation operations are dis-
abled. With both caching and cache write-through disabled, the cache can be used as a high-speed
static RAM. In this configuration, the only write cycles that are propagated to the processor bus
are cache misses, and cache invalidation operations are ignored.

The IntelDX4 processor can also be configured to use awrite-back cache policy. For detailed in-
formation on the Intel486 processor cache feature, and on the Write-Back Enhanced IntelDX4
processor, refer to Chapter 6, “Cache Subsystem.”

3.4 INSTRUCTION PREFETCH UNIT

When the bus interface unit is not performing bus cycles to execute an instruction, the instruction
prefetch unit uses the bus interface unit to prefetch instructions. By reading instructions before
they are needed, the processor rarely needs to wait for an instruction prefetch cycle on the prc
cessor bus.

Instruction prefetch cycles read 16-byte blocks of instructions, starting at addresses numerically
greater than the last-fetched instruction. The prefetch unit, which has a direct connection (not
shown inFigure 3-) to the paging unit, generates the starting address. The 16-byte prefetched
blocks are read into both the prefetch and cache units simultaneously. The prefetch queue in th
prefetch unit stores 32 bytes of instructions. As each instruction is fetched from the queue, the
code part is sent to the instruction decode unit and (depending on the instruction) the displace
ment part is sent to the segmentation unit, where it is used for address calculation. If loops are
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encountered in the program being executed, the prefetch unit gets copies of previously executed
instructions from the cache.

The prefetch unit hasthe lowest priority for processor bus access. Assuming zero wait-state mem-
ory access, prefetch activity never delays execution. However, if thereisno pending datatransfer,
prefetching may use bus cycles that would otherwise be idle. The prefetch unit is flushed when-
ever the next instruction needed is not in numerical sequence with the previous instruction; for
example, during jumps, task switches, exceptions, and interrupts.

The prefetch unit never accesses beyond the end of a code segment and it never accesses a page
that is not present. However, prefetching may cause problems for some hardware mechanisms.
For example, prefetching may cause an interrupt when program execution nears the end of mem-
ory. To keep prefetching from reading past a given address, instructions should come no closer
to that address than one byte plus one aligned 16-byte block.

3.5 INSTRUCTION DECODE UNIT

Theinstruction decode unit receives instructions from the instruction prefetch unit and translates
them in a two-stage process into low-level control signals and microcode entry points, as shown
in Figure 3-1. Most instructions can be decoded at arate of one per clock. Stage 1 of the decode,
shown in Figure 3-4, initiates a memory access. This allows execution of a two-instruction se-
quence that loads and operates on data in just two clocks, as described in Section 3.2.

The decode unit simultaneously processes instruction prefix bytes, opcodes, modR/M bytes, and
displacements. The outputsinclude hardwired microinstructionsto the segmentation, integer, and
floating-point units. The instruction decode unit is flushed whenever the instruction prefetch unit
isflushed.

3.6 CONTROL UNIT

The control unit interprets the instruction word and microcode entry points received from the in-
struction decode unit. The control unit has outputs with which it controlstheinteger and floating-
point processing units. It aso controls segmentation because segment selection may be specified
by instructions.

The control unit containsthe processor’s microcode. Many instructions have only one line of mi-
crocode, so they can execute in an average of one clock cycle. Figure 3-4 shows how execution
fits into the internal pipelining mechanism.

3.7 INTEGER (DATAPATH) UNIT

The integer and datapath unit identifies where data is stored and performs al of the arithmetic
and logical operations availablein the Intel 386 processor’sinstruction set, plusafew new instruc-
tions. It has eight 32-bit general-purpose registers, several specialized registers, an ALU, and a
barrel shifter. Single load, store, addition, subtraction, logic, and shift instructions execute in one
clock.

Two 32-bit bidirectional buses connect the integer and floating-point units. These buses are used
together for transferring 64-bit operands. The same buses also connect the processing units with
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the cache unit. The contents of the genera purpose registers are sent to the segmentation unit on
a separate 32-bit bus for generation of effective addresses.

3.8 FLOATING-POINT UNIT

The floating-point unit executes the same instruction set as the 387 math coprocessor. The unit
contains a push-down register stack and dedicated hardware for interpreting the 32-, 64-, and 80-
bit formats as specified in IEEE Standard 754. An output signal passed through to the processor
busindicates floating-point errors to the external system, which in turn can assert an input to the
processor indicating that the processor should ignorethese errors and continue normal operations.

3.8.1 IntelIDX2™ and InteIDX4™ Processor On-Chip Floating-Point Unit

The IntelDX2 and Intel DX 4 processors incorporate the basic Intel486 processor 32-hit architec-
ture, with on-chip memory management and cache memory units. They also have an on-chip
floating-point unit (FPU) that operates in parallel with the arithmetic and logic unit. The FPU pro-
vides arithmetic instructions for a variety of numeric data types and executes numerous built-in
transcendental functions (e.g., tangent, sine, cosine, and log functions). The floating-point unit
fully conformsto the ANSI/IEEE standard 754-1985 for floating-point arithmetic.

All softwarewritten for the Intel 386 processor, Intel 387 math coprocessor and previous members
of the 86/87 architectural family runs on these processors without modifications.

3.9 SEGMENTATION UNIT

A segment is a protected, independent address space. Segmentation is used to enforce isolation
among application programs, to invoke recovery procedures, and to isolate the effects of pro-
gramming errors.

The segmentation unit translates a segmented address issued by a program, called a logical ad-
dress, into an unsegmented address, called alinear address. The locations of segmentsin the lin-
ear address space are stored in data structures called segment descriptors. The segmentation unit
performsits address cal culations using segment descriptors and displacements (off sets) extracted
from instructions. Linear addresses are sent to the paging and cache units. When a segment is ac-
cessed for thefirst time, its segment descriptor is copied into aprocessor register. A program can
have as many as 16,383 segments. Up to six segment descriptors can be held in processor regis-
ters at atime. Figure 3-6 shows the relati onships between logicd, linear, and physical addresses.
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Figure 3-6. Segmentation and Paging Address Formats

3.10 PAGING UNIT

The paging unit allows access to data structures larger than the available memory space by keep-
ing them partly in memory and partly on disk. Paging divides the linear address space into
4-Kbyte blocks called pages. Paging uses data structures in memory called page tables for map-
ping alinear address to a physical address. The cache uses physical addresses and puts them on
the processor bus. The paging unit aso identifies problems, such as accesses to a page that is not
resident in memory, and rai ses exceptions called page faults. When a page fault occurs, the oper-
ating system has a chance to bring the required page into memory from disk. If necessary, it can
free space in memory by sending another page out to disk. If paging is not enabled, the physica
addressisidentical to the linear address.

The paging unit includes a trang ation lookaside buffer (TLB) that stores the 32 most recently
used pagetable entries. Figure 3-7 showsthe TL B datastructures. The paging unit looks up linear
addresses in the TLB. If the paging unit does not find a linear address in the TLB, the unit gen-
erates requeststofill the TLB with the correct physical address contained in a page table in mem-
ory. Only when the correct page table entry isin the TL B does the bus cycle take place. When the
paging unit maps a page in the linear address space to a page in physical memory, it maps only
the upper 20 bits of the linear address. Thelowest 12 bits of the physica address come unchanged
from the linear address.
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LRU Valid Attribute Data
Block and Tag Block Block
Way 0 Wayl Way2 Way 3 Way 0 Wayl Way2 Way 3
Set0
Set 1l
Set 2
Set3
. \ Set4 N
L7 ' Set 5 \
L, \ Set 6 | N
L7 ‘\ Set7 ,
, ’ \ I \
7 \ 1 N
. . | N
/. ’ \ N
Valid Attribute Tag | | Set Select | Data
1Bit 3 Bits | 17Bits « . 3Bits ! 20 Bits !
A 1
\ N :\ ! 1 |
\ “ ! 1 1
131 1814 12/ 31 12,
Linear Address Physical Address
A5174-01

Figure 3-7. Translation Lookaside Buffer

Most programs access only a small number of pages during any short span of time. When thisis
true, the pages stay in memory and the addresstrandl ation information staysin the TLB. Intypical
systems, the TL B satisfies 99% of the requests to access the page tables. The TLB uses a pseudo-
LRU algorithm, similar to the cache, as a content-replacement strategy.

The TLB is flushed whenever the page directory base register (CR3) is loaded. Page faults can
occur during either a page directory read or a page table read. The cache can be used to supply
datafor the TLB, although this may not be desirable when external logic monitors TLB updates.

Unlike segmentation, paging is invisible to application programs and does not provide the same
kind of protection against programs altering data outside a restricted part of memory. Paging is
visible to the operating system, which uses it to satisfy application program memory require-
ments. For more information on paging and segmentation, see the Embedded Intel486™ Devel-
oper’'s Manual
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CHAPTER 4
BUS OPERATION

All Intel486™ processors operate in Standard Bus (write-through) mode. However, when the in-
ternal cache of the Write-Back Enhanced IntelDX4™ processor is configured in write-back

mode, the processor bus operates in the Enhanced Bus mode, which is des&dmidin4.4

When the internal cache of the Write-Back Enhanced IntelDX4 processor is configured in write-

through mode, the processor bus operates in Standard Bus mode, identical to the other embedd
Intel486 processors.

4.1 DATA TRANSFER MECHANISM

All data transfers occur as a result of one or more bus cycles. Logical data operands of byte, wor
and doubleword lengths may be transferred without restrictions on physical address alignment
Data may be accessed at any byte boundary but two or three cycles may be required for unaligne
data transfers. (Se®ection 4.1.2, “Dynamic Data Bus Sizingghd Section 4.1.5, “Operand
Alignment.”)

The Intel486 processor address signals are split into two components. High-order address bits ar
provided by the address lines, A31-A2. The byte enables, BE3#-BEO0#, form the low-order ad-
dress and provide linear selects for the four bytes of the 32-bit address bus.

The byte enable outputs are asserted when their associated data bus bytes are involved with tt
present bus cycle, as listedTiable 4-1 Byte enable patterns that have a deasserted byte enable
separating two or three asserted byte enables never occliafdeed-5 on page 4).7All other

byte enable patterns are possible.

Table 4-1. Byte Enables and Associated Data and Operand Bytes

Byte Enable Signal Associated Data Bus Signals
BEO# D7-D0 (byte O—least significant)
BE1# D15-D8 (byte 1)
BE2# D23-D16 (byte 2)
BE3# D31-D24 (byte 3—most significant)

Address bits A0 and Al of the physical operand's base address can be created when necessa
Use of the byte enables to create A0 and Al is showalite 4-2 The byte enables can also be
decoded to generate BLE# (byte low enable) and BHE# (byte high enable). These signals are
needed to address 16-bit memory systems. $&eton 4.1.3, “Interfacing with 8-, 16-, and 32-

Bit Memories.)

4.1.1 Memory and I/O Spaces

Bus cycles may access physical memory space or I/O space. Peripheral devices in the system ¢
be either memory-mapped, I/O-mapped, or both. Physical memory addresses range frorm
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00000000H to FFFFFFFFH (4 gigabytes). 1/0 addresses range from 00000000H to 0000FFFFH
(64 Kbytes) for programmed 1/0O. (See Figure 4-1.)

Table 4-2. Generating A31-A0 from BE3#-BEO0# and A31-A2

Intel486™ Processor Address Signals
A31 through A2
BE3# BE2# BE1# BEO#
Physical Address
A3l A2 Al A0
A3l A2 0 0 X X X 0
A3l A2 0 1 X X 0 1
A3l A2 1 0 X 0 1 1
A3l A2 1 1 0 1 1 1
FFFFFFFFH /
s Not /1
Accessible
Physical /
Memory
4 Gbyte /
/]
7essible
/ /]
0000FFFFH Accessible
64 Kbyte Programmed
00000000H 00000000H 1/0 Space
Physical Memory I/O Space
Space

Figure 4-1. Physical Memory and I/O Spaces
41.1.1 Memory and I/O Space Organization

The Intel486 processor datapath to memory and input/output (1/0) spaces can be 32, 16, or 8 bits
wide. The byte enable signals, BE3#-BEO#, allow byte granularity when addressing any memory
or 1/O structure, whether 8, 16, or 32 bits wide.
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The Intel486 processor includes bus control pins, BS16# and BS8#, which allow direct connec-
tion to 16- and 8-bit memories and I/O devices. Cycles of 32-, 16- and 8-bits may occur in any
sequence, since the BS8# and BS16# signals are sampled during each bus cycle.

NOTE
The Ultra-Low Power Intel486 GX processor has a 16-bit external data bus.
All data transfers are done on the low order databits (D15-DO0) and parity is
generated and checked on pins DPO and DPL. For this reason, dynamic data
bus sizing (using pins BS16# and BS8#) is not supported.

Memory and I/O spaces that are 32-bit wide are organized as arrays of four bytes each. Each four

bytes consists of four individually addressable bytes at consecutive byte addresses (see

Figure 4-2). The lowest addressed byte is associated with data signals D7—-DO; the highest-ad-
dressed byte with D31-D24. Each 4 bytes begin at an address that is divisible by four.

32-Bit Wide Organization
FFFFFFFFH FFFFFFFCH

00000003H 00000000H

—
BE3# BE2# BE1# BEO#

16-Bit Wide Organization

FFFFFFFFH FFFFFFFEH

00000001H 00000000H

et s
BHE# BLE#

Figure 4-2. Physical Memory and I/O Space Organization

16-bit memories are organized as arrays of two bytes each. Each two bytes begins at address
divisible by two. The byte enables BE3#-BEO#, must be decoded to A1, BLE# and BHE# to ad-
dress 16-bit memories.

To address 8-bit memories, the two low order address bits A0 and A1 must be decoded from
BE3#-BEO#. The same logic can be used for 8- and 16-bit memories, because the decoding logi
for BLE# and AO are the same. (S&ection 4.1.3, “Interfacing with 8-, 16-, and 32-Bit Memo-
ries.”)

4.1.2 Dynamic Data Bus Sizing

Dynamic data bus sizing is a feature that allows processor connection to 32-, 16- or 8-bit buse:
for memory or I/0O. The Intel486 processors can connect to all three bus sizes, except for the Ul-
tra-Low Power Intel486 GX processor, uses a 16-bit data bus. Transfers to or from 32-, 16- or 8-
bit devices are supported by dynamically determining the bus width during each bus cycle. Ad-
dress decoding circuitry may assert BS16# for 16-bit devices or BS8# for 8-bit devices during
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each bus cycle. BS8# and BS16# must be deasserted when addressing 32-bit devices. An 8-hit
buswidth is selected if both BS16# and BS8# are asserted.

BS16# and BS8# force the Intel 486 processor to run additional bus cycles to complete requests
larger than 16 or 8 bits. A 32-bit transfer is converted into two 16-bit transfers (or 3 transfers if
the data is misaligned) when BS16# is asserted. Asserting BS8# converts a 32-bit transfer into
four 8-bit transfers.

Extra cycles forced by BS16# or BS8# should be viewed as independent bus cycles. BS16# or
BS8# must be asserted during each of the extra cycles unless the addressed device has the ability
to change the number of bytesit can return between cycles.

The Intel 486 processor drives the byte enables appropriately during extra cycles forced by BS8#

and BS16#. A31-A2 does not change if accesses are to a 32-bit aligndadbted-3shows the

set of byte enables that is generated on the next cycle for each of the valid possibilities of the byte
enables on the current cycle.

The dynamic bus sizing feature of the Intel486 processor is significantly different than that of the
Intel386™ processor. Unlike the Intel386 processor, the Intel486 processor requires that data
bytes be driven on the addressed data pins. The simplest example of this function is a 32-bit
aligned, BS16# read. When the Intel486 processor reads the two high order bytes, they must be
driven on the data bus pins D31-D16. The Intel486 processor expects the two low order bytes on
D15-D0. The Intel386 processor expects both the high and low order bytes on D15-D0. The
Intel386 processor always reads or writes data on the lower 16 bits of the data bus when BS16#
is asserted.

The external system must contain buffers to enable the Intel486 processor to read and write data
on the appropriate data bus pifiable 4-4shows the data bus lines to which the Intel486 proces-
sor expects data to be returned for each valid combination of byte enables and bus sizing options.

Table 4-3. Next Byte Enable Values for BSx# Cycles

Current Next with Next with BS16#
BE3# | BE2# | BE1# | BEO# | BE3# | BE2# | BE1# | BEO# | BE3# | BE2# | BE1# | BEO#
1 1 1 0 N N N N N N N N
1 1 0 0 1 1 0 1 N N
1 0 0 0 1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1 0 0 1 1
1 1 0 1 N N N N N N N N
1 0 0 1 1 0 1 1 1 0 1 1
0 0 0 1 0 0 1 1 0 0 1 1
1 0 1 1 N N N N N N N N
0 0 1 1 0 1 1 1 N N N N
0 1 1 1 N N N N N N N N

NOTE: “N” means that another bus cycle is not required to satisfy the request.
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Table 4-4. Data Pins Read with Different Bus Sizes

BE3# BE2# BE1# BEO# w/o BS8#/BS16# w BS8# w BS16#
1 1 1 0 D7-D0O D7-D0O D7-D0O
1 1 0 0 D15-D0 D7-DO D15-D0
1 0 0 0 D23-D0 D7-DO D15-D0
0 0 0 0 D31-D0O D7-DO D15-D0
1 1 0 1 D15-D8 D15-D8 D15-D8
1 0 0 1 D23-D8 D15-D8 D15-D8
0 0 0 1 D31-D8 D15-D8 D15-D8
1 0 1 1 D23-D16 D23-D16 D23-D16
0 0 1 1 D31-D16 D23-D16 D31-D16
0 1 1 1 D31-D24 D31-D24 D31-D24

Valid datais only driven onto data bus pins corresponding to asserted byte enables during write
cycles. Other pins in the data bus are driven but they contain no valid data. Unlike the Intel 386
processor, the Intel486 processor does not duplicate write data onto parts of the data bus for
which the corresponding byte enable is deasserted.

4.1.3 Interfacing with 8-, 16-, and 32-Bit Memories

In 32-hit physical memories, such as the one shown in Figure 4-3, each 4-byte word begins at a

byte address that is a multiple of four. A31-A2 are used as a 4-byte word select. BE3#—-BEO# se
lect individual bytes within the 4-byte word. BS8# and BS16# are deasserted for all bus cycles
involving the 32-bit array.

For 16- and 8-bit memories, byte swapping logic is required for routing data to the appropriate
data lines and logic is required for generating BHE#, BLE# and Al. In systems where mixed
memory widths are used, extra address decoding logic is necessary to assert BS16# or BS8#.

32 y DataBus (D31-D0)
V4

Intel486™ 32-Bit

Processor o Memory
Address Bus
(BE3#-BEO#, A31-A2)

TBSB# Tssm#
“HIGH” “HIGH”

Figure 4-3. Intel486™ Processor with 32-Bit Memory
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Figure 4-4 showsthe Intel 486 processor address businterface to 32-, 16- and 8-bit memories. To
address 16-bit memoriesthe byte enables must be decoded to produce A1, BHE# and BLE# (A0).
For 8-bit wide memories the byte enables must be decoded to produce AO and A1. The same byte

select logic can be used in 16- and 8-bit systems, because BLE# is exactly the same as AO (see
Table 4-5).

Intel486™ Address Bus (A31-A2, BE3#—BEO#) _
Processor »  32-Bit Memory
A
BS8# BS16#
A31-A2
Address o .
Decode BHE#, BLE#, A1 | 16-BitMemory
BE3#-BEO# Byte
»|  Select Logic
AO (BLE#), Al
A31-A2 i 8-Bit Memory

Figure 4-4. Addressing 16- and 8-Bit Memories

BE3#-BEO# can be decoded as showmable 4-5 The byte select logic necessary to generate
BHE# and BLE# is shown iRigure 4-5
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Table 4-5. Generating Al, BHE# and BLE# for Addressing 16-Bit Devices

Intel486™ Processor 8-, 16-Bit Bus Signals
Comments
BE3# | BE2# | BE1# | BEO# A13 BHE#? | BLE# (A0)?!

1t 1t 1t 1t X X X x—no asserted bytes
1 1 1 0 0 1 0
1 1 0 0 1
1 0 0 0 0
1 1 1 0
1t of 1t of X X X x—not contiguous bytes
1 0 0 1

0 0 0
0 1 0 1
of 1t 1t of X X X x—not contiguous bytes
of 1t of 1t X X X x—not contiguous bytes
of 1t of of X X X x—not contiguous bytes
0 1 1 1 0 0
of of 1t of X X X x—not contiguous bytes
0 1 0 0 1
0 0 0

NOTES:

1. BLE# asserted when D7-D0 of 16-bit bus is asserted.
2. BHE# asserted when D15-D8 of 16-bit bus is asserted.
3. Al low for all even words; Al high for all odd words.

KEY:

x = don'tcare

f= a non-occurring pattern of byte enables; either none are asserted or the pattern has byte

enables asserted for non-contiguous bytes
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BEO#
BE1#

240950-42

BE1#

BE3#

240950-43

BEO#

BLE# (OR AOQ)

240950-44

Figure 4-5. Logic to Generate A1, BHE# and BLE# for 16-Bit Buses

Combinations of BE3#—BEO# that never occur are those in which two or three asserted byte en-
ables are separated by one or more deasserted byte enables. These combinations are “don't care
conditions in the decoder. A decoder can use the non-occurring BE3#-BEO# combinations to its
best advantage.

Figure 4-6shows an Intel486 processor data bus interface to 16- and 8-bit wide memories. Ex-
ternal byte swapping logic is needed on the data lines so that data is supplied to and received from
the Intel486 processor on the correct data pinsT{abke 4-3.
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& D7-D0 /8 Q
u 7
Intel486™ 28 p|  32-Bit
Processor 4R23D16 /8 > Memory
& 031024 /8 >
)
A 4 4
BS8#
BS16#|
(A31-A2, BE3#-BEO#)
Byte Swap /16 o Ri
Logic V4 »| 16-Bit Memory
A
h 4 v
Address Byte Swap 8
/ .
Decode Logic <4—~—p»| 8-BitMemory

Figure 4-6. Data Bus Interface to 16- and 8-Bit Memories

4.1.4 Dynamic Bus Sizing During Cache Line Fills

BS8# and BS16# can be driven during cache linefills. The Intel 486 processor generates enough
8- or 16-hit cyclesto fill the cacheline. This can be up to sixteen 8-bit cycles.

The external system should assume that all byte enables are asserted for thefirst cycle of acache

line fill. The Intel486 processor generates proper byte enables for subsequent cycles in the line

fill. Table 4-6 shows the appropriate AO (BLE#), A1 and BHE# for the various combinations of

the Intel486 processor byte enables on both the first and subsequent cycles of the cache linefill.

The “t” marks all combinations of byte enables that are generated by the Intel486 processor dur-
ing a cache line fill.
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Table 4-6. Generating A0, A1 and BHE# from the Intel486™ Processor Byte Enables

First Cache Fill Cycle Any Other Cycle
BE3# | BE2# | BE1# | BEO#
AO Al BHE# AO Al BHE#
1 1 1 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
o 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 1 0 0
1 0 0 1 0 0 0 1 0 0
o 0 0 1 0 0 0 1 0 0
1 0 1 1 0 0 0 0 1 1
o 0 1 1 0 0 0 0 1 0
o 1 1 1 0 0 0 1 1 0
KEY:

T= anon-occurring pattern of Byte Enables; either none are asserted or the pattern has byte

enables asserted for non-contiguous bytes

415 Operand Alignment

Physical 4-byte words begin at addressesthat are multiples of four. It is possibleto transfer alog-
ical operand that spans more than one physical 4-byte word of memory or I/O at the expense of
extra cycles. Examples are 4-byte operands beginning at addresses that are not evenly divisible
by 4, or 2-byte words split between two physical 4-bytewords. These are referred to as unaligned
transfers.

Operand alignment and data bus size dictate when multiple bus cycles arerequired. Table 4-7 de-
scribes the transfer cycles generated for al combinations of logical operand lengths, alignment,
and data bus sizing. When multiple cycles are required to transfer a multibyte logical operand,
the highest-order bytes are transferred first. For example, when the processor executes a 4-byte
unaligned read beginning at byte location 11 in the 4-byte aligned space, the three high-order
bytes are read in the first bus cycle. The low byteis read in a subsequent bus cycle.
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Table 4-7. Transfer Bus Cycles for Bytes, Words and Dwords

Byte-Length of Logical Operand
1 2 4

Physical Byte Address in XX 00 01 10 11 00 01 10 11
Memory (Low Order Bits)
Transfer Cycles over 32-Bit b w w w hb d hb hw h3
Bus b 13 Iw b
Transfer Cycles over 16-Bit b w bt w hb Iw T hb hw | mw'
Bus hb T lb hw' | bf lw hb T
(" = BS#16 asserted) mw T Ib
Transfer Cycles over 8-Bit b Ib* Ib * Ib* hb Ib* hb | mhb* | mib*
Bus hb* | hb* | hbt b | mb*| b* | hb* | mho?
(* = BS8# Asserted) mhb* | mb* | Ib* | hb*

hb* | mhb* | mib* lb
KEY:
b = byte transfer h = high-order portion  4-Byte Operand ‘ Ib ‘ mlb ‘ mhb ‘ hb ‘
w = 2-byte transfer | = low-order portion

t byte with tbyte with

3 = 3-byte transfer m = mid-order portion lowest address _ highest address

d = 4-byte transfer

The function of unaligned transfers with dynamic bus sizing is not obvious. When the external
systems asserts BS16# or BS8#, forcing extra cycles, low-order bytes or words are transferred
first (opposite to the example above). When the Intel 486 processor requests a4-byte read and the
external system asserts BS16#, thelower two bytesare read first followed by the upper two bytes.

In the unaligned transfer described above, the processor requested three bytes on the first cycle.
When the external system asserts BS16# during this 3-byte transfer, the lower word istransferred
first followed by the upper byte. In the final cycle, the lower byte of the 4-byte operand is trans-
ferred, as shown in the 32-bit example above.
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4.2 BUS ARBITRATION LOGIC

Bus arbitration logic is needed with multiple bus masters. Hardware implementations range from
single-master designs to those with multiple masters and DMA devices.

Figure 4-7 shows a simple system in which only one master controls the bus and accesses the
memory and 1/O devices. Here, no arbitration is required.

Intel486™
Processor

Address Bus

v Data Bus

| Control Bus

110 MEM

Figure 4-7. Single Master Intel486™ Processor System
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Figure 4-8 shows asingle processor and aDMA device. Here, arbitration isrequired to determine
whether the processor, which acts as a master most of the time, or aDMA controller has control
of the bus. When the DM A wants control of the bus, it assertsthe HOL D request to the processor.
The processor then respondswith aHLDA output when it isready to relinquish bus control to the
DMA device. Oncethe DMA device completesitsbus activity cycles, it negatesthe HOL D signal
to relinquish the bus and return control to the processor.

< e«
Intel486™
Processor DMA
o F——
A Y
Y Y Address Bus
4 4
y 1 Data Bus
V{ y Control Bus
\ \ \ \
110 MEM

Figure 4-8. Single Intel486™ Processor with DMA
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Figure 4-9 shows more than one primary bus master and two secondary masters, and the arbitra-
tion logic is more complex. The arbitration logic resolves bus contention by ensuring that all de-
vice requests are serviced one at atime using either afixed or arotating scheme. The arbitration
logic then passes information to the Intel486 processor, which ultimately releases the bus. The
arbitration logic receives bus control status information viathe HOLD and HLDA signalsand re-
laysit to the requesting devices.

lBREQ TBDCK
HLDA 0 _ ACK
Arbitration
HOLD 0 Logic
ACQ
\
- l«—— DRQ
Intel486™
Processor DMA
[—® DACK
T & 1 ' Y
\ Y Address Bus
\ Data Bus
\  / Control Bus
A
\ A | \ / /
1/0 MEM

Figure 4-9. Single Intel486™ Processor with Multiple Secondary Masters

As systems become more complex and include multiple bus masters, hardware must be added to
arbitrate and assign the management of bus time to each master. The second master may be a
DMA controller that requires bus time to perform memory transfers or it may be a second pro-
cessor that requires the bus to perform memory or 1/0 cycles. Any of these devices may act asa
busmaster. The arbitration logic must assign only one bus master at atime so that thereis no con-
tention between devices when accessing main memory.
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The arbitration logic may be implemented in several different ways. The first technique is to
“round-robin” or to “time slice” each master. Each master is given a block of time on the bus to
match their priority and need for the bus.

Another method of arbitration is to assign the bus to a master when the bus is needed. Assignin
the bus requires the arbitration logic to sample the BREQ or HOLD outputs from the potential

masters and to assign the bus to the requestor. A priority scheme must be included to handle cas
where more than one device is requesting the bus. The arbitration logic must assert HOLD to the
device that must relinquish the bus. Once HLDA is asserted by all of these devices, the arbitratior
logic may assert HLDA or BACK# to the device requesting the bus. The requestor remains the
bus master until another device needs the bus.

These two arbitration techniques can be combined to create a more elaborate arbitration schemn
that is driven by a device that needs the bus but guarantees that every device gets time on the bt
It is important that an arbitration scheme be selected to best fit the needs of each system's imple
mentation.

The Intel486 processor asserts BREQ when it requires control of the bus. BREQ notifies the ar-
bitration logic that the processor has pending bus activity and requests the bus. When its HOLLC
input is inactive and its HLDA signal is deasserted, the Intel486 processor can acquire the bus
Otherwise if HOLD is asserted, then the Intel486 processor has to wait for HOLD to be deassert-
ed before acquiring the bus. If the Intel486 processor does not have the bus, then its address, da
and status pins are 3-stated. However, the processor can execute instructions out of the intern
cache or instruction queue, and does not need control of the bus to remain active.

The address buses showrFigure 4-8andFigure 4-9are bidirectional to allow cache invalida-
tions to the processors during memory writes on the bus.

4.3 BUS FUNCTIONAL DESCRIPTION

The Intel486 processor supports a wide variety of bus transfers to meet the needs of high perfor
mance systems. Bus transfers can be single cycle or multiple cycle, burst or non-burst, cacheabl
or non-cacheable, 8-, 16- or 32-bit, and pseudo-locked. Cache invalidation cycles and locked cy
cles provide support for multiprocessor systems.

This section explains basic non-cacheable, non-burst single cycle transfers. It also details multi-
ple cycle transfers and introduces the burst mode. Cacheability is introduSedtion 4.3.3,
“Cacheable Cycles.The remaining sections describe locked, pseudo-locked, invalidate, bus
hold, and interrupt cycles.

Bus cycles and data cycles are discussed in this section. A bus cycle is at least two clocks lon
and begins with ADS# asserted in the first clock and RDY# or BRDY# asserted in the last clock.
Data is transferred to or from the Intel486 processor during a data cycle. A bus cycle contains one
or more data cycles.

Refer toSection 4.3.13, “Bus Stateddr a description of the bus states shown in the timing dia-
grams.
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4.3.1 Non-Cacheable Non-Burst Single Cycle

43.1.1 No Wait States

The fastest non-burst bus cycle that the Intel 486 processor supports is two clocks. These cycles

are called 2-2 cycles because reads and writes take two cycles each. The first “2” refers to reads
and the second “2” to writes. If a wait state needs to be added to the write, the cycle is called “2-
3.

Basic two-clock read and write cycles are showhigure 4-10 The Intel486 processor initiates

a cycle by asserting the address status signal (ADS#) at the rising edge of the first clock. The
ADS# output indicates that a valid bus cycle definition and address is available on the cycle def-
inition lines and address bus.

Ti T2 T1

ew [N\ S\
A0S+ /O /
X X
A\ /
[T
(17,

A31-A2
M/IO#

D/C#
BE3#-BEO#

cove ITTIITIITTIITIITIN (TTTTIITIIIN I (1]
SO/ 11111 77 I [ [
(D i &, (-
porks \_ o

T To Processor
From Processor

242202-031

Figure 4-10. Basic 2-2 Bus Cycle

The non-burst ready input (RDY#) is asserted by the external system in the second clock. RDY#
indicates that the external system has presented valid data on the data pins in response to a read
or the external system has accepted data in response to a write.

The Intel486 processor samples RDY# at the end of the second clock. The cycle is complete if
RDY# is asserted (LOW) when sampled. Note that RDY# is ignored at the end of the first clock
of the bus cycle.

The burst last signal (BLAST#) is asserted (LOW) by the Intel486 processor during the second
clock of the first cycle in all bus transfers illustratedrigure 4-10 This indicates that each trans-
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fer is complete after a single cycle. The Intel486 processor asserts BLAST# in the last cycle,
“T2", of a bus transfer.

The timing of the parity check output (PCHK#) is showfrigure 4-10 The Intel486 processor
drives the PCHK# output one clock after RDY# or BRDY# terminates a read cycle. PCHK# in-
dicates the parity status for the data sampled at the end of the previous clock. The PCHK# signe
can be used by the external system. The Intel486 processor does nothing in response to th
PCHK# output.

4.3.1.2 Inserting Wait States

The external system can insert wait states into the basic 2-2 cycle by deasserting RDY# at the en
of the second clock. RDY# must be deasserted to insert a waiFstatee 4-11lillustrates a sim-

ple non-burst, non-cacheable signal with one wait state added. Any number of wait states can b
added to an Intel486 processor bus cycle by maintaining RDY# deasserted.
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Figure 4-11. Basic 3-3 Bus Cycle
The burst ready input (BRDY#) must be deasserted on all clock edges where RDY# is deasserte
for proper operation of these simple non-burst cycles.
4.3.2 Multiple and Burst Cycle Bus Transfers

Multiple cycle bus transfers can be caused by internal requests from the Intel486 processor or b
the external memory system. An internal request for a 128-bit pre-fetch requires more than one
cycle. Internal requests for unaligned data may also require multiple bus cycles. A cache line fill
requires multiple cycles to complete.
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The external system can cause a multiple cycle transfer when it can only supply 8- or 16-bits per
cycle.

Only multiple cycle transfers caused by internal requests are considered in this section. Cache-
able cyclesand 8- and 16-bit transfers are covered in Section 4.3.3, “Cacheable CyclearidSec-
tion 4.3.5, “8- and 16-Bit Cycles.”

Internal Requestsfrom IntelDX2 and I ntel DX4 Processor s

An internal request by an IntelDX2 or IntelDX4 processor for a 64-bit floating-point load must
take more than one internal cycle.

43.2.1 Burst Cycles

The Intel486 processor can accept burst cycles for any bus requests that require more than a single
data cycle. During burst cycles, a new data item is strobed into the Intel486 processor every clock
rather than every other clock as in non-burst cycles. The fastest burst cycle requires two clocks
for the first data item, with subsequent data items returned every clock.

The Intel486 processor is capable of bursting a maximum of 32 bits during a write. Burst writes
can only occur if BS8# or BS16# is asserted. For example, the Intel486 processor can burst write
four 8-bit operands or two 16-bit operands in a single burst cycle. But the Intel486 processor can-
not burst multiple 32-bit writes in a single burst cycle.

Burst cycles begin with the Intel486 processor driving out an address and asserting ADS# in the
same manner as non-burst cycles. The Intel486 processor indicates that it is willing to perform a
burst cycle by holding the burst last signal (BLAST#) deasserted in the second clock of the cycle.

The external system indicates its willingness to do a burst cycle by asserting the burst ready signal
(BRDY#).

The addresses of the data items in a burst cycle all fall within the same 16-byte aligned area (cor-
responding to an internal Intel486 processor cache line). A 16-byte aligned area begins at location
XXXXXXX0 and ends at location XXXXXXXF. During a burst cycle, only BE3#-BEO#, A2,

and A3 may change. A31-A4, M/IO#, D/C#, and W/R# remain stable throughout a burst. Given
the first address in a burst, external hardware can easily calculate the address of subsequent trans-
fers in advance. An external memory system can be designed to quickly fill the Intel486 processor
internal cache lines.

Burst cycles are not limited to cache line fills. Any multiple cycle read request by the Intel486
processor can be converted into a burst cycle. The Intel486 processor only bursts the number of
bytes needed to complete a transfer. For example, the InteIDX2 and Write-Back Enhanced
IntelDX4 processors burst eight bytes for a 64-bit floating-point non-cacheable read.

The external system converts a multiple cycle request into a burst cycle by asserting BRDY# rath-
er than RDY# (non-burst ready) in the first cycle of a transfer. For cycles that cannot be burst,
such as interrupt acknowledge and halt, BRDY# has the same effect as RDY#. BRDY# is ignored
if both BRDY# and RDY# are asserted in the same clock. Memory areas and peripheral devices
that cannot perform bursting must terminate cycles with RDY#.
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4.3.2.2 Terminating Multiple and Burst Cycle Transfers

The Intel486 processor deasserts BLAST# for al but the last cycle in a multiple cycle transfer.
BLAST# isdeasserted in thefirst cycle to inform the external system that the transfer could take
additional cycles. BLAST# isasserted in thelast cycle of thetransfer to indicate that the next time
BRDY# or RDY# is asserted the transfer is complete.

BLAST#isnot validinthefirst clock of abus cycle. It should be sampled only in the second and
subsequent clocks when RDY# or BRDY # is asserted.

The number of cyclesin atransfer is afunction of several factors including the number of bytes
the Intel486 processor needs to complete an internal request (1, 2, 4, 8, or 16), the state of the bus
sizeinputs (BS8# and BS16#), the state of the cache enable input (KEN#) and the alignment of
the data to be transferred.

When the Intel486 processor initiates a request, it knows how many bytes are transferred and if
thedataisaligned. Theexterna system must indicate whether the datais cacheable (if thetransfer
is aread) and the width of the bus by returning the state of the KEN#, BS8# and BS16# inputs
one clock before RDY# or BRDY #is asserted. The Intel486 processor determines how many cy-
cles atransfer will take based on itsinternal information and inputs from the external system.

BLAST# isnot valid in the first clock of a bus cycle because the Intel486 processor cannot de-
termine the number of cycles atransfer will take until the external system asserts KEN#, BS8#
and BS16#. BLAST# should only be sampled in the second T2 state and subsequent T2 states of
acycle when the external system asserts RDY# or BRDY #.

The system may terminate aburst cycle by asserting RDY #instead of BRDY #. BLAST# remains
deasserted until the last transfer. However, any transfersrequired to complete acachelinefill fol-
low the burst order; for example, if burst order was 4, 0, C, 8 and RDY # was asserted after O, the
next transfers are from C and 8.

4.3.2.3 Non-Cacheable, Non-Burst, Multiple Cycle Transfers

Figure 4-12 illustrates a two-cycle, non-burst, non-cacheable read. This transfer is smply a se-
guence of two single cycle transfers. The Intel 486 processor indicates to the external system that
thisisamultiple cycle transfer by deasserting BLA ST# during the second clock of thefirst cycle.
The external system asserts RDY # to indicate that it will not burst the data. The external system
also indicates that the data is not cacheable by deasserting KEN# one clock before it asserts
RDY #. When the Intel486 processor samples RDY # asserted, it ignores BRDY #.
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Figure 4-12. Non-Cacheable, Non-Burst, Multiple-Cycle Transfers

Each cyclein the transfer begins when ADSH# is asserted and the cycle is complete when the ex-
ternal system asserts RDY £

The Intel486 processor indicates the last cycle of the transfer by asserting BLAST#. The next
RDY # asserted by the external system terminates the transfer.

43.2.4 Non-Cacheable Burst Cycles

The external system convertsamultiple cyclerequest into aburst cycle by asserting BRDY #rath-
er than RDY # in the first cycle of the transfer. Thisisillustrated in Figure 4-13.

There are several features to note in the burst read. ADS# is asserted only during the first cycle
of the transfer. RDY # must be deasserted when BRDY # is asserted.

BLAST# behaves exactly as it does in the non-burst read. BLAST# is deasserted in the second
clock of thefirst cycle of thetransfer, indicating more cyclesto follow. Inthelast cycle, BLAST#
is asserted, prompting the external memory system to end the burst after asserting the next
BRDY#.
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Figure 4-13. Non-Cacheable Burst Cycle

4.3.3 Cacheable Cycles

Any memory read can become a cache fill operation. The external memory system can alow a
read request to fill acacheline by asserting KEN# one clock before RDY # or BRDY # during the
first cycle of the transfer on the external bus. Once KEN# is asserted and the remaining three re-
quirements described below are met, the Intel486 processor fetches an entire cache line regard-
less of the state of KEN#. KEN# must be asserted in the last cycle of the transfer for the data to
be written into the internal cache. The Intel486 processor converts only memory reads or
prefetches into a cache fill.

KEN# isignored during write or I/O cycles. Memory writes are stored only in the on-chip cache
if thereisacache hit. I/O space is never cached in the internal cache.

To transform aread or a prefetch into a cache linefill, the following conditions must be met:

1. TheKEN# pin must be asserted one clock prior to RDY# or BRDY # being asserted for the
first data cycle.

2. Thecyclemust be of atypethat can be internally cached. (Locked reads, |/O reads, and
interrupt acknowledge cycles are never cached.)

3. The page table entry must have the page cache disable bit (PCD) set to 0. To cache a page
table entry, the page directory must have PCD=0. To cache reads or prefetches when
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paging is disabled, or to cache the page directory entry, control register 3 (CR3) must have
PCD=0.

4. The cache disable (CD) bit in control register 0 (CRO) must be clear.

Externa hardware can determine when the Intel 486 processor hastransformed aread or prefetch

into a cache fill by examining the KEN#, M/IO#, D/C#, W/R#, LOCK#, and PCD pins. These

pins convey to the system the outcome of conditions 1-3 in the above list. In addition, the
Intel486 processor drives PCD high whenever the CD bit in CRO is set, so that external hardware
can evaluate condition 4.

Cacheable cycles can be burst or non-burst.

4331 Byte Enables during a Cache Line Fill

For the first cycle in the line fill, the state of the byte enables should be ignored. In a non-cache-
able memory read, the byte enables indicate the bytes actually required by the memory or code
fetch.

The Intel486 processor expects to receive valid data on its entire bus (32 bits) in the first cycle of
a cache line fill. Data should be returned with the assumption that all the byte enable pins are as-
serted. However if BS8# is asserted, only one byte should be returned on data lines D7-DO0. Sim-
ilarly if BS16# is asserted, two bytes should be returned on D15-DO0.

The Intel486 processor generates the addresses and byte enables for all subsequent cycles in the
line fill. The order in which data is read during a line fill depends on the address of the first item
read. Byte ordering is discussedSaction 4.3.4, “Burst Mode Details.”
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4.3.3.2 Non-Burst Cacheable Cycles

Figure 4-14 shows anon-burst cacheabl e cycle. The cycle becomesacachefill when the Intel 486
processor samples KEN# asserted at the end of the first clock. The Intel486 processor deasserts
BLAST# in the second clock in response to KEN#. BLAST# is deasserted because a cache fill
requires three additional cyclesto complete. BLAST# remains deasserted until the last transfer
in the cache line fill. KEN# must be asserted in the last cycle of the transfer for the data to be
written into the internal cache.

Note that this cycle would be a single bus cycle if KEN# was not sampled asserted at the end of
the first clock. The subsequent three reads would not have happened since a cache fill was not
requested.

The BLAST# output isinvalid in the first clock of acycle. BLAST# may be asserted during the
first clock due to earlier inputs. Ignore BLAST# until the second clock.

During the first cycle of the cache line fill the external system should treat the byte enables as if
they are al asserted. In subsequent cyclesin the burst, the Intel486 processor drives the address
lines and byte enables. (See Section 4.3.4.2, “Burst and Cache Line Fill Ordgr.”
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Figure 4-14. Non-Burst, Cacheable Cycles
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4.3.3.3 Burst Cacheable Cycles

Figure 4-15 illustrates a burst mode cache fill. Asin Figure 4-14, the transfer becomes a cache
line fill when the external system asserts KEN# at the end of thefirst clock in the cycle.

The external system informs the Intel486 processor that it will burst the line in by asserting
BRDY# at the end of the first cyclein the transfer.

Note that during a burst cycle, ADS# isonly driven with the first address.

w T
ose T\
BEs# BE0s X A X X
rove ST N N N N
scove [T, OO, TN ATEETEON AT
KEN# 1/ | _/7 -
BLAST# X / \ _C
O——(C——_r—)
P \ X X X_

T To Processor

242202-036

Figure 4-15. Burst Cacheable Cycle

4-24 I



Intel® BUS OPERATION

4334 Effect of Changing KEN# during a Cache Line Fill

KEN# can change multipletimes aslong as it arrives at itsfinal valuein the clock before RDY #
or BRDY#isasserted. Thisisillustrated in Figure 4-16. Note that the timing of BLAST# follows
that of KEN# by one clock. The Intel486 processor samples KEN# every clock and usesthe value
returned in the clock before BRDY# or RDY# to determine if a bus cycle would be a cache line
fill. Similarly, it usesthe value of KEN# in the last cycle before early RDY # to load the line just
retrieved from memory into the cache. KEN# is sampled every clock and it must satisfy setup and
hold times.

KEN# can also change multiple times before a burst cycle, aslong asit arrives at its final value
one clock before BRDY# or RDY# is asserted.
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Figure 4-16. Effect of Changing KEN#
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4.3.4 Burst Mode Details

434.1 Adding Wait States to Burst Cycles

Burst cycles need not return dataon every clock. The Intel486 processor strobes datainto the chip
only when either RDY # or BRDY # is asserted. Deasserting BRDY # and RDY # adds await state
to the transfer. A burst cycle where two clocks are required for every burst item is shown in
Figure 4-17.
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Figure 4-17. Slow Burst Cycle
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4.3.4.2 Burst and Cache Line Fill Order

The burst order used by the Intel486 processor isshown in Table 4-8. Thisburst order isfollowed
by any burst cycle (cache or not), cache linefill (burst or not) or code prefetch.

The Intel 486 processor presents each request for datain an order determined by the first address
in the transfer. For example, if the first address was 104 the next three addresses in the burst will
be 100, 10C and 108. An example of burst address sequencing is shown in Figure 4-18.

Table 4-8. Burst Order (Both Read and Write Bursts)

First Address Second Address | Third Address | Fourth Address
0 4 8 C
4 0 C 8
8 C 0 4
C 8 4 0
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Figure 4-18. Burst Cycle Showing Order of Addresses

The sequences shown in Table 4-8 accommodate systems with 64-bit buses as well as systems
with 32-bit data buses. The sequence applies to all bursts, regardless of whether the purpose of
the burst is to fill a cache line, perform a 64-bit read, or perform a pre-fetch. If either BS8# or
BS16# is asserted, the Intel 486 processor compl etesthe transfer of the current 32-bit word before
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progressing to the next 32-bit word. For example, a BS16# burst to address 4 has the following
order: 4-6-0-2-C-E-8-A.

4.3.4.3 Interrupted Burst Cycles

Some memory systems may not be able to respond with burst cyclesin the order defined in Table
4-8. To support these systems, the Intel 486 processor allows aburst cycleto beinterrupted at any
time. The Intel486 processor automatically generates another normal bus cycle after being inter-
rupted to complete the datatransfer. Thisiscalled an interrupted burst cycle. The external system
can respond to an interrupted burst cycle with another burst cycle.

The external system can interrupt aburst cycle by asserting RDY # instead of BRDY#. RDY # can
be asserted after any nhumber of data cycles terminated with BRDY #.

An example of an interrupted burst cycle is shown in Figure 4-19. The Intel486 processor imme-
diately asserts ADSH to initiate a new bus cycle after RDY# is asserted. BLAST# is deasserted
one clock after ADS# begins the second bus cycle, indicating that the transfer is not complete.
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Figure 4-19. Interrupted Burst Cycle

KEN# need not be asserted in the first data cycle of the second part of the transfer shown in
Figure 4-20. The cycle had been converted to a cache fill in the first part of the transfer and the
Intel486 processor expects the cache fill to be completed. Note that the first half and second half
of the transfer in Figure 4-19 are both two-cycle burst transfers.
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The order in which the Intel486 processor requests operands during an interrupted burst transfer
is shown by Table 4-7 on page 4-11. Mixing RDY# and BRDY # does not change the order in
which operand addresses are requested by the Intel486 processor.

An example of the order in which the Intel486 processor requests operands during a cycle in
which the external system mixes RDY# and BRDY# is shown in Figure 4-20. The Intel486 pro-
cessor initially requests a transfer beginning at location 104. The transfer becomes a cache line
fill when the external system asserts KEN#. The first cycle of the cachefill transfers the contents
of location 104 and is terminated with RDY#. The Intel486 processor drives out a new request
(by asserting ADS#) to address 100. If the external system terminates the second cycle with
BRDY#, the Intel486 processor next requests/expects address 10C. The correct order is deter-
mined by the first cyclein the transfer, which may not be thefirst cyclein the burst if the system
mixes RDY # with BRDY #.
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Figure 4-20. Interrupted Burst Cycle with Non-Obvious Order of Addresses

435 8-and 16-Bit Cycles

The Intel486 processor supports both 16- and 8-bit external buses through the BS16# and BS8#
inputs. BS16# and BS8# allow the external system to specify, on a cycle-by-cycle basis, whether
the addressed component can supply 8, 16 or 32 bits. BS16# and BS8# can be used in burst cycles
aswell as non-burst cycles. If both BS16# and BS8# are asserted for any bus cycle, the Intel 486
processor responds as if only BS8# is asserted.
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The timing of BS16# and BS8# is the same as that of KEN#. BS16# and BS8# must be asserted
before the first RDY# or BRDY # is asserted. Asserting BS16# and BS8# can force the Intel 486
processor to run additional cycles to complete what would have been only a single 32-bit cycle.
BS8# and BS16# may change the state of BLAST# when they force subsequent cycles from the
transfer.

Figure 4-21 shows an example in which BS8# forces the Intel486 processor to run two extra cy-
clesto complete atransfer. The Intel 486 processor issuesarequest for 24 bits of information. The
external system asserts BS8#, indicating that only eight bits of data can be supplied per cycle. The
Intel486 processor issues two extra cycles to complete the transfer.

Ti T2 T1 T2 T1 T2

ew [\ S S S
oz N\ N\ [\ [
X
X

A31-A2
M/10#
D/C#
W/R#

BE3#-BEO#

rove TTTITTTTATTTEITETTIOTEDN OEEEEEEETION. (TTET TN
Bso# \_/ i/ i/
BLAST# X / \_ _/ \ \

(=
| -

§Fﬁfﬁ#rj

\|

[ —\
DATA (W (;

L
.

T To Processor

242202-069

Figure 4-21. 8-Bit Bus Size Cycle

Extra cycles forced by BS16# and BS8# signals should be viewed as independent bus cycles.
BS16# and BS8# should be asserted for each additional cycle unless the addressed device can
change the number of bytes it can return between cycles. The Intel486 processor deasserts
BLAST# until the last cycle before the transfer is complete.

Refer to Section 4.1.2, “Dynamic Data Bus Sizindgt the sequencing of addresses when BS8#

or BS16# are asserted.

During burst cycles, BS8# and BS16# operate in the same manner as during non-burst cycles. For
example, a single non-cacheable read could be transferred by the Intel486 processor as four 8-bit
burst data cycles. Similarly, a single 32-bit write could be written as four 8-bit burst data cycles.
An example of a burst write is shown figure 4-22 Burst writes can only occur if BS8# or

BS16# is asserted.
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Figure 4-22. Burst Write as a Result of BS8# or BS16#

4.3.6 Locked Cycles

L ocked cyclesare generated in softwarefor any instruction that performs aread-modify-write op-
eration. During aread-modify-write operation, the I ntel 486 processor can read and modify avari-
ablein external memory and ensure that the variable is not accessed between the read and write.

Locked cycles are automatically generated during certain bus transfers. The XCHG (exchange)
instruction generates a locked cycle when one of its operands is memory-based. Locked cycles
are generated when a segment or page table entry is updated and during interrupt acknowledge
cycles. Locked cycles are also generated when the LOCK instruction prefix is used with selected
instructions.

L ocked cycles are implemented in hardware with the LOCK# pin. When LOCK# is asserted, the
Intel486 processor is performing a read-modify-write operation and the external bus should not
be relinquished until the cycleiscomplete. Multiplereads or writes can belocked. A locked cycle
isshown in Figure 4-23. LOCK# is asserted with the address and bus definition pins at the begin-
ning of the first read cycle and remains asserted until RDY# is asserted for the last write cycle.
For unaligned 32-bit read-modify-write operations, the LOCK# remains asserted for the entire
duration of the multiple cycle. It deasserts when RDY # is asserted for the last write cycle.
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When LOCK# is asserted, the Intel 486 processor recognizes address hold and backoff but does
not recognize bus hold. It isleft to the externa system to properly arbitrate a central bus when the
Intel486 processor generates LOCK#.
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Figure 4-23. Locked Bus Cycle

4.3.7 Pseudo-Locked Cycles

Pseudo-locked cycles assure that no other master is given control of the bus during operand trans-
fers that take more than one bus cycle.

For the Intel 486 processor, examples include 64-bit description loads and cache line fills.

Pseudo-locked transfers are indicated by the PLOCK# pin. The memory operands must be
aligned for correct operation of a pseudo-locked cycle.

PL OCK# need not be examined during burst reads. A 64-bit aligned operand can be retrieved in
one burst (note that thisis only valid in systemsthat do not interrupt bursts).

The system must examine PLOCK# during 64-bit writes since the Intel486 processor cannot
burst write more than 32 bits. However, burst can be used within each 32-bit write cycle if BS8#
or BS16#isasserted. BLAST isde-asserted in response to BS8# or BS16#. A 64-bit writeisdriv-
en out astwo non-burst bus cycles. BLAST# is asserted during both 32-bit writes, because aburst
isnot possible. PLOCK# is asserted during the first write to indicate that another write follows.
This behavior is shown in Figure 4-24.
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The first cycle of a 64-bit floating-point write is the only case in which both PLOCK# and
BLAST# are asserted. Normally PLOCK# and BLAST# are the inverse of each other.

During all of the cyclesin which PLOCK# isasserted, HOL D isnot acknowledged until the cycle
completes. Thisresultsin alarge HOLD latency, especially when BS8# or BS16# isasserted. To
reduce the HOL D latency during these cycles, windows are avail able between transfersto allow
HOLD to be acknowledged during non-cacheable code prefetches. PLOCK# is asserted because
BLAST# is deasserted, but PLOCK# isignored and HOLD is recognized during the prefetch.

PLOCK# can change several times during acycle, settling to itsfinal valuein the clock in which
RDY# is asserted.

4.3.7.1 Floating-Point Read and Write Cycles

For IntelDX2 and Write-Back Enhanced IntelDX4 processors, 64-bit floating-point read and
write cycles are also examples of operand transfers that take more than one bus cycle.
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Figure 4-24. Pseudo Lock Timing

4.3.8 Invalidate Cycles

Invalidate cycles keep the Intel486 processor internal cache contents consistent with external
memory. The Intel486 processor contains amechanism for monitoring writes by other devicesto
external memory. When the Intel 486 processor finds awrite to a section of external memory con-
tained initsinternal cache, the Intel486 processor’s internal copy isinvalidated.
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Invalidations use two pins, address hold request (AHOLD) and valid external address (EADSH).
There are two stepsin an invalidation cycle. First, the external system asserts the AHOLD input
forcing the Intel 486 processor to immediately relinquish its address bus. Next, the external sys-
tem asserts EADSH, indicating that a valid address is on the Intel486 processor address bus.
Figure 4-25 shows the fastest possible invalidation cycle. The Intel486 processor recognizes
AHOLD on one CLK edge and floats the address bus in response. To allow the address bus to
float and avoid contention, EADS# and the invalidation address should not be driven until the
following CLK edge. The Intel486 processor reads the address over its address lines. If the
Intel486 processor findsthisaddressin itsinternal cache, the cache entry isinvalidated. Note that
the Intel 486 processor address bus is input/output, unlike the Intel386 processor’s bus, which is
output only.
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Figure 4-25. Fast Internal Cache Invalidation Cycle
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Figure 4-26. Typical Internal Cache Invalidation Cycle

4.3.8.1 Rate of Invalidate Cycles

The Intel486 processor can accept one invalidate per clock except in the last clock of alinefill.
Oneinvalidate per clock is possible aslong as EADS# is deasserted in ONE or BOTH of thefol-
lowing cases:

1. Intheclock inwhich RDY# or BRDY# is asserted for the last time.
2. Inthe clock following the clock in which RDY# or BRDY # is asserted for the last time.

This definition allows two system designs. Simple designs can restrict invalidates to one every
other clock. The simple design need not track bus activity. Alternatively, systems can request one
invalidate per clock provided that the busis monitored.

4.3.8.2 Running Invalidate Cycles Concurrently with Line Fills

Precautions are necessary to avoid caching stale datain the Intel 486 processor cachein a system
with a second-level cache. An example of a system with a second-level cache is shown in
Figure 4-27.

An external device can write to main memory over the system bus while the Intel486 processor
isretrieving datafrom the second-level cache. The Intel486 processor must invalidate alineinits
interna cacheif the external deviceiswriting to amain memory addressthat isalso containedin
the Intel486 processor cache.
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A potential problem existsif the external device iswriting to an address in external memory, and
at the same time the Intel 486 processor is reading data from the same addressin the second-level
cache. The system must force an invalidation cycle to invalidate the data that the Intel486 pro-
cessor has requested during the line fill.

Intel486™
Processor

Address, Data and
Control Bus

Second-Level
Cache

Address, Data and
Control Bus

System Bus

External External Bus
Memory Master

Figure 4-27. System with Second-Level Cache
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If the system asserts EADS# before thefirst datain the linefill isreturned to the Intel486 proces-
sor, the system must return data consistent with the new data in the external memory upon re-
sumption of the line fill after the invalidation cycle. This is illustrated by the asserted EADS#
signal labeled “1” irFigure 4-28

If the system asserts EADS# at the same time or after the first data in the line fill is returned (in
the same clock that the first RDY# or BRDY# is asserted or any subsequent clock in the line fill)
the data is read into the Intel486 processor input buffers but it is not stored in the on-chip cache
This is illustrated by asserted EADS# signal labeled “Zigure 4-28 The stale data is used to
satisfy the request that initiated the cache fill cycle.
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NOTES:
1. Data returned must be consistent if its address equals the invalidation address in this clock.
2. Data returned is not cached if its address equals the invalidation address in this clock. 242202-093

Figure 4-28. Cache Invalidation Cycle Concurrent with Line Fill
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4.39 Bus Hold

The Intel 486 processor provides a bus hold, hold acknowledge protocol using the bus hold re-
quest (HOL D) and bus hold acknowledge (HLDA) pins. Asserting the HOL D input indicates that
another bus master has requested control of the Intel486 processor bus. The Intel486 processor
responds by floating its bus and asserting HLDA when the current bus cycle, or sequence of
locked cycles, is complete. An example of aHOLD/HLDA transaction is shown in Figure 4-29.
Unlike the Intel 386 processor, the Intel486 processor can respond to HOLD by floating its bus
and asserting HLDA while RESET is asserted.

ck [\ \ \ \ \ \ _
ADS# \__/__\
<«
rove [T TN LT
DATA E:\
HOLD / \__
HLDA / \_
t

From Processor

242202-146

Figure 4-29. HOLD/HLDA Cycles

Note that HOLD is recognized during un-aligned writes (less than or equal to 32 hits) with
BLAST# being asserted for each write. For a write greater than 32-bits or an un-aligned write,
HOL D# recognition is prevented by PLOCK# getting asserted. However, HOLD is recognized
during non-cacheable, non-burstable code prefetches even though PLOCK# is asserted.
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For cacheable and non-burst or burst cycles, HOLD is acknowledged during backoff only if
HOLD and BOFF# are asserted during an active bus cycle (after ADS# asserted) and before the
first RDY# or BRDY# has been asserted (see Figure 4-30). The order in which HOLD and
BOFF# are asserted is unimportant (as long as both are asserted prior to the first RDY#BRDY #
asserted by the system). Figure 4-30 shows the case where HOLD is asserted first; HOLD could
be asserted simultaneously or after BOFF# and still be acknowledged.

The pins floated during bus hold are: BE3#-BEO#, PCD, PWT, W/R#, D/IC#, M/O#, LOCK#,
PLOCK#, ADS#, BLAST#, D31-D0, A31-A2, and DP3-DPO.

T Ti Ti oM T2 T Ti Ti T
AV Al AN ATATAY AU alalalal
\__J \

MIO# _/ \

\ ,
\ ,

KEN#

BRDY#

RDY#

HoLD /

HLDA /

BOFF# \

242202-095

Figure 4-30. HOLD Request Acknowledged during BOFF#
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4.3.10 Interrupt Acknowledge

The Intel486 processor generates interrupt acknowledge cyclesin response to maskable interrupt
reguests that are generated on the interrupt request input (INTR) pin. Interrupt acknowledge cy-
cles have a unique cycle type generated on the cycle type pins.

An example of an interrupt acknowledge transaction is shown in Figure 4-31. Interrupt acknowl-
edge cycles are generated in locked pairs. Datareturned during thefirst cycleisignored. The in-
terrupt vector is returned during the second cycle on the lower 8 bits of the data bus. The Intel 486
processor has 256 possible interrupt vectors.

The state of A2 distinguishesthefirst and second interrupt acknowledge cycles. The byte address

driven during the first interrupt acknowledge cycle is 4 (A31-A3 low, A2 high, BE3#-BE1#
high, and BEO# low). The address driven during the second interrupt acknowledge cycle is 0
(A31-A2 low, BE3#-BE1# high, BEO# low).

Each of the interrupt acknowledge cycles is terminated when the external system asserts RDY#
or BRDY#. Wait states can be added by holding RDY# or BRDY# deasserted. The Intel486 pro-
cessor automatically generates four idle clocks between the first and second cycles to allow for
8259A recovery time.

Ti T1 T2 Ti Ti T1 T2

ADS# —_\ / _ 4 Clocks R \ /_ T

ADDR X 04 X 00
rove IO JTTTTTT (T T YA
DATA E}

LOCK# —_\ /—

1 To Processor
242202-096

Figure 4-31. Interrupt Acknowledge Cycles
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4.3.11 Special Bus Cycles

The Intel 486 processor provides specia bus cyclesto indicate that certain instructions have been
executed, or certain conditions have occurred internally. The special bus cycles are identified by
the status of the pins shown in Table 4-9.

During these cycles the address bus is driven low while the data bus is undefined.

Two of the special cyclesindicate halt or shutdown. Another special cycleis generated when the
Intel 486 processor executes an INVD (invalidate data cache) instruction and could be used to
flush an externa cache. The Write Back cycleis generated when the Intel486 processor executes
the WBINVD (write-back invalidate data cache) instruction and could be used to synchronize an
external write-back cache.

The externa hardware must acknowledge these special bus cycles by asserting RDY# or
BRDY#.

4.3.11.1  HALT Indication Cycle

The Intel 486 processor halts asaresult of executingaHALT instruction. A HALT indication cy-
cleisperformed to signal that the processor has entered into the HALT state. The HALT indica-

tion cycleisidentified by thebusdefinition signalsin specia buscycle state and by abyte address

of 2. BEO# and BE2# are the only signals that distinguish HALT indication from shutdown indi-

cation, which drives an address of 0. During the HALT cycle, undefined data is driven on D31—
DO. The HALT indication cycle must be acknowledged by RDY# asserted.

A halted Intel486 processor resumes execution when INTR (if interrupts are enabled), NMI, or
RESET is asserted.

4.3.11.2  Shutdown Indication Cycle

The Intel486 processor shuts down as a result of a protection fault while attempting to process :
double fault. A shutdown indication cycle is performed to indicate that the processor has enterec
a shutdown state. The shutdown indication cycle is identified by the bus definition signals in spe-
cial bus cycle state and a byte address of 0.

4.3.11.3  Stop Grant Indication Cycle

A special Stop Grant bus cycle is driven to the bus after the processor recognizes the STPCLKj/
interrupt. The definition of this bus cycle is the same as the HALT cycle definition for the
Intel486 processor, with the exception that the Stop Grant bus cycle drives the value 0000 0010F
on the address pins. The system hardware must acknowledge this cycle by asserting RDY# o
BRDY#. The processor does not enter the Stop Grant state until either RDY# or BRDY# has beer
asserted. (Sefeigure 4-32)

The Stop Grant Bus Cycle is defined as follows:

M/IO# =0, D/IC# = 0, W/R# = 1, Address Bus = 0000 0010H (A4 = 1), BE3#-BEO# = 1011, Data
bus = undefined.
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The latency between a STPCLK# request and the Stop Grant bus cycle is dependent on the cur-
rent instruction, the amount of data in the processor write buffers, and the system memory per-
formance.

Table 4-9. Special Bus Cycle Encoding

Cycle Name M/IO# D/C# W/R# BE3#-BEO# A4-A2
Write-Back" 0 0 1 0111 000

First Flush Ack CycIeJr 0 0 1 0111 001
Flush? 0 0 1 1101 000

Second Flush Ack Cycle' 0 0 1 1101 001
Shutdown 0 0 1 1110 000

HALT 0 0 1 1011 000

Stop Grant Ack Cycle 0 0 1 1011 100

T These cycles are specific to the Write-Back Enhanced IntelDX4™ processor. The FLUSH# cycle is
applicable to all Intel486™ processors. See appropriate sections for details.
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|
BRDY# or RDY# |
I

A4401-01

Figure 4-32. Stop Grant Bus Cycle
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4.3.12 Bus Cycle Restart

In amulti-master system, another bus master may require the use of the bus to enablethe Intel 486
processor to completeits current bus request. In thissituation, the Intel 486 processor must restart
its bus cycle after the other bus master has completed its bus transaction.

A bus cycle may be restarted if the external system asserts the backoff (BOFF#) input. The
Intel486 processor samples the BOFF# pin every clock cycle. When BOFF# is asserted, the
Intel 486 processor floats its address, data, and status pinsin the next clock (see Figures 4-33 and
4-34). Any bus cycle in progress when BOFF# is asserted is aborted and any data returned to the
processor isignored. The pins that are floated in response to BOFF# are the same as those that
are floated in response to HOLD. HLDA is not generated in response to BOFF#. BOFF# has
higher priority than RDY# or BRDY#. If either RDY# or BRDY # are asserted in the same clock
as BOFF#, BOFF# takes effect.

Ti T1 T2 Tb Tb Tib T2 T2 T2 T2 T2

W an _y

A31-A2
M/IO#
D/C# X

100 | ) { 100 | X104! Y108 Yioc

BE3#-BEO#

X_
rove I N N NUL N
scove AT TN AN (770N AT 7T

\J \J \/
BOFF# \ /

7 7 \
OO0

1t To Processor

242202-097

Figure 4-33. Restarted Read Cycle
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Figure 4-34. Restarted Write Cycle

The device asserting BOFF# is free to run cycles while the Intel486 processor busisin its high
impedance state. If backoff is requested after the Intel486 processor has started a cycle, the new
master should wait for memory to assert RDY# or BRDY# before assuming control of the bus.
Waiting for RDY# or BRDY # provides a handshake to ensure that the memory system is ready
to accept anew cycle. If the busisidle when BOFF# is asserted, the new master can start itscycle
two clocks after issuing BOFF#.

The external memory can view BOFF# in the same manner as BLAST#. Asserting BOFF# tells
the external memory system that the current cycleisthelast cyclein atransfer.

The bus remains in the high impedance state until BOFF# is deasserted. Upon negation, the
Intel486 processor restartsits bus cycle by driving out the address and status and asserting ADS#.
The bus cycle then continues as usual .

Asserting BOFF# during a burst, BS8#, or BS16# cycle forces the Intel486 processor to ignore
datareturned for that cycle only. Data from previous cyclesis still valid. For example, if BOFF#
is asserted on the third BRDY # of aburst, the Intel486 processor assumes the data returned with
the first and second BRDY # is correct and restarts the burst beginning with the third item. The
same rule applies to transfers broken into multiple cycles by BS8# or BS16#.

Asserting BOFF# in the same clock as AD S# causes the Intel 486 processor to float its busin the
next clock and leave ADS# floating low. Because ADS# is floating low, a peripheral may think
that a new bus cycle has begun even though the cycle was aborted. There are two possible solu-
tions to this problem. The first is to have all devices recognize this condition and ignore ADS#
until RDY# is asserted. The second approach is to use a “two clock” backoff: in the first clock
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AHOLD is asserted, and in the second clock BOFF# is asserted. This guarantees that ADS# is
not floating low. Thisis necessary only in systems where BOFF# may be asserted in the same

clock as ADSH.

4.3.13 Bus States

A bus state diagram is shown in Figure 4-35. A description of the signals used in the diagram is

givenin Table 4-10.

(RDY# Asserted + (BRDY# - BLAST#) Asserted) -
(HOLD + AHOLD + No Request) - BOFF# Deasserted

Request Pending - (RDY# Asserted +
(BRDY# - BLAST#) Asserted) -
HOLD Deasserted - AHOLD Deasserted - BOFF# Deasserted

Request Pending -

HOLD Deasserted -
AHOLD Deasserted - " \ T1
BOFF# Deasserted

BOFF#
Asserted

BOFF#
Deasserted

BOFF# Asserted

i
l

AHOLD Deasserted -
BOFF# Deasserted -
(HOLD) Deasserted’

THOLD is only factored into this state transition if T, was
entered while a non-cacheable. non-burst, code prefetch was
in progress. Otherwise, ignore HOLD.

240950-069

Figure 4-35. Bus State Diagram
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Table 4-10. Bus State Description

State Means

Ti |Busisidle. Address and status signals may be driven to undefined values, or the bus may be floated
to a high impedance state.

T1 |First clock cycle of a bus cycle. Valid address and status are driven and ADS# is asserted.

T2 | Second and subsequent clock cycles of a bus cycle. Data is driven if the cycle is a write, or data is
expected if the cycle is a read. RDY# and BRDY# are sampled.

T1, |Firstclock cycle of a restarted bus cycle. Valid address and status are driven and ADS# is asserted.

T, |Second and subsequent clock cycles of an aborted bus cycle.

4.3.14 Floating-Point Error Handling for the IntelDX2™ and IntelDX4™
Processors

The IntelDX2 and IntelDX4 processors provide two options for reporting floating-point errors.
The simplest method is to raise interrupt 16 whenever an unmasked floating-point error occurs.
This option may be enabled by setting the NE bit in control register 0 (CRO).

The IntelDX 2 and Intel DX 4 processors also provide the option of alowing external hardware to
determine how floating-point errors are reported. This option is necessary for compatibility with
the error reporting scheme used in DOS-based systems. The NE bit must be cleared in CRO to
enable user-defined error reporting. User-defined error reporting is the default condition because
the NE bit is cleared on reset.

Two pins, floating-point error (FERR#, an output) and ignore numeric error (IGNNE#, an input)

are provided to direct the actions of hardware if user-defined error reporting is used. The
IntelDX2 and Intel DX 4 processors assert the FERR# output to indicate that afloating-point error

has occurred. FERR# corresponds to the ERROR# pin on the Intel387™ math coprocessor. How-
ever, there is a difference in the behavior of the two.

In some cases FERR# is asserted when the next floating-point instruction is encountered, and in
other cases it is asserted before the next floating-point instruction is encountered, depending upon
the execution state of the instruction causing the exception.

4.3.14.1  Floating-Point Exceptions

The following class of floating-point exceptions drive FERR# at the time the exception occurs
(i.e., before encountering the next floating-point instruction).

1. The stack fault, invalid operation, and denormal exceptions on all transcendental
instructions, integer arithmetic instructions, FSQRT, FSEALE, FPREM(1), FXTRACT,
FBLD, and FBSTP.

2. Any exceptions on store instructions (including integer store instructions).

The following class of floating-point exceptions drive FERR# only after encountering the next
floating-point instruction.
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3. Exceptions other than on all transcendental instructions, integer arithmetic instructions,
FSQRT, FSCALE, FPREM(1), FXTRACT, FBLD, and FBSTP.

4. Any exception on al basic arithmetic, load, compare, and control instructions (i.e., all
other instructions).

For both sets of exceptions above, the Intel 387 math coprocessor asserts ERROR# when the error
occurs and does not wait for the next floating-point instruction to be encountered.

IGNNE#isan input to theIntel DX 2 and Intel DX 4 processors. Whenthe NE bit in CRO is cleared,
and IGNNE# is asserted, the Intel DX 2 and Intel DX 4 processorsignore user floating-point errors
and continue executing floating-point instructions. When IGNNE# is deasserted, the IGNNE# is
an input to these processors that freeze on floating-point instructions that get errors (except for
the control instructions FNCLEX, FNINIT, FNSAVE, FNSTENV, FNSTCW, FNSTSW,
FNSTSW AX, FNENI, FNDISI and FNSETPM). IGNNE# may be asynchronousto the Intel DX2
and IntelDX4 processor clock.

In systemswith user-defined error reporting, the FERR# pin is connected to the interrupt control -
ler. When an unmasked floating-point error occurs, an interrupt is raised. If IGNNE# is high at
thetime of thisinterrupt, the IntelDX 2 and Intel DX 4 processors freeze (disallowing execution of
a subsequent floating-point instruction) until the interrupt handler is invoked. By driving the
IGNNE# pin low (when clearing the interrupt request), the interrupt handler can alow execution
of afloating-point instruction, within the interrupt handler, before the error condition is cleared
(by FNCLEX, FNINIT, FNSAVE or FNSTENV). If execution of anon-control floating-point in-
struction, within the floating-point interrupt handler, is not needed, the IGNNE# pin can be tied
high.

4.3.15 IntelDX2™ and IntelDX4™ Processors Floating-Point Error Handling in
AT-Compatible Systems

The IntelDX2 and Intel DX 4 processors provide special features to alow the implementation of
an AT-compatible numerics error reporting scheme. Thesefeatures DO NOT replace the external
circuit. Logicisstill required that decodesthe OUT FO instruction and latches the FERR# signal.
The use of these Intel Processor features is described below.

* The NE bit in the Machine Status Register
* ThelGNNE# pin
* The FERR# pin

The NE bit determines the action taken by the Intel DX 2 and Intel DX 4 processors when anumer-
icserror is detected. When set, this bit signals that non-DOS compatible error handling isimple-
mented. In this mode the IntelDX2 and IntelDX4 processors take a software exception (16) if a
numerics error is detected.

If the NE hit is reset, the Intel DX 2 and Intel DX 4 processors use the IGNNE# pin to allow an ex-
ternal circuit to control the time a which non-control numerics instructions are allowed to exe-
cute. Note that floating-point control instructions such as FNINIT and FNSAV E can be executed
during afloating-point error condition regardless of the state of IGNNE#.
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To process a floating-point error in the DOS environment, the following sequence must take
place:

1. Theerrorisdetected by the Intel DX2 and IntelDX4 processor that activates the FERR#
pin.
2. FERR#islatched so that it can be cleared by the OUT FO instruction.

3. Thelatched FERR# signal activates an interrupt at the interrupt controller. This interrupt
isusualy handled on IRQ13.

4. The Interrupt Service Routine (ISR) handles the error and then clears the interrupt by
executing an OUT instruction to port FO. The address FO is decoded externally to clear the
FERR# latch. The IGNNE# signal is also activated by the decoder output.

5. Usually the ISR then executes an FNINIT instruction or other control instruction before
restarting the program. FNINIT clears the FERR# output.

Figure 4-36 illustrates a sample circuit that performs the function described above. Note that this
circuit has not been tested and is included as an example of required error handling logic.

Note that the IGNNE# input allows non-control instructions to be executed prior to the time the
FERR# signal is reset by the IntelDX2 and IntelDX4 processors. This function is implemented
to alow exact compatibility with the AT implementation. Most programs re-initialize the Float-
ing-Point Unit (FPU) before continuing after an error is detected. The FPU can be re-initialized
using one of the following four instructions. FCLEX, FINIT, FSAVE and FSTENV.
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Figure 4-36. DOS-Compatible Numerics Error Circuit
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4.4 ENHANCED BUS MODE OPERATION (WRITE-BACK MODE) FOR THE
WRITE-BACK ENHANCED IntelDX4™ PROCESSOR

All Intel486™ processors operate in Standard Bus (write-through) mode. However, when the in-
ternal cache of the Write-Back Enhanced IntelDX4 processor is configured in write-back mode,
the processor bus operates in the Enhanced Bus mode. This section describes how the Write-Back
Enhanced Intel486 processor bus operation changes for the Enhanced Bus mode when the inter-
nal cache is configured in write-back mode.

4.41 Summary of Bus Differences

The following is a list of the differences between the Enhanced Bus and Standard Bus modes. In
Enhanced Bus mode:

1. Burst write capability is extended to four doubleword burst cycles (for write-back cycles
only).

2. Four new signals: INV, WB/WT#, HITM#, and CACHE#, have been added to support the
write-back operation of the internal cache. These signals function the same as the
equivalent signals on the Pentifir®verDrive® processor pins.

3. The SRESET signal has been modified so that it does not write back, invalidate, or disable
the cache. Special test modes are also not initiated through SRESET.

4. The FLUSH# signal behaves the same asthe WBINV D instruction. Upon assertion,
FLUSH# writes back all modified lines, invalidates the cache, and issues two special bus
cycles.

5. The PLOCK# signal remains deasserted.

4.4.2 Burst Cycles

Figure 4-37 shows a basic burst read cycle of the Write-Back Enhanced IntelDX4 processor. In

the Enhanced Bus mode, both PCD and CA CHE# are asserted if the cycleisinternally cacheable.

The Write-Back Enhanced IntelDX4 processor samples KEN# in the clock before the first

BRDY#. If KEN# is asserted by the system, this cycle istransformed into a multiple-transfer cy-

cle. With each data item returned from external memory, the data is “cached” only if KEN# is
asserted again in the clock before the last BRDY# signal. Data is sampled only in the clock in
which BRDY# is asserted. If the data is not sent to the processor every clock, it causes a “slow
burst” cycle.
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Figure 4-37. Basic Burst Read Cycle
4421 Non-Cacheable Burst Operation

When CACHE# is asserted on a read cycle, the processor follows with BLAST# high when
KEN# is asserted. However, the converse is not true. The Write-Back Enhanced IntelDX4 pro-
cessor may elect to read burst data that are identified as non-cacheable by either CACHE# or
KEN#. In this case, BLAST# is aso high in the same cycle as the first BRDY# (in clock four).
To improve performance, the memory controller should try to complete the cycle asaburst cycle.

The assertion of CACHE# on a write cycle signifies a replacement or snoop write-back cycle.
These cycles consist of four doubleword transfers (either bursts or non-burst). The signals KEN#
and WB/WT# are not sampled during write-back cycles because the processor does not attempt
to redefine the cacheability of theline.

4422 Burst Cycle Signal Protocol

The signals from ADS# through BLAST#, which are shown in Figure 4-37, have the same func-
tion and timing in both Standard Bus and Enhanced Bus modes. Burst cycles can be up to 16-
bytes long (four aligned doublewords) and can start with any one of the four doublewords. The
sequence of the addresses is determined by the first address and the sequence follows the order
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shown in Table 4-8 on page 4-27. The burst order for reads is the same as the burst order for
writes. (See Section 4.3.4.2, “Burst and Cache Line Fill Ordgr.”

An attempted line fill caused by a read miss is indicated by the assertion of CACHE# and W/R#.
For a line fill to occur, the system must assert KEN# twice: one clock prior to the first BRDY#
and one clock prior to last BRDY#. It takes only one deassertion of KEN# to mark the line as
non-cacheable. A write-back cycle of a cache line, due to replacement or snoop, is indicated by
the assertion of CACHE# low and W/R# high. KEN# has no effect during write-back cycles.
CACHE# is valid from the assertion of ADS# through the clock in which the first RDY# or
BRDY# is asserted. CACHE# is deasserted at all other times. PCD behaves the same in Enhanced
Bus mode as in Standard Bus mode, except that it is low during write-back cycles.

The Write-Back Enhanced IntelDX4 processor samples WB/WT# once, sartleeclock as the
first BRDY#. This sampled value of WB/WT# is combined with PWT to bring the line into the
internal cache, either as a write-back line or write-through line.

443 Cache Consistency Cycles

The system performs snooping to maintain cache consistency. Snoop cycles can be performed
under AHOLD, BOFF#, or HOLD, as describedTiable 4-11

Table 4-11. Snoop Cycles under AHOLD, BOFF#, or HOLD

Floats the address bus. ADS# is asserted under AHOLD only to initiate a snoop write-back cycle.
An ongoing burst cycle is completed under AHOLD. For non-burst cycles, a specific non-burst
transfer (ADS#-RDY# transfer) is completed under AHOLD and fractured before the next
assertion of ADS#. A snoop write-back cycle is reordered ahead of a fractured non-burst cycle
and the non-burst cycle is completed only after the snoop write-back cycle is completed,
provided there are no other snoop write-back cycles scheduled.

AHOLD

Overrides AHOLD and takes effect in the next clock. On-going bus cycles will stop in the clock
BOFF# | following the assertion of BOFF# and resume when BOFF# is de-asserted. The snoop write-back
cycle begins after BOFF# is de-asserted followed by the backed-off cycle.

HOLD is acknowledged only between bus cycles, except for a non-cacheable, non-burst code
prefetch cycle. In a non-cacheable, non-burst code prefetch cycle, HOLD is acknowledged after
the system asserts RDY#. Once HOLD is asserted, the processor blocks all bus activities until
the system releases the bus (by de-asserting HOLD).

HOLD

The snoop cycle begins by checking whether a particular cache line has been “cached” and inval-
idates the line based on the state of the INV pin. If the Write-Back Enhanced IntelDX4 processor
is configured in Enhanced Bus mode, the system must drive INV high to invalidate a particular
cache line. The Write-Back Enhanced IntelDX4 processor does not have an output pin to indicate
a snoop hitto an S-state line or an E-state line. However, the Write-Back Enhanced IntelDX4 pro-
cessor invalidates the line if the system snoop hits an S-state, E-state, or M-state line, provided
INV was driven high during snooping. If INV is driven low during a snoop cycle, a modified line

is written back to memory and remains in the cache as a write-back line; a write-through line also
remains in the cache as a write-through line.

After asserting AHOLD or BOFF#, the external bus master driving the snoop cycle must wait for
two clocks before driving the snoop address and asserting EADS#. If snooping is done under
HOLD, the master performing the snoop must wait for at least one clock cycle before driving the
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snoop addresses and asserting EADS#. INV should be driven low during read operations to min-
imize invalidations, and INV should be driven high to invalidate a cache line during write oper-
ations. The Write-Back Enhanced IntelDX4 processor asserts HITM# if the cycle hitsamodified
linein the cache. Thisoutput signa becomes valid two clock periods after EADS# isvalid on the
bus. HITM# remains asserted until the modified line is written back and remains asserted until
the RDY# or BRDY # of the snoop cycleis asserted. Snoop operations could interrupt an ongoing
bus operation in both the Standard Bus and Enhanced Bus modes. The Write-Back Enhanced
Intel DX4 processor can accept EADS# in every clock period while in Standard Bus mode. In En-
hanced Bus mode, the Write-Back Enhanced Intel DX4 processor can accept EADS# every other
clock period or until asnoop hits an M-state line. The Write-Back Enhanced IntelD X4 processor
does not accept any further snoop cycles inputs until the previous snoop write-back operation is
completed.

All write-back cycles adhere to the burst address sequence of 0-4-8-C. The CACHE#, PWT, and
PCD output pins are asserted and the KEN# and WB/W T# input pins are ignored. Write-back cy-
cles can be either burst or non-burst. All write-back operations write 16 bytes of datato memory
corresponding to the modified line that hit during the snoop.

NOTE

Note that the Write-Back Enhanced Intel DX 4 processor accepts BS8# and
BS16# line-fill cycles, but not on replacement or snoop-forced write-back
cycles.
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4431

Snoop Collision with a Current Cache Line Operation

intel.

The system can al so perform snooping concurrent with a cache access and may collidewith acur-
rent cache bus cycle. Table 4-12 lists some scenarios and the results of a snoop operation collid-
ing with an on-going cache fill or replacement cycle.

Table 4-12. Various Scenarios of a Snoop Write-Back Cycle Colliding with an On-Going
Cache Fill or Replacement Cycle

Arbi- Snoop to the Line Sn_oop toa Diffe_rent Snoop to the_ Line Sn_oop toa Diffe_rent
tration That Is Being Filled Line than the Line That Is Being Line than the Line
Control Being Filled Replaced Being Replaced
AHOLD | Read all line fill data | Complete fill if the Complete replacement | Complete replacement

into cache line buffer. | cycle is burst. Start write-back if the cycle | write-back if it is a burst
Update cache only if | SN°0P write-back. is burst. F_'rqc_:essor cyt_:le. Initiate snoop
snoop occurred with | If the cycle is non- does not initiate a write-back.
INV=0 burst, the snoop write- snoog WST_‘?;\;’ZCk'tﬁ’“t If the replacement write-
No write-back cycle bﬁck is reordered ?hsesfe ;Iacemenlt“\)vlrite- back is a non_—btfrst cycle,
because the line has | @head of the line fill. back is completed the snoop write-back
not been modified | After the snoop write- S P ' cycle is re-ordered in
yet. back cycle is If the replacement front of the replacement
completed, continue cycle is non-burst, the | cycle. After the snoop
with line fill. snoop write-back is re- | write-back, the
ordered ahead of the replacement write-back
replacement write- is continued from the
back cycle. The interrupt point.
processor does not
continue with the
replacement write-
back cycle.

BOFF# | Stop reading line fill | Stop fill Stop replacement Stop replacement write-
data Wait for BOFF# to be | Write-back back
Wait for BOFF# to be | deasserted. Wait for BOFF# to be | Wait for BOFF# to be de-
deasserted. Do snoop write-back deasserted. asserted
Continue read from Continue fill from Initiate snoop write- Initiate snoop write-back
backed off point ) ] back .

.. | interrupt point. Continue replacement
Update cache only if Processor does not write-back from point of
snoop occurred with continue replacement | interrupt.
INV ="0". write-back.

HOLD |HOLD is not acknowledged until the current bus cycle (i.e., the line operation) is completed,
except for a non-cacheable, non-burst code prefetch cycle. Consequently there can be no
collision with the snoop cycles using HOLD, except as mentioned earlier. In this case the snoop
write-back is re-ordered ahead of an on-going non-burst, non-cached code prefetch cycle. After
the write-back cycle is completed, the code prefetch cycle continues from the point of interrupt.

4432 Snoop under AHOLD

Snooping under AHOLD begins by asserting AHOLD to force the Write-Back Enhanced
IntelDX4 processor to float the address bus, as shown in Figure 4-38. The ADS# for the write-
back cycle is guaranteed to occur no sooner than the second clock following the assertion of
HITM# (i.e., there is a dead clock between the assertion of HITM# and the first ADS# of the
snoop write-back cycle).
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When alineiswritten back, KEN#, WB/WT#, BS8#, and BS16# areignored, and PWT and PCD
are always low during write-back cycles.
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Figure 4-38. Snoop Cycle Invalidating a Modified Line

The next ADS# for a new cycle can occur immediately after the last RDY# or BRDY# of the
write-back cycle. The Write-Back Enhanced Intel DX 4 processor does not guarantee adead clock
between cycles unless the second cycle is a snoop-forced write-back cycle. This allows snoop-
forced write-backs to be backed off (BOFF#) when snooping under AHOLD.

HITM# is guaranteed to remain asserted until the RDY # or BRDY # signals corresponding to the
last doubleword of the write-back cycleisreturned. HITM# is de-asserted from the clock edgein
which thelast BRDY# or RDY # for the snoop write-back cycle isasserted. The write-back cycle
could be aburst or non-burst cycle. In either case, 16 bytes of data corresponding to the modified
line that has a snoop hit is written back.
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Snoop under AHOLD Overlaying a Line-Fill Cycle

The assertion of AHOLD during alinefill isallowed on the Write-Back Enhanced IntelDX4 pro-
cessor. Inthis case, when a snoop cycleisoverlaid by an on-going line-fill cycle, the chipset must
generate the burst addresses internally for the line fill to complete, because the address bus has
the valid snoop address. The write-back mode is more complex compared to the write-through
mode because of the possibility of a line being written back. Figure 4-39 shows a snoop cycle
overlaying aline-fill cycle, when the snooped lineis not the same as the line being filled.

In Figure 4-39, the snoop to an M-state line causes a snoop write-back cycle. The Write-Back En-
hanced IntelDX4 processor asserts HITM# two clocks after the EADSH, but delays the snoop
write-back cycle until the line fill is completed, because the line fill shown in Figure4-39 is a
burst cycle. In thisfigure, AHOLD is asserted one clock after ADS#. In the clock after AHOLD
isasserted, the Write-Back Enhanced I ntel DX 4 processor floats the address bus (not the Byte En-
ables). Hence, the memory controller must determine burst addresses in this period. The chipset
must comprehend the special ordering required by all burst sequences of the Write-Back En-
hanced IntelDX4 processor. HITM# is guaranteed to remain asserted until the write-back cycle
completes.

If AHOLD continues to be asserted over the forced write-back cycle, the memory controller aso
must supply the write-back addresses to the memory. The Write-Back Enhanced IntelDX4 pro-
cessor always runs the write-back with an address sequence of 0-4-8-C.

In general, if the snoop cycle overlaysany burst cycle (not necessarily aline-fill cycle) the snoop
write-back is delayed because of the on-going burst cycle. First, the burst cycle goesto comple-
tion and only then does the snoop write-back cycle start.
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Figure 4-39. Snoop Cycle Overlaying a Line-Fill Cycle
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AHOLD Snoop Overlaying a Non-Burst Cycle

When AHOLD overlays a non-burst cycle, snooping is based on the completion of the current
non-burst transfer (ADS#RDY # transfer). Figure 4-40 shows asnoop cycle under AHOLD over-
laying a non-burst line-fill cycle. HITM# is asserted two clocks after EADS#, and the non-burst
cycleisfractured after the RDY # for a specific single transfer is asserted. The snoop write-back
cycleisre-ordered ahead of an ongoing non-burst cycle. After the write-back cycleiscompleted,
the fractured non-burst cycle continues. The snoop write-back ALWAY S precedes the comple-
tion of a fractured cycle, regardless of the point at which AHOLD is de-asserted, and AHOLD
must be de-asserted before the fractured non-burst cycle can complete.
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Figure 4-40. Snoop Cycle Overlaying a Non-Burst Cycle
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AHOLD Snoop tothe Same Linethat isbeing Filled

A system snoop does not cause awrite-back cycle to occur if the snoop hits a line while the line
isbeing filled. The processor does not allow alineto be modified until the fill is completed (and
a snoop only produces awrite-back cycle for amodified line). Although a snoop to aline that is
being filled does not produce awrite-back cycle, the snoop still has an effect based on the foll ow-
ing rules:

1. The processor aways snoops the line being filled.
2. Inal cases, the processor uses the operand that triggered the linefill.

3. If the snoop occurs when INV = “1", the processor never updates the cache with the fill
data.

4. If the snoop occurs when INV = “0”, the processor loads the line into the internal cache.

4.43.3 Snoop During Replacement Write-Back

If the cache contains valid data during a line fill, one of the cache lines may be replaced as deter
mined by the Least Recently Used (LRU) algorithm. Ref&hapter 6, “Cache Subsysteffot

a detailed discussion of the LRU algorithm. If the line being replaced is modified, this line is writ-
ten back to maintain cache coherency. When a replacement write-back cycle is in progress, i
might be necessary to snoop the line that is being written backrFi@ee 4-41)
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Figure 4-41. Snoop to the Line that is Being Replaced

If the replacement write-back cycle is burst and there is a snoop hit to the same line as the line
that is being replaced, the on-going replacement cycle runsto completion. HITM# is asserted un-
til the line is written back and the snoop write-back is not initiated. In this case, the replacement
write-back is converted to the snoop write-back, and HITM# is asserted and de-asserted without
aspecific ADS# to initiate the write-back cycle.

If thereisasnoop hit to adifferent line from the line being replaced, and if the replacement write-
back cycleisburst, the replacement cycle goesto completion. Only then is the snoop write-back
cycleinitiated.

If the replacement write-back cycle is a non-burst cycle, and if there is a snoop hit to the same
line astheline being replaced, it fractures the replacement write-back cycle after RDY # is assert-
ed for the current non-burst transfer. The snoop write-back cycleisreordered in front of the frac-
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tured replacement write-back cycle and is completed under HITM#. However, after AHOLD is
deasserted, the replacement write-back cycle is not completed.

If thereisasnoop hit to alinethat is different from the one being replaced, the non-burst replace-
ment write-back cycleis fractured, and the snoop write-back cycle is reordered ahead of the re-
placement write-back cycle. After the snoop write-back iscompleted, the replacement write-back
cycle continues.

4434 Snoop under BOFF#

BOFF# is capable of fracturing any transfer, burst or non-burst. The output pins (see Table 4-8
and Table 4-12) of the Write-Back Enhanced IntelDX4 processor are floated in the clock period
following the assertion of BOFF#. If the system snoop hits a modified line using BOFF#, the
snoop write-back cycle is reordered ahead of the current cycle. BOFF# must be de-asserted for
the processor to perform a snoop write-back cycle and resume the fractured cycle. The fractured
cycle resumes with a new ADS# and begins with the first uncompleted transfer. Snoops are per-
mitted under BOFF#, but write-back cycles are not started until BOFF# is de-asserted. Conse-
quently, multiple snoop cycles can occur under a continuously asserted BOFF#, but only up to
the first asserted HITM#.

Snoop under BOFF# during Cache Line Fill

Asshownin Figure 4-42, BOFF# fracturesthe second transfer of anon-burst cacheline-fill cycle.
The system begins snooping by driving EADS# and INV in clock six. The assertion of HITM#
in clock eight indicates that the snoop cycle hit amodified line and the cache line is written back
to memory. The assertion of HITM# in clock eight and CACHE# and ADS# in clock ten identi-
fies the beginning of the snoop write-back cycle. ADSH# is guaranteed to be asserted no sooner
than two clock periods after the assertion of HITM#. Write-back cycles aways use the four-dou-
bleword address sequence of 0-4-8-C (burst or non-burst). The snoop write-back cycle begins
upon the de-assertion of BOFF# with HI TM# asserted throughout the duration of the snoop write-
back cycle.

If the snoop cycle hitsaline that is different from the line being filled, the cache line fill resumes
after the snoop write-back cycle completes, as shown in Figure 4-42.
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Figure 4-42. Snoop under BOFF# during a Cache Line-Fill Cycle

An ADSH# is always issued when a cycle resumes after being fractured by BOFF#. The address
of the fractured data transfer is reissued under this ADS#, and CACHE# is not issued unless the
fractured operation resumes from the first transfer (e.g., first doubleword). If the system asserts
BOFF# and RDY # simultaneously, as shown in clock four on Figure 4-42, BOFF# dominates and
RDY# isignored. Consequently, the Write-Back Enhanced IntelDX4 processor accepts only up
to the x4h doubleword, and the line fill resumes with the xOh doubleword. ADS# initiates the re-
sumption of the line-fill operation in clock period 15. HITM# is de-asserted in the clock period
following the clock period inwhich thelast RDY # or BRDY # of the write-back cycleis asserted.
Hence, HITM# is guaranteed to be de-asserted before the ADS# of the next cycle.
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Figure 4-42 a so shows the system asserting RDY # to indicate a non-burst line-fill cycle. Burst
cache line-fill cycles behave similarly to non-burst cache line-fill cycles when snooping using
BOFF#. If the system snoop hits the same line as the line being filled (burst or non-burst), the
Write-Back Enhanced IntelDX4 processor does not assert HITM# and does not issue a snoop
write-back cycle, because the line was not modified, and the linefill resumes upon the de-asser-
tion of BOFF#. However, the linefill is cached only if INV isdriven low during the snoop cycle.

Snoop under BOFF# during Replacement Write-Back

If the system snoop under BOFF# hits the line that is currently being replaced (burst or non-
burst), the entire line is written back as a snoop write-back line, and the replacement write-back
cycleis not continued. However, if the system snoop hits a different line than the one currently
being replaced, the replacement write-back cycle continues after the snoop write-back cycle has
been completed. Figure 4-43 shows a system snoop hit to the same line as the one being replaced
(non-burst).
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Figure 4-43. Snoop under BOFF# to the Line that is Being Replaced
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4435 Snoop under HOLD

HOLD can only fracture a non-cacheable, non-burst code prefetch cycle. For al other cycles, the
Write-Back Enhanced IntelDX4 processor does not assert HLDA until the entire current cycleis
completed. If the system snoop hits a modified line under HLDA during a non-cacheable, non-
burstable code prefetch, the snoop write-back cycleisreordered ahead of the fractured cycle. The
fractured non-cacheable, non-burst code prefetch resumeswith an ADS# and beginswith thefirst
uncompl eted transfer. Snoops are permitted under HLDA, but write-back cycles do not occur un-
til HOL D is de-asserted. Consequently, multiple snoop cycles are permitted under a continuously
asserted HLDA only up to the first asserted HITM#.

Snoop under HOL D during Cache LineFill

As shown in Figure 4-44, HOLD (asserted in clock two) does not fracture the burst cache line-
fill cycleuntil thelinefill iscompleted (in clock five). Upon completing thelinefill in clock five,
the Write-Back Enhanced Intel DX 4 processor asserts HLDA and the system begins snooping by
driving EADS# and INV in the following clock period. The assertion of HITM# in clock nine
indicates that the snoop cycle has hit amodified line and the cache lineiswritten back to memory.
The assertion of HITM#in clock nine and CACHE# and ADS#in clock 11 identifies the begin-
ning of the snoop write-back cycle. The snoop write-back cycle begins upon the de-assertion of
HOLD, and HITM# is asserted throughout the duration of the snoop write-back cycle.

4-64 I



Intel® BUS OPERATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

S VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA

wowo [ \

/ \

_/

w T X L
\ /
wna X Lirefil an i /////] A
rare X o XeXeX(e) LT o X XCe XX
st \_/ L/

\_/ ./
cacker  \ |/ ./

sore —\/\ S\ VaVaVaV,
wire T\ / \

T To Processor
242202-156

Figure 4-44. Snoop under HOLD during Line Fill

If HOLD is asserted during a non-cacheable, non-burst code prefetch cycle, as shown in
Figure 4-45, the Write-Back Enhanced IntelDX4 processor issues HLDA in clock seven (which
isthe clock period in which the next RDY# is asserted). If the system snoop hits amodified line,
the snoop write-back cycle begins after HOLD is released. After the snoop write-back cycle is
completed, an ADS# isissued and the code prefetch cycle resumes.
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Figure 4-45. Snoop using HOLD during a Non-Cacheable, Non-Burstable Code Prefetch

4.4.3.6

Snoop under HOLD during Replacement Write-Back

Collision of snoop cycles under a HOLD during the replacement write-back cycle can never oc-
cur, because HLDA is asserted only after the replacement write-back cycle (burst or non-burst)
iscompleted.
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4.4.4 Locked Cycles

In both Standard and Enhanced Bus modes, the Write-Back Enhanced IntelDX4 processor archi-
tecture supports atomic memory access. A programmer can modify the contents of a memory
variable and be assured that the variable is not accessed by another bus master between the read
of the variable and the update of that variable. Thisfunction is provided for instructions that con-
tain a LOCK prefix, and also for instructions that implicitly perform locked read modify write
cycles. In hardware, the LOCK function isimplemented through the LOCK# pin, which indicates
to the system that the processor is performing this sequence of cycles, and that the processor
should be allowed atomic access for the location accessed during the first locked cycle.

A locked operation is a combination of one or more read cycles followed by one or more write
cycles with the LOCK# pin asserted. Before alocked read cycleis run, the processor first deter-
minesif the corresponding lineisin the cache. If thelineis present in the cache, and isin an E or
S state, it isinvalidated. If thelineisin the M state, the processor does a write-back and then in-
validatestheline. A locked cycleto an M, S, or E state line is always forced out to the bus. If the
operand is misaligned across cache lines, the processor could potentially run two write back cy-
cles before starting the first locked read. In this case the sequence of bus cycles is: write back,
write back, locked read, locked read, locked write and the final locked write. Note that athough
atotal of six cycles are generated, the LOCK# pin is asserted only during the last four cycles, as
shown in Figure 4-46.

LOCK#isnot deasserted if AHOLD is asserted in the middle of alocked cycle. LOCK# remains
asserted even if there is a snoop write-back during alocked cycle. LOCK# isfloated if BOFF# is
asserted in the middle of alocked cycle. However, it is driven LOW again when the cycle restarts
after BOFF#. Locked read cycles are never transformed into linefills, even if KEN# is asserted.
If there are back-to-back locked cycles, the Write-Back Enhanced Intel DX4 processor does not
insert a dead clock between these two cycles. HOLD is recognized if there are two back-to-back
locked cycles, and L OCK# floats when HLDA is asserted.
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Figure 4-46. Locked Cycles (Back-to-Back)
4441 Snoop/Lock Collision

If there is a snoop cycle overlaying a locked cycle, the snoop write-back cycle fractures the
locked cycle. As shown in Figure 4-47, after the read portion of the locked cycle is completed,
the snoop write-back starts under HITM#. After the write-back is completed, the locked cycle
continues. But during all this time (including the write-back cycle), the LOCK# signal remains
asserted.

Because HOLD is not acknowledged if LOCK# is asserted, snoop-lock collisions are restricted
to AHOLD and BOFF# snooping.
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Figure 4-47. Snoop Cycle Overlaying a Locked Cycle

445 Flush Operation

TheWrite-Back Enhanced Intel DX 4 processor executes aflush operation when the FLUSH# pin
is asserted, and no outstanding bus cycles, such as alinefill or write back, are being processed.
In the Enhanced Bus mode, the processor first writes back all the modified linesto external mem-
ory. After the write-back iscompleted, two special cyclesare generated, indicating to the external
system that the write-back is done. All lines in the internal cache are invalidated after al the
write-back cycles are done. Depending on the number of modified lines in the cache, the flush
could take aminimum of 1280 bus clocks (2560 processor clocks) and up to amaximum of 5000+
bus clocks to scan the cache, perform the write backs, invalidate the cache, and run the flush ac-
knowledge cycles. FLUSH# isimplemented as an interrupt in the Enhanced Bus mode, and isrec-
ognized only on an instruction boundary. Write-back system designs should look for the flush
acknowledge cycles to recognize the end of the flush operation. Figure 4-48 shows the flush op-
eration of the Write-Back Enhanced Intel DX 4 processor when configured in the Enhanced Bus
mode.
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If the processor isin Standard Bus mode, the processor does not issue specia acknowledge cycles
in response to the FLUSH# input, although the internal cache isinvalidated. The invalidation of
the cachein this case, takes only two bus clocks.
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Figure 4-48. Flush Cycle

4.4.6 Pseudo Locked Cycles

In Enhanced Bus mode, PLOCK# is always deasserted for both burst and non-burst cycles.
Hence, it is possible for other bus mastersto gain control of the bus during operand transfers that
take more than one bus cycle. A 64-bit aligned operand can be read in one burst cycle or two non-
burst cyclesif BS8# and BS16# are not asserted. Figure 4-49 shows a 64-hit floating-point oper-
and or Segment Descriptor read cycle, which isburst by the system asserting BRDY #.

4.4.6.1 Snoop under AHOLD during Pseudo-Locked Cycles

AHOLD can fracture a 64-hit transfer if it is a non-burst cycle. If the 64-bit cycle is burst, as
shown in Figure 4-49, the entire transfer goes to completion and only then does the snoop write-
back cycle start.
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Figure 4-49. Snoop under AHOLD Overlaying Pseudo-Locked Cycle
4.4.6.2 Snoop under Hold during Pseudo-Locked Cycles

As shown in Figure 4-50, HOL D does not fracture the 64-bit burst transfer. The Write-Back En-
hanced IntelDX4 processor does not issue HLDA until clock four. After the 64-bit transfer is
completed, the Write-Back Enhanced IntelDX4 processor writes back the modified line to mem-
ory (if snoop hits a modified line). If the 64-bit transfer is non-burst, the Write-Back Enhanced
IntelDX4 processor can issue HLDA in between bus cycles for a 64-bit transfer.
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Figure 4-50. Snoop under HOLD Overlaying Pseudo-Locked Cycle
4.4.6.3 Snoop under BOFF# Overlaying a Pseudo-Locked Cycle

BOFF# is capable of fracturing any bus operation. In Figure 4-51, BOFF# fractured a current 64-
bit read cycle in clock four. If thereis a snoop hit under BOFF#, the snoop write-back operation
begins after BOFF# is deasserted. The 64-bit write cycle resumes after the snoop write-back op-
eration completes.
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Figure 4-51. Snoop under BOFF# Overlaying a Pseudo-Locked Cycle
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CHAPTER 5
MEMORY SUBSYSTEM DESIGN

5.1 INTRODUCTION

The Intel486™ processor contains several improvements over its predecessor, the highly suc
cessful Intel386™ processor. One of the most important of these is the processor's data acce:
rate. The Intel486 processor can access instructions and data from its on-chip cache in the san
clock cycle. To support the processor's redesigned internal data path, the external bus has als
been optimized and can access external memory at twice the rate of the Intel386 CPU. The intet
nal cache requires rapid access to entire cache lines. Invalidation cycles must be supported t
maintain consistency with external memory. All of these functions must be supported by the ex-
ternal memory system. Without them, the full performance potential of the CPU cannot be at-
tained.

The requirements of multi-tasking and multiprocessor operating systems also place increased de
mand on the external memory system. OS support functions such as paging and context switchin
can degrade reference locality. Without efficient access to external memory, the performance of
these functions is degraded.

Second-level (also known as L2) caching is a technique used to improve the memory interface
Some applications, such as multi-user office computers, require this feature to meet performanc
goals. Single-user systems, on the other hand, may not warrant the extra cost. Due to the variet
of applications incorporating the Intel486 processor, memory system architecture is very diverse.

5.2 PROCESSOR AND CACHE FEATURE OVERVIEW

The improvements made to the processor bus interface impact the memory subsystem design.
is important to understand the impact of these features before attempting to define a memory suk
system. This section reviews the bus features that affect the memory interface.

NOTE
The Ultra-Low Power Intel486 GX processor supports only a 16-bit external
data bus. The other Intel486 processors discussed in this manual feature
dynamic bus sizing to accommodate 32-, 16-, and 8-bit devices.

5.2.1 The Burst Cycle

The Intel486 processor's burst bus cycle feature has more impact on the memory logic than an
other feature. A large portion of the control logic is dedicated to supporting this feature. The L2
cache control is also primarily dedicated to supporting burst cycles.

To understand why the logic is designed this way, we must first understand the function of the
burst cycle. Burst cycles are generated by the CPU only when two events occur. First, the CPL
must request a cycle which is longer in bytes than the data bus can accommodate. Second, tt
BRDY# signal must be activated to terminate the cycle. When these two events occur a burst cy
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cle takes place. Note that this cycle occurs regardless of the state of the KEN# input. The KEN#
input’s function is discussed in the next section.

With this definition we see that several cases are included as “burstable.” Some examples of
burstable cycles are listedTrable 5-1 These cycle lengths are shown in bytes to clarify the case
listed.

Table 5-1. Access Length of Typical CPU Functions

Bus Cycle Size (Bytes)
All code fetches 16
Descriptor loads 8
Cacheable reads 16
Floating-point operand loads 8
Bus size 8 (16) writes 4 (Max)

The last two cases show that write cycles are burstable. In the last case a write cycle is transferred
on an 8- or 16-bit bus. If BRDY# is returned to terminate this cycle, the CPU generates another
write cycle without activating ADS#.

Using the burst write feature has debatable performance benefit. Some systems may implement
special functions that benefit from the use of burst writes. However, the Intel486 processor does

not write cache lines. Therefore, all write cycles are 4 bytes long. Most of the devices that use

dynamic bus sizing are read-only. This fact further reduces the utility of burst writes.

Due to these facts, a memory subsystem design normally does not implement burst write cycles.
The BRDY# input is asserted only during main memory read cycles. RDY# is used to terminate

all memory write cycles. RDY# is also used for all cycles that are not in the memory subsystem

or are not capable of supporting burst cycles. The RDY# input is used, for example, to terminate
an EPROM or 1/O cycle.

5.2.2 The KEN# Input

The primary purpose of the KEN# input is to determine whether a cycle is to be cached. Only
read data and code cycles can be cached. Therefore, these cycles are the only cycles affected by
the KEN# input.

Figure 5-1shows a typical burst cycle. In this sequence, the value of KEN# is important in two
different places. First, to begin a cacheable cycle, KEN# must be active the clock before BRDY#
is returned. Second, KEN# is sampled the clock before BLAST# is active. At this time the CPU
determines whether this line is written to the cache.

The state of KEN# also determines when read cycles can be burst. Most read cycles are initiated
as 4 bytes long from the processor’s cache unit. When KEN# is sampled active, the clock before
BRDY# or RDY# is asserted, the cycle is converted to a 16-byte cache line fill by the bus unit.
This way, a cycle which would not have been burst can now be burst by activating BRDY#.

Some read cycles can be burst without activating KEN#. The most prevalent example of this type
of read cycle is a code fetch. All code fetches are generated as 16-byte cycles from the processor’s
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cache unit. So, regardiess of the state of KEN#, code fetches are always burstable. In addition,
several types of data read cycles are generated as 8-byte cycles. These cycles, mentioned previ-
ously, are descriptor loads and floating-point operand loads. These cycles can be burst at any
time.

Theuse of the KEN# input affects performance. The design example used in Figure 5-1 illustrates
one way to use thissignal effectively.
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Figure 5-1. Typical Burst Cycle

The primary concern when using KEN# is generating it in time for zero wait state read cycles.
Most main memory cycles are zero wait state if an L2 cache isimplemented. The access to main
memory is one wait state during most read cycles. Any cache access takes place with zero wait
states. KEN# must, therefore, be valid during the first T2 of any read cycle.

Oncethisrequirement is established, aproblem arises. Decode functions areinherently asynchro-

nous. Therefore, the decoded output that generates KEN# must be synchronized. If it is not, the

CPU’s setup and hold times are violated and internal metastability results. With synchronization,
the delay required to generate KEN# will be at least three clocks. In the example shown, four
clocks are required. In either case the KEN# signal will not be valid before BRDY# is returned
for zero or one walit state cycles.

This problem is resolved if KEN# is made actiFgure 5-2illustrates this function. In this dia-

gram KEN# is active during the first two clocks of the burst cycle. If this is a data read cycle,
KEN# being active at this time causes it to be converted to a 16-byte length. The decode and syr
chronization of KEN# takes place during the first two T2 states of the cycle. If the cycle turns out
to be non-cacheable, KEN# is deactivated in the third T2. Otherwise KEN# is left active and the
retrieved data is written to the cache.
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Figure 5-2. Burst Cycle: KEN# Normally Active

Some memory devices may be slow enough that 16-byte cycles are undesirable. In this case more
than three wait states exist. The KEN# signal can be deactivated prior to returning RDY# or
BRDY# if three or more wait states are present. As a result, these slow cycles are not converted
to 16-byte cache linefills.

5.2.3 Bus Characteristics

The internal cache causes other effects that impact the memory subsystem design. Perhaps the
most obvious of these is the effect on bus traffic. The fact that the internal cache uses the write-
through policy dramatically increases the number of write bus cycles. Figure 5-3 illustrates this
effect. The chart on the left shows the bus cycle mix for an application executed with the
Intel386 DX CPU. The chart on the right shows the same application executed with the Intel 486
processor. The percentage of write bus cycles jumps to 70% from 30% when this application is
executed with the Intel486 processor.
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Intel386™ Bus Cycle Mix - Intel486™ Bus Cycle Mix
Write
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Figure 5-3. Intel386™ Processor Bus Cycle Mix/Intel486™ Processor Bus Cycle Mix

It seems obvious that many of these write cycles would be consecutive. In fact, 70% of all write
cycles are consecutive. Furthermore, 50% of all write cycles occur three in-a-row. It is obvious
from these statistics that optimizing the memory subsystem for write cycles can improve perfor-
mance. But it isimportant to optimize the memory system for consecutive write cycles. Improv-
ing individual write cycle latency does not buy much performance improvement if subsequent
write cycles suffer.

5.2.4 Improving Write Cycle Latency

5241 Interleaving

The interleaving technique is used to support the burst bus feature of the Intel486 processor. The
use of thistechnique allowsthe DRAM to supply adword every clock during burst cycles. Inter-
leaving proves to be very useful in Intel486 processor memory designs. Without its use, DRAM
timings such as Tp¢ (Page Mode Cycletime) and Tcp (CAS Precharge time) would prevent zero
wait state access at 33 MHz.

5.24.2 Write Posting

Analysis has shown that, in general, 6% degradation in performance can be expected for every
additional wait state added to write cycles. This analysis was performed by measuring the CPU
clocks required to execute several applications.

A technique called write posting can be used to improve write cycle latency. Write posting uses
data registers that hold write data during write cycles. This technique alows consecutive write
cycles to be overlapped. It also alows write cycles to be overlapped with L2 cache cycles and
reduces overall write miss latency.

Using the write posting technique adds complexity to the system logic. It is important to deter-
mine the performance improvement realized by using this technique. This question is especially
pertinent when we consider the logic already implemented in the Intel 486 processor to improve
write performance. The internal Intel486 write buffers decouple the processor execution unit
from the external bus.
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Write posting can improve average write latency to under 3 clocks for many applications. This
improvement isimportant in Intel 486 processor-based systems because approximately 70% of all
bus cycles are writes. Without using alatency improvement technique such as write posting, av-
erage write latency is above 15 clocks. From this data we can conclude that approximately a 9%
performance improvement can be obtained using write posting.

This improvement may increase due to other effects. Write cycles, particularly DRAM page
mi sses, can be overlapped with read hit cyclesin the L2 cache. Thisfact greatly reducesthe delay
caused by read cycles which immediately follow write cycles.

Analysis of thismemory subsystem design has shown that use of these features has resulted in a
low latency response to the CPU. The following characteristics have been recorded over several
important applications. The average clock cyclesrequired to complete thefirst read is 3.5 clocks.
Subsequent cycles of aburst are always processed in one clock. Write cycles average 2.5 clocks.
These average counts result from the DRAM access rates in Table 5-2. Read accesses from the
cache always occur in zero wait states.

Table 5-2. Clock Latencies for DRAM Functions

DRAM Function First Access Burst Subsequent Burst Write Cycles
Page hit 3 1 2
Page miss 7 1 5*

*Latency only incurred for back-to-back cycles.

5.25 Second-Level Cache

Severa different types of L2 cache architectures are possible candidates for use with the Intel 486
processor. For single CPU systems the different architectures offer similar performance benefits
in most cases. The reason they are so similar isthe mechanism which improves performance. The
primary benefit of the L2 cache is bus cycle latency reduction.

In most systems that incorporate a single Intel 486 processor, bus traffic from other bus masters
isminimal. With most memory systems, the CPU uses at most 50% to 70% of the bus. Therefore
reduction of bus cycle latency isthe only performance benefit externa logic can offer.

An L2 cacheisan economical method of reducing read cycle latency and can be implemented as
a system option. To provide this capability, a cache device can be configured as a look-aside
cache that monitors the CPU address and control signals. When acycle occursin which the cache
can supply data, it intervenes. The cache device could then supply an entire 16-byte line with no
walit states.

The performance improvement offered by an L2 cache is substantial in some environments. This
performance improvement is particularly obvious when executing multi-tasking, multi-user op-
erating systemssuch asUNIX*, OS/2*, Windows 95*, WindowsNT*, and Windows CE*. Some
applications, however, may not require the performance improvement offered by the cache. In
these cases, implementing the L2 cache as a system option is attractive.
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By designing the cache subsystem as an option both users requirements can be met. A single-sys-
tem design can be manufactured for both customers. The operating system user can add the cache
module. Users can choose the system configuration which meets their price-performance needs.
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CHAPTER 6
CACHE SUBSYSTEM

6.1 INTRODUCTION

Cache is an important means of improving overall system performance. The Intel486™ proces-
sors have an on-chip, unified code and data cache. The on-chip cache is used for both instructio
and data accesses and operates on physical addresses. The Intel486 processor and most varie
have an 8-Kbyte cache (the InteIDX4 processor has a 16-Kbyte cache) which is organized in a 4
way set associative manner. To understand cache philosophy and the system advantages of
cache, many issues must be considered.

This chapter discusses the following related cache issues:
® Cache theory and the impact of cache on performance.
* The relationship between cache size and hit rates when using afirst-level cache.

* |ssuesin mapping (or associativity) that arise when main memory is cached. Different
cache configurations including direct-mapped, set associative, and fully associative. They
are discussed along with the performance trade-offs inherent to each configuration.

* Theimpact of cache line sizes and cache re-filling algorithms on performance.

* Write-back and write-through methods for updating main memory. How each method
maintain cache consistency and the impact on external bus utilization.

* Cache consistency issues that arise when a DMA occurs while the Intel486 processor’s
cache is enabled. Methods that ensure cache and main memory consistency during cache
accesses.

® Cache used in single versus multiple CPU systems.

6.2 CACHE MEMORY

Cache memory is high-speed memory that is placed between microprocessors and main memory.
Cache memory keeps copies of main memory that are currently in use to speed microprocessor
access to requested data and instructions. When properly implemented, cache access time can be
three to eight times faster than that of main memory, and thus can reduce the overall accesstime.
Cache also reduces the number of accesses to main memory DRAM, which isimportant to sys-
tems with multiple bus masters that al access that same memory. This section introduces the
cache concept and discusses memory performance benefits provided by a cache.

6.2.1 Whatis a Cache?

A cache memory isasmaller high-speed memory that fits between a CPU and slower main mem-
ory. Cache memory isimportant in increasing computer performance by reducing total memory
latency. A cache memory consists of adirectory (or tag), and a data memory. Whenever the CPU
isrequired to read or write data, it first accesses the tag memory and determinesif a cache hit has
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occurred, implying that the requested word is present in the cache. If the tags do not match, the
dataword is not present in the cache. Thisis called a cache miss. On a cache hit, the cache data
memory allows aread operation to be completed more quickly from its faster memory than from
a slower main memory access. The hit rate is the percentage of the accesses that are hits, and is
affected by the size and organization of the cache, the cache algorithm used, and the program run-
ning. An effective cache system maintains datain away that increasesthe hit rate. Different cache
organizations are discussed later in this chapter. The main advantage of cacheisthat alarger main
memory appears to have the high speed of a cache. For example, a zero-wait state cache that has
a hit rate of 90 percent makes main memory appear to be zero-wait state memory for 9 out of 10
accesses.

Programs usually address memory in the neighborhood of recently accessed locations. Thisis
called program locality or locality of reference and it islocality that makes cache systems possi-
ble. Code, data character strings, and vectors tend to be sequentially scanned items or items ac-
cessed repeatedly, and cache helps the performance in these cases. In some cases the program
locality principle does not apply. Jumps in code sequences and context switching are some ex-
amples.

6.2.2 Why Add an External Cache?

System designers must take into account several factors when deciding whether to incorporate a
Level 1l cache subsystem in an embedded Intel486 processor design. These considerations in-
clude the performance expectations, operating system used, DRAM cycle speed, possible future
upgradesto the initial application, and system costs. Although the Intel486 processor-based per-
sonal computer often required a 256-K to 512-K L2 cache for optimal performance, embedded
applications have a wide variety of performance and cost requirements and their L2 cache needs
vary accordingly. In many applications, an inexpensive 32-K or 64-K cache provides good per-
formance, whereas the additional performance provided by a512-K cache would betoo costly to
justify. When possible, system designers should run the application code on a standard I ntel 486
processor-based personal computer (assuming the operating system is compatible) and take per-
formance measurements with the L2 cachefirst enabled, then disabled in the BIOS. Although this
technigue for performance evaluation is not perfect, it gives the applications team a good basis
upon which to make design decisions.

6.3 CACHE TRADE-OFFS

Cache efficiency isthe cache's ahility to keep the code and data most frequently used by the mi-
croprocessor. Cache efficiency is measured in terms of the hit rate. Another indication of cache
efficiency is system performance; thisis the timein which the microprocessor can perform acer-
tain task and is measured in effective bus cycles. An efficient cache reduces external bus cycles
and enhances overall system performance. Hit rates are discussed in the next section.

Factors that can affect a cache’s performance are:

* Size: Increasing the cache size allows more items to be contained in the cache. Cost is
increased, however, and alarger cache cannot operate as quickly asa smaller one.
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* Associativity (discussed in Section 6.2.2, “Why Add an External Cache?icreased
associativity increases the cache hit rate but also increases its complexity and reduces its
speed.

* Line Size: The amount of data the cache must fetch during each cache line replacement
(every miss) affects performance. More data takes more time to fill a cache line, but then
more data is available and the hit rate increases.

* Write-Back and Write Posting: The ability to write quickly to the cache and have the cache
then write to the slower memory increases performance. |mplementing these types of cache
designs can be very complex, however.

* Features: Adding features such as write-protection (to be able to cache ROM memory), bus
watching, and multiprocessing protocols can speed a cache but increases cost and
complexity.

* Speed: Not all cache return data to the CPU as quickly as possible. It is less expensive and
complex to use slower cache memories and cache logic.

6.3.1 Cache Size and Performance

Hit rates for various first-level cache configurations are shown in Table 6-1. These statistics are
conservative because they illustrate the lowest hit rates generated by analyzing several main-
frametraces. The hit rates are not absolute quantities, and the hit rate of aparticular configuration
is software-dependent. However, the table allows a meaningful comparison of the various cache
configurations. It also indicates the degree of hardware complexity needed to arrive at a particular
cache efficiency. Table 6-1 presents direct-mapped, 2-way, and 4-way set associative cache,
which are all discussed in the next section.

Table 6-1. Level-1 Cache Hit Rates (Sheet 1 of 2)

Cache Configurations
Hit Rate
Size Associativity Line Size
1 Kbyte direct 4 bytes 41%
8 Kbyte direct 4 bytes 73%
16 Kbyte direct 4 bytes 81%
32 Kbyte direct 4 bytes 86%

I 6-3



u
EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL Intel®

Table 6-1. Level-1 Cache Hit Rates (Sheet 2 of 2)

Cache Configurations _
Hit Rate
Size Associativity Line Size
32 Kbyte 2-way 4 bytes 87%
32 Kbyte direct 8 bytes 91%
64 Kbyte direct 4 bytes 88%
64 Kbyte 2-way 4 bytes 89%
64 Kbyte 4-way 4 bytes 89%
64 Kbyte direct 8 bytes 92%
64 Kbyte 2-way 8 bytes 93%
128 Kbyte direct 4 bytes 89%
128 Kbyte 2-way 4 bytes 89%
128 Kbyte direct 8 bytes 93%

Program behavior is another important factor in determining cache efficiency. If a program uses
apiece of data only once, then the cache may spend all its time thrashing or replacing itself with
new data from memory. This is common in vector processing. The processor receives no added
efficiency from the cache because main memory is being requested frequently. In such instances,
the user can consider mapping the data entries as non-cacheable.

Cache system performance can be calculated based on the main memory access time, the cache
access time, the miss rate, and the write cycle time.

C,isdefined as the ratio of the cache system access time to the main memory accesstime. Cqis
adimensionless number but provides a useful measure of the cache performance.

Ca= (-M)T, + MT,

Cs = ColTm = (-M)(T/Try) + M = (L-M)C+M

where:

C, = average cache system cycle time averaged over reads and writes

T, = cache cycle time

T, = main memory cycle time

M = miss rate = 1-hit rate

C, = cache system access time as a fraction of main memory access time
C,, = cache memory access time as compared to main memory cycle time

If the cache always misses, then M=1 and C,;=1, and the main memory access is equal to the ef-
fective access time of the cache. If the cache isinfinitely fast, then C,,, is equal to the missrate.
Because the cache access timeisfinite, the cache system access time approaches the cache access
time as the miss rate approaches zero.

While the above discussion applies to read operations, it can be easily extended to write opera-
tions, which also affect system performance. When memory is written to, the CPU must wait for
the completion of the write cycle before proceeding to the next instruction. In abuffered memory
system, where posted writes occur, data can be loaded in a register, and the memory can be up-
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dated later. Thisallowsthe CPU to begin the next cycle without being delayed by the main mem-
ory write accesstime. Both these memory updating techniques are discussed later in this chapter.

6.3.2 Associativity and Performance Issues

Dataand instructions are written into the cache by afunction that maps the main memory address
into a cache location. The placement policy determines the mapping function from the main
memory address to the cache location. There are four policies to consider: fully associative, di-
rect-mapped, set associative, and sector buffering.

Fully Associative: A fully associative cache system provides maximum flexibility in determining
which blocks are stored in the cache at any time. 1deally, the blocks of words in the cache would
contain the main memory locations needed most by the processor regardless of the distance be-
tween the words in main memory. The size of a block in the cacheis aso known astheline size,
and corresponds to the width of a cache word. For example, ablock can be eight bytesfor a 32-
bit processor, in which case two doublewords are accessed each time the cache line isfilled. In
the example shown in Figure 6-1, the block size is one doubleword.

31 24 21 0
32-Bit Cache/DRAM
Processor Select TAG o Byte Enable
Address 1
l«— 16 MByte DRAM = 24 Bits —]
TAG- Data— Data

_ 22 Bits 4 Bytes ’—> 24682468 FFFFFC
FEFFEC 24682468 »| 11223344 FFFFF8
000000 12345678 33333333 | FFFFF4

FFFFF4 33333333

128

Locations —| 1633A0
87654321 16339C
163398

16339C 87654321

FFFFF8 11223344
 2316BitSRAM 4096 Bit SRAM 00000C
" " 000008
000004
»| 12345678 000000

|«— 32 Bits —»

16 Mbyte DRAM

Figure 6-1. A Fully Associative Cache Organization

Because there is no single relationship between all of the addresses in the 64 blocks, the cache
would have to store the entire address of each block. When the processor requests data, the cache
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controller would have to compare the address with each of the 64 addresses in the cache for a
match condition. This organization, shown in Figure 6-1, is called fully associative.

Direct Mapped: In a direct mapped cache, the simplest of the three policies, only one address
comparison is required to determine if the requested word is in the cache. Thisis because each
block in the cache mapsto only onelocation in the cache. A direct mapped cache address hastwo
parts: a cache index field, which specifies the block’s location in the cache, and a tag field that
distinguishes blocks within a particular cache location.

For example, consider a 64-Kbyte direct mapped cache that contains 16-Kbyte 32-bit locations
and cache 16 Mbytes of memory. The cache index field must include 14 bits to select one of the
16-K byte blocks in cache plustwo bits to decode one of the four byte enables. Thetag field must
be eight bits wide to identify one of the 256 blocks that can occupy the selected cache location.
The most significant eight bits of the address are decoded to sel ect the cache subsystem from oth-
er memories in the memory space. The direct-mapped cache organization is shown in Figure 6-2.
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32-Bit Processor Address

31 24| 23 16| 15 0

Cache/DRAM
Select

TAG Index

64 Kbyte Cache 16 Bits

16 Mbyte DRAM 24 Bits
Main Memory - 16 MB

TAG

Cache-64 Kbyte Data Index
Index TAG Data
FFFC Y FFFC

01 A
FFF8 | FF B FFF8

A
o]

0008
0004
0000

0008 00
0004 01
0000 00

moo

32 Bits

FFFC
FFF8

Y
>

0008
0004
0000

A
o

FFFC
FFF8

0008
0004
» E 0000

\i
o

Figure 6-2. Direct Mapped Cache Organization

If the processor requests data at FFFFFS, the first step is to send the least significant 14 bits of
FFF8 to the cache tag RAM. If thetag field stored at FFF8 is FF (as shown in the diagram), then
a hit has occurred and the data word **B” is sent to the CPU. If the requested word has 020004,
then the tags would not match. In this case the tag RAM would be updated with the value 02 cor-
responding to the index 0004, and the data ‘**D” would be replaced by the word at location
020004

If the processor accesses locations that have the same index bits, then the cache would have to be
updated constantly. This type of program behavior is infrequent, however, so a direct mapped
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cache may provide acceptable performance at alower cost when compared to afully associative

cache memory.

Set Associative: The set-associative cache is a compromise between the fully associative and di-
rect-mapped cache. The set-associative cache has more than one set and it is equiva ent to several
direct mapped cache operating in parallel. For each cache index there are several block locations
allowed, and the block can be placed in any set or retrieved from any set. Figure 6-3 shows atwo-

way set associative cache memory.

In

32-Bit Processor Address

32 24| 23 15| 14

TAG Index

o 2%x32KSRAM = 2 x 15 Bits

16 Mbyte DRAM 24 Bits

»

Cache-64 Kbyte Data Index
Index  rpg Data N
oo | A 1 <
7FF8 | 1FF B
0008 | 000 C = 8883
0004 | 001 D 0004
0000 | 000 E
32 Bits ~ A 7FFC
7FF8
> D 0008
0004
Index  1pg Data W 0000
7rrc [ 1rF Y <
7FF8 i
7FFC
0008
0004 > C 0008
0000 | o001 w 0004
> E 0000

9 Bits 32 Bits

TAG

1FF

001

000

Figure 6-3. Two-Way Set Associative Cache Organization
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Given an equal amount of cache memory as in the direct mapped example, the set associative
cache has half as many locations, and the extra address bit becomes part of the tag field. Because
the set-associ ative cache has several places for a block with the same cache index, the hit rate is
increased. The set associative cache performs more efficiently than a direct mapped cache, but it
needs awider tag field and additional logic to determine which set should receive the data. This
function is determined by the replacement policy, which is covered later in this section.

CACHE SUBSYSTEM

Sector Buffering: Another cache configuration uses a sector buffer and is sometimes called a sub-
block cache. The cache is a number of sectors, and the sectors in turn are a number of blocks.
Each block can haveits own valid bit, but only one tag address exists per sector. When aword is
accessed whose sector isin the cache but the block is not, then the block is fetched from the main
memory. Sector buffering has its own trade-offs associated with miss ratios and bus utilization.
Having smaller blocks increases the miss ratio, but reduces the number of external bus accesses.
Conversely, having alarge number of blocksincreases the hit ratio but also increases the external
bus utilization. Figure 6-4 shows the cache organization in sector buffering.

TAG 1 BLOCK 1.1 | BLOCK 1.2 | BLOCK 1.3 BLOCK 1.N
TAG 2 BLOCK 2.1 | BLOCK 2.2 | BLOCK 2.3 BLOCK 2.N
TAG M BLOCK M.1 | BLOCK M.2 | BLOCK M.3

TAG per sector

Blocks per sector

Figure 6-4. Sector Buffer Cache Organization

The Intel486 processor’s on-board cache is organized 4-way set associative with aline size of 16
bytes. The 8-Kbyte cache is organized as four 2-Kbyte sets. Each 2-Kbyte set is comprised of 128
16-byte lines. Figure 6-5 shows the cache organization. An application can achieve an extremely
high hit rate with the 4-way associativity. The cacheis transparent so that the I ntel486 processor
remains software-compatible with its non-cache predecessors.
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4-Way Set Associative 8-Kbyte Cache

Set 0
Word0 | Word1l | Word2 | word3

Line Size = 4 DWORDS
2 Kbytes Line Size = 16 Bytes

Set 1

2 Kbytes

Set 2

2 Kbytes

Set 3

2 Kbytes

Figure 6-5. The Cache Data Organization for the Intel486™ Processor's On-Chip Cache

6.3.3 Block/Line Size

Block size is an important consideration in cache memory design. Block size is also referred to
astheline size, or the width of the cache data word. The block size may be larger than the word,
and this can impact the performance, because the cache may be fetching and storing more infor-
mation than the CPU needs.

As the block size increases, the number of blocks that fit in the cache is reduced. Because each
block fetch overwrites the older cache contents, some blocks are overwritten shortly after being
fetched. In addition, as block size increases, additional words are fetched with the requested
word. Because of program locality, the additional words are less likely to be needed by the pro-
Cessor.

When a cache is refilled with four dwords or eight words on a miss, the performance is dramati-
cally better than a cache size that employs single-word refills. Those extra words that are read
into the cache, because they are subsequent words and because programs are generally sequential
in nature, arelikely be hitsin subsequent cache accesses. Also, the cacherefill agorithmisasig-
nificant performance factor in systemsin which the delay in transferring the first word from the
main memory islong but in which several subsequent words can be transferred in a shorter time.
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This situation applies when using page mode accesses in dynamic RAM; and the initial word is
read after the normal access time, whereas subsequent words can be accessed quickly by chang-
ing only the column addresses. Taking advantage of this situation while selecting the optimum
line size can greatly increase cache performance.

6.3.4 Replacement Policy

In a set-associative cache configuration, a replacement policy is needed to determine which set
should receive new data when the cache is updated. There are four common approaches for
choosing which block (or single word) within a set is be overwritten. These are the least recently
used (LRU) method, the pseudo LRU method, the first-in first-out (FIFO) method, and the ran-
dom method.

In the LRU method, the set that was |east recently accessed is overwritten. The control logic must
maintain least recently used bits and must examine the bits before an update occurs. In the pseudo
LRU method, the set that was assumed to be the least recently accessed is overwritten. In the
FIFO method, the cache overwrites the block that is resident for the longest time. In the random
method, the cache arbitrarily replaces ablock. The performance of the algorithms depends on the
program behavior. The LRU method is preferred because it provides the best hit rate.

6.4 UPDATING MAIN MEMORY

When the processor executes instructions that modify the contents of the cache, changes have to
be made in the main memory as well; otherwise, the cache is only a temporary buffer and it is
possible for datainconsistencies to arise between the main memory and the cache. If only one of
the cache or the main memory is altered and the other is not, two different sets of data become
associated with the same address. A potential situation of incorrect or stale datais shown in Fig-
ure 6-6. There are two general approaches to updating the main memory. The first is the write-
through method; and the second is the write-back, also known as copy-back method. Memory
traffic issues are discussed for both methods.
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CPU Cache Main Memory

1

Processor reads data into cache
from main memory.

2

The data is processed and
modified and stored in the cache
(not in the main memory).

3

Later, another read overwrites the
cache data and the modified data is
overwritten and lost before the
main memory is updated.

3

The processor reads data from
memory as in the first step, but
stale data is copied in the cache, as
the correct data shown in Step 2
was not sent to the main memory.

Figure 6-6. Stale Data Problem in the Cache/Main Memory

6.4.1 Write-Through and Buffered Write-Through Systems

In awrite-through system, data is written to the main memory immediately after or whileit is
written into the cache. As aresult, the main memory always contains valid data. The advantage
tothisapproach isthat any block in the cache can be overwritten without datal oss, whilethe hard-
ware implementation remainsfairly straightforward. Thereis amemory traffic trade-off, howev-
er, because every write cycle increases the bus traffic on a slower memory bus. This can create
contention for use of the memory bus by other bus masters. Even in a buffered write-through
scheme, each write eventually goes to memory. Thus, bus utilization for write cyclesis not re-
duced by using awrite-through or buffered write-through cache.
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U sers sometimes adopt a buffered write-through approach in which the write accessesto themain
memory can be buffered with a N-deep pipeline. A number of words are stored in pipelined reg-
isters, and will subsequently be written to the main memory. The processor can begin a new op-
eration before the write operation to main memory is completed. If aread access follows awrite
access, and a cache hit occurs, then data can be accessed from the cache memory while the main
memory is updated. When the N-deep pipeline is full, the processor must wait if another write
access occurs and the main memory has not yet been updated. A write access followed by aread
miss also requires the processor to wait because the main memory has to be updated before the
next read access.

Pipeline configurations must account for multiprocessor complications when another processor
accesses a shared main memory |ocation which has not been updated by the pipeline. Thismeans
the main memory hasn't been updated, and the memory controller must take the appropriate ac-
tion to prevent data inconsistencies.

6.4.2 Write-Back System

In a write-back system, the processor writes data into the cache and sets a “dirty bit” which indi-
cates that a word had been written into the cache but not into the main memory. The cache dat
is written into the main memory at a later time and the dirty bit is cleared. Before overwriting any
word or block in the cache, the cache controller looks for a dirty bit and updates the main memory
before loading the cache with the new data.

A write-back cache accesses memory less often than a write-through cache because the numb
of times that the main memory must be updated with altered cache locations is usually lower thar
the number of write accesses. This results in reduced traffic on the main memory bus.

A write-back cache can offer higher performance than a write-through cache if writes to main
memory are slow. The primary use of the a write-back cache is in a multiprocessing environment.
Since many processors must share the main memory, a write-back cache may be required to lim
each processor's bus activity, and thus reduce accesses to main memory. It has been shown tt
in a single-CPU environment with up to four clock memory writes, there is no significant perfor-
mance difference between a write-through and write-back cache.

There are some disadvantages to a write-back system. The cache control logic is more comple
because addresses have to be reconstructed from the tag RAM and the main memory has to |
updated along with the pending request. For DMA and multiprocessor operations, all locations
with an asserted dirty bit must be written to the main memory before another device can acces:
the corresponding main memory locations.

6.4.3 Cache Consistency

Write-through and write-back systems require mechanisms to eliminate the problem of stale main
memory in a multiprocessing system or in a system with a DMA controller. If the main memory

is updated by one processor, the cache data maintained by another processor may contain ste
data. A system that prevents the stale data problem is said to maintain cache consistency. The
are four methods commonly used to maintain cache consistency: snooping (or bus watching)
broadcasting (or hardware transparency), non-cacheable memory designation, and cache flust

ing.
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In snooping, cache controllers monitor the bus lines and invalidate any shared locations that are
written by another processor. The common cache location is invalidated and cache consistency
ismaintained. This method is shown in Figure 6-7.

Cache
cPU > Controller
Snoop > Shared
Address I/P Memory
A
Other >
Bus Master(s)

Figure 6-7. Bus Watching/Snooping for Shared Memory Systems

In broadcasting/hardware transparency, the addresses of all stores are transmitted to all the other
cache so that al copies are updated. This is accomplished by routing the accesses of all devices
to main memory through the same cache. Another method isby copying all cache writesto main
memory and to all of the cache that share main memory. A hardware transparent system is shown
in Figure 6-8.

Other
Bus < > Cache < 1 >
Master
* Main
ﬁ Memory
CPU <Y - Cache -

Figure 6-8. Hardware Transparency

In non-cacheable memory systems, all shared memory locations are considered non-cacheable.
In such systems, access to the shared memory is never copied in the cache, and the cache never
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receives stale data. This can beimplemented with chip select logic or with the high order address
bits. Figure 6-9 shows non-cacheable memory.

Other
Bus
Master

CPU »{ Decoder Non-cacheable

Cacheable

Cache |= >

A\

Figure 6-9. Non-Cacheable Share Memory

In cache flushing, al cache locations with set dirty bits are written to main memory (for write-
back systems), then cache contents are cleared. If all of the devicesare flushed before another bus
master writes to shared memory, cache consistency is maintained.

Combinations of various cache coherency techniques may be used in a system to provide an op-
timal solution. A system may use hardware transparency for time critical 1/0O operations such as
paging, and it may partition the memory as non-cacheable for slower I/O operations such as print-

ing.

6.5 NON-CACHEABLE MEMORY LOCATIONS

To avoid cache consistency problems, certain memory locations must not be cached. The PC ar-
chitecture has several special memory areaswhich may not be cached. If ROM locations on add-
in cards are cached, for example, write operations to the ROM can alter the cache while main
memory contents remain the same. Further, if the mode of avideo RAM subsystem is switched,
it can produce altered versions of the original data when a read-back is performed. Expanded
memory cards may change their mapping, and hence memory contents, with an 1/0 write opera-
tion. LAN or disk controllers with local memory may change the memory contents independent
of the Intel486 processor. This altering of certain memory locations can cause a cache consisten-
cy problem. For these reasons, the video RAM, shadowed BIOSROMS, expanded memory
boards, add-in cards, and shadowed expansion ROMs should be non-cacheable locations. De-
pending on the system design, ROM locations may be cacheable in a second-level cacheif write
protection is allowed.
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6.6 CACHE AND DMA OPERATIONS

Some of the issues related to cache consistency in systems employing DMA have already been
covered in the preceding section. Because aDMA controller or other bus master can update main
memory, there is a possibility of stale data in the cache. The problem can be avoided through
snooping, cache transparency, and non-cacheable designs.

In snooping, the cache controller monitorsthe system address bus and invalidates cache locations

that will be written to during a DMA cycle. This method is advantageous in that the processor

can access its cache during DMA operations to main memory. Only a “snoop hit” causes an in-
validation cycle (or update cycle) to occur.

In cache transparency, memory accesses through the CPU and the DMA controller are directed
through the cache, requiring minimal hardware. However, the main disadvantage is that while a
DMA operation is in progress, the CPU bus is placed in HOLD. The concurrency of CPU/cache
and DMA controller/main memory operations is not supported.

In non-cacheable designs, a separate dual-ported memory can be used as the non-cacheable por-
tion of the memory, and the DMA device is tightly coupled to this memory. In this way, the prob-
lem of stale data cannot occur.

In all of the approaches, the cache should be made software transparent so that DMA cycles do
not require special software programming to ensure cache coherency.

6.7 CACHE FOR SINGLE VERSUS MULTIPLE PROCESSOR SYSTEMS

6.7.1 Cache in Single Processor Systems

In single CPU systems, a write-through cache is an ideal cache solution. Write-through cache
solves consistency issues, may be designed as a plug-in option, and is less expensive. The main
drawback of a write-through cache is its inability to reduce main memory utilization for write cy-
cles. However, this is not as critical a consideration to single CPU designs.

6.7.2 Cache in Multiple Processor Systems

The Intel486 processor is designed for multiple-processor applications. The BREQ output per-
mits a simple hardware interface for bus arbitration. The on-board and second-level caches have
a high hit rate and reduce main memory accesses for reads. Each microprocessor may have its
own local cache or all the microprocessors may share a global cache. With multi-masters, bus uti-
lization is critical. When a write-back cache is used, the bus utilization is reduced compared to a
write-through cache for write operations.

The multi-processor system illustratedHigure 6-10shows two processors and a DMA control-

ler that are connected over the system bus. The address bus on the Intel486 processor and the L2
cache controller are bidirectional to allow cache invalidation on system bus memory writes by
other masters. The arbitration logic arbitrates between the processors and the DMA controller.
The CPUs and their second-level cache monitor the system bus to identify cache writes. The sys-
tem must have the mechanisms to support invalidation cycles and to ensure consistency between
the contents of the two caches and memory. Coherency is achieved by snooping the address bus.
When a write is identified by one processor to a location contained in the other's cache, an inval-
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idation cycle must be generated by asserting AHOLD and EADS# to the second processor and
its cache. This type of invalidation is true for the write-through cache such as the one shown in
Figure 6-10. If the caches are write-back caches the invalidation protocol may be different.

lBREQ 2 TBACK 2
BREQ 0 _ _ BREQ1
HRQO Arbitration Logic HRQ1
HLDAO _ HLDA1
Y A Y
HRQ 2 HLDA 2
Intel486™ Y Intel486™
Processor 0 Processor 1
k‘ - AA DMA DREQ W
Y DACK '
L2 Cache A A L2 Cache
A
) i
- Y Y Y Y » Address
SV | I Y I » Data
- A v L y\ Y » Control
v Yyvyy
1/0 Memory

Figure 6-10. Intel486™ Processor System Arbitration

Memory bus utilization in multiple CPU systems may be the most important performance con-
sideration. In this type of system, a cache should have a very high hit rate for both reads and
writes. Accessesto main, shared memory must be minimized. Write-back cacheis best-suited for
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these multiprocessor environments. A write-back cachewill, however, be more complex initsar-
chitecture and coherency mechanisms.

6.8 AN Intel486™ PROCESSOR SYSTEM EXAMPLE

A typical Intel486 processor system is shown in Figure 6-11. The Intel 486 processor has alocal
busthat consists of address, data and control buses. These buses are either buffered, registered or
latched to comprise the system bus.

Intel486™ CPU Bus _ 4 Local Bus
* Data ) -
Intel486 | Data »] XCVR
CPU A
[} * Address Address >
XCVR - > Memory
Subsystem
Controls
\
L2 Cache ) Controls
. 110
Bus Snooping and
Validation Logic
< »| Arbitration
Logic
Clock and Reset -
Logic <—-l DMA Controller |
LAN Controller
 J

Figure 6-11. A Typical Intel486™ Processor System

The memory subsystem is made up of DRAMs, SRAMs, Flash and EPROMs. Main memory ac-
cesses are usually addressed to aDRAM subsystem; however, the I/O subsystem can communi-
cate with the Intel 486 processor and with the memory subsystem during DMA operations.

Cache consistency must be maintained whenever main memory accesses occur during DMA op-
erations. Bus snooping and validation logic can monitor the busto detect memory writes that may
beinitiated by other bus masters. If such writes are detected, portions of the processor and the L2
cache may have to be invalidated. The Intel486 processor has mechanisms that can invalidate
cache entries; the L2 cache device should & so have this capability.

The typical L2 cacheisclosely coupled to the Intel486 processor: the address, data, and control
signals are connected to the processor’s local bus, and L2 cache control signals interface to the
system bus as well. The system bus control signalsinterface to the processor and the L2 cachein
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a similar manner, allowing the L2 cache to be implemented into an Intel486 processor system
with ease.

6.8.1 The Memory Hierarchy and Advantages of a Second-level Cache

The Intel486 processor has an on-chip cache and a high-speed register set. These registers are ac-
corded the first level of memory hierarchy. Instructions can be executed in a single clock, and at
an average cycles-per-instruction rate of 1.8 (CPl). The next level of hierarchy isaccorded to the
second-level cache, which can consist of oneor more L2 cache devices. These sustain ahigh level
of performance by supporting the fastest possible memory accesses, requiring only two clock cy-
clesfor thefirst read and one clock cycle for each of the subsequent three readsin a burst cycle.
System performance degrades if main memory accesses are required. However, with the on-chip
L1 cache and the externa L2 cache, the number of main memory read accesses is reduced con-
siderably. Figure 6-12 shows the memory hierarchy in atypical Intel486 processor system.

Intel486™ CPU
15T Level Cache
Highest Bandwidth - 8 Kbyte
Register Cache
File
< 4 Processor Bus -
- A A A A o
\ \ \ \
an_
Level L2 Cache L2 Cache L2 Cache L2 Cache
Higher
Bandwidth
g
/
Main
Memory Main Memory
High Band
Width

Figure 6-12. Intel486™ Processor System Memory Hierarchy

Because the Intel486 processor internal cache is so efficient, most external CPU bus cycles are
DRAM page misses. An L2 cacheimproves the bus latency problem, asdatais available alarge
percentage of the time from the cache for read operations. A large main memory can have an ac-
cesstime of six to eight cycles on apage miss. On page hits data can be provided in three or four
cycles.
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CHAPTER 7
PERIPHERAL SUBSYSTEM

The peripheral (1/0) interface is an essential part of any embedded processor system. It supports
communications between the microprocessor and the peripherals. Given the variety of existing
peripheral devices, aperipheral system must allow avariety of interfaces. Animportant part of a
microprocessor system is the bus that connects all major parts of the system. This chapter de-

scribes the connection of peripheral devices to the Intel486™ processor microprocessor bus. Thi
chapter presents design techniques for interfacing different devices with the Intel486 processor
such as LAN controllers and EISA, VESA local bus, and PCI chip sets.

The peripheral subsystem must provide sufficient data bandwidth to support the Intel486 proces:-
sor. High-speed devices like disks must be able to transfer data to memory with minimal CPU
overhead or interaction. The on-chip cache of the Intel486 processor requires further consider:
ations to avoid stale data problems. These subjects are also covered in this chapter.

The Intel486 processor supports 8-bit, 16-bit and 32-bit I/O devices, which can be 1/0-mapped,
memory-mapped, or both. It has a 106 Mbyte/sec memory bandwidth at 33 MHz. Cache coher-
ency is supported by cache line invalidation and cache flush cycles. I/O devices can be accesse
by dedicated I/O instructions for I/O-mapped devices, or by memory operand instructions for

memory-mapped devices. In addition, the Intel486 processor always synchronizes I/O instruction
execution with external bus activity. All previous instructions are completed before an 1/0 oper-

ation begins. In particular, all writes pending in the write buffers are completed before an I/O read
or write is performed. These functions are described in this chapter.

7.1 PERIPHERAL/PROCESSOR BUS INTERFACE

Because the Intel486 processor supports both memory-mapped and I/O-mapped devices, this se
tion discusses the types of mapping, support for dynamic bus sizing, byte swap logic, and critical
timings. An example of a basic I/0O controller implementation is also included. Some system-ori-

ented interface considerations are discussed because they can have a significant influence c
overall system performance.

7.1.1 Mapping Techniques

The system designer should have a thorough understanding of the system application and its us
of peripherals in order to design the optional mapping scheme. Two techniques can be used t
control the transmission of data between the computer and its peripherals. The most straightfor
ward approach is I/O mapping.

The Intel486 processor can interface with 8-bit, 16-bit or 32-bit I/O devices, which can be I/O-
mapped, memory-mapped, or both. All I/O devices can be mapped into physical memory ad-
dresses ranging from 00000000H to FFFFFFFFH (four-gigabytes) or I/O addresses ranging from
00000000H to 0O000FFFFH (64 Kbytes) for programmed I/O, as showigume 7-1
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FFFFFFFFH N
I I
[ |
| Not I
Accessible
I I
Physical | |
Memory [ |
4 Gbyte | |
[ Not |
| Accessible |
I I
I I
O000FFFFH Accessible
64 Kbyte Programmed
00000000H 00000000H 1/0 Space
Physical Memory 1/0 Space
Space

Figure 7-1. Mapping Scheme

1/0 mapping and memory-mapping differ in the following respects:

7-2

The address decoding required to generate chip selects for the I/O-mapped devices is much
simpler than that required for memory-mapped devices. 1/0-mapped devices reside within
the I/O space of the Intel486 processor (64 Kbytes); memory-mapped devicesresidein a
much larger Intel 486 processor memory space (4-gigabytes), which requires more address
lines to decode.

The /O space is 64 Kbytes and can be divided into 64 K of 8-bit ports, 32 K of 16-hit ports,
16 K of 32-hit ports or any combinations of ports which add up to less than 64 Kbytes. The
64 Kbytes of 1/0 address space refers to physical memory because I/O instructions do not
utilize the segmentation or paging hardware and are directly addressable using DX
registers.

Memory-mapped devices can be accessed using the Intel486 processor’s instructions, so
that 1/0O to memory, memory-to-1/0, and 1/0O-to-1/0 transfers, as well as compare and test
operations, can be coded efficiently.

The 1/0O-mapped device can be accessed only with IN, OUT, INS, and OUTS instructions.
I/O instruction execution is synchronized with external bus activity. All 1/0 transfers are
performed using the AL (8-bit), AX (16-bit), or EAX (32-hit) registers.
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* Memory mapping offers more flexibility in Protected Mode than I/O mapping. Memory-
mapped devices are protected by the memory management and protection features. A
device can be inaccessible to atask, visible but protected, or fully accessible, depending on
where it is mapped. Paging and segmentation provide the same protection levels for 4-
Kbyte pages or variable length segments, which can be swapped to the disk or shared
between programs. The Intel486 processor supports pages and segments to provide the
designer with maximum flexibility.

* Thel/O privilege level of the Intel486 processor protects I/O-mapped devices by either
preventing atask from accessing any 1/O devices or by alowing atask to access al 1/0
devices. A virtual-8086 mode 1/O permission bitmap can be used to select the privilege
level for a combination of /O bytes.

7.1.2 Dynamic Bus Sizing

Dynamic data bus sizing allows a direct processor connection to 32-, 16- or 8-bit busesfor mem-
ory or 1/O devices. The Intel486 processors support dynamic data bus sizing, except for the Ultra-
Low Power Intel486 GX processor, which has a 16-bit data bus only. With dynamic bus sizing,
the bus width is determined during each bus cycle to accommodate data transfers to or from 32-
bit, 16-bit or 8-bit devices. The decoding circuitry can assert BS16# for 16-bit devices, or BS8#
for 8-bit devices for each bus cycle. For addressing 32-bit devices, both BS16# and BS8# are
deasserted. If both BS16# and BS8# are asserted, an 8-bit bus width is assumed.

Appropriate selection of BS16# and BS8# drives the Intel486 processor to run additional bus cy-
cles to complete requests larger than 16-bits or 8-bits. When BS16# is asserted, a 32-bit transfer
is converted into two 16-bit transfers (or three transfers if the datais misaligned). Similarly, as-
serting BS8# converts 32-bit transfers into four 8-bit transfers. The extra cycles forced by the
BS16# or BS8# signals should be viewed as independent cycles. BS16# or BS8# are normally
driven active during the independent cycles. The only exception iswhen the addressed device can
vary the number of bytesthat it can return between the cycles.

The Intel486 processor drives the appropriate byte enables during the independent cyclesinitiat-

ed by BS8# and BS16#. Addresses A31-A2 do not change if accesses are to a 32-bit aligned are
Table 7-1shows the set of byte enables that is generated on the next cycle for each of the valic
possibilities of the byte enables on the current cycle#BRust be ignored for 16-byte cycles to
memory-mapped devices.
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Table 7-1. Next Byte-Enable Values for the BSx# Cycles

Current Next with BS8# Next with BS16#
BE3# | BE2# | BE1# | BEO# | BE3# | BE2# | BE1# | BEO# | BE3# | BE2# | BE1# | BEO#
1 1 1 0 N N N N N N N N
1 1 0 0 1 1 0 1 N N N N
1 0 0 0 1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1 0 0 1 1
1 1 0 1 N N N N N N N N
1 0 0 1 1 0 1 1 1 0 1 1
0 0 0 1 0 0 1 1 0 0 1 1
1 0 1 1 N N N N N N N N
0 0 1 1 0 1 1 1 N N N N
0 1 1 1 N N N N N N N N

NOTE: “N” means that another bus cycle is not required to satisfy the request.

The dynamic bus sizing feature of Intel486 processor is significantly different than that of the
Intel386™ DX processor. The Intel486 processor requires that the data bytes be driven on the ad-
dressed lines only, unlike the Intel386 DX processor, which expects both high and low order
bytes on D15-DO0. The simplest example of this function is a 32-bit aligned BS16# read. When
the Intel486 processor reads the two higher order bytes, they must be driven on D31-D16 data
bus, and it expects the two low order bytes on D15-D0. The Intel386 DX processor always reads
or writes data on the lower 16-bits of the data bus when BS16# is asserted.

The external system design must provide buffers to allow the Intel486 processor to read or write
data on the appropriate data bus pireble 7-2shows the data bus lines where the Intel486 pro-
cessor expects valid data to be returned for each valid combination of byte enables and bus sizing
options. Valid data is driven only on data bus pins which correspond to byte enable signals that
are active during write cycles. Other data pins are also driven, but they do not contain valid data.
Unlike the Intel386 DX processor, the Intel486 processor does not duplicate write data on the data
bus when corresponding byte enables are deasserted.
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Table 7-2. Valid Data Lines for Valid Byte Enable Combinations

BE3# BE23 BE1# BEO# w/o BS8#/BS16# w BS8# w BS16#
1 1 1 0 D7-D0O D7-DO D7-DO
1 1 0 0 D15-D0 D7-DO D15-D0
1 0 0 0 D23-D0 D7-DO D15-D0
0 0 0 0 D31-D0 D7-DO D15-D0
1 1 0 1 D15-D8 D15-D8 D15-D8
1 0 0 1 D23-D8 D15-D8 D15-D8
0 0 0 1 D31-D8 D15-D8 D15-D8
1 0 1 1 D23-D16 D23-D16 D23-D16
0 0 1 1 D31-D16 D23-D16 D31-D16
0 1 1 1 D31-D24 D31-D24 D31-D24

The BS16# and BS8# inputs alow externa 16- and 8-bit buses to be supported using fewer ex-
ternal components. The Intel486 processor samples these pins every clock cycle. This value is
sampled on the clock before RDY # to determine the bus size. When BS8# or BS16# is asserted,
only 16-bits or 8-bits of data are transferred in a clock cycle. When both BS8# and BS16# are
asserted, an 8-bit buswidth is used.

Dynamic bus sizing allows the power-up or boot-up programs to be stored in 8-bit non-volatile
memory devices (e.g., PROM, EPROM, E2PROM, Flash, and ROM) while program execution
uses 32-bit DRAM or variants.

7.1.3 Address Decoding for 1/0O Devices

Address decoding for 1/0O devices resembl es address decoding for memories. The primary differ-
enceisthat the block size (range of addresses) for each address signal is much smaller. The min-
imum block size depends on the number of addresses used by the 1/0 device. In most processors,
where 1/O instructions are separate, |/0 addresses are shorter than memory addresses. Typically,
processors with a 16-bit address bus use an 8-bit address for 1/0.

One technique for decoding memory-mapped /O addressed is to map the entire |/O space of the
Intel 486 processor into a 64-Kbyte region of the memory space. The address decoding logic can
be reconfigured so that each I/O device responds to a memory address and an 1/O address. This
configuration is compatible with software that uses either 1/O instructions or memory-mapped
techniques.

Addresses can be assigned arbitrarily within the 1/O or memory space. Addresses for either 1/0-
mapped or memory-mapped devices should be selected so as to minimize the number of address
lines needed.
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7.13.1 Address Bus Interface

tel.

Figure 7-2 shows the Intel486 processor address interface to 32-, 16- and 8-bit devices. To ad-
dress 16-bit devices, the byte enables must be decoded to produce A1, BHE# and BLE# (AQ) sig-

nas.

BS8# = BS16# = HIGH
for 32-Bit Addressing

Intel486™
Processor

—{ BS8#

BS16#

Address
Decoder

Address Bus
(A31-A2, BE3#-BEO#)
32-Bit
110
Devices
A31-A2 - 16-Bit
o 10
Devices
BHE#,
BLE#,
BE3#— Al
BEO#
o Byte
Select AO(BLE#), A1
> 8-Bit
110
_ Devices
A31-A2 o

Figure 7-2. Intel486™ Processor Interface to I/0O Devices

To access to 8-hit devices, the byte enable signals must be decoded to generate AO and A1. Be-
cause A0 and BLE# are the same, the same generation logic can be used. For 32-bit memo-

ry/mapped devices A31-A2 can be used in conjunction with BE3#—BEO#. This logic is shown in

Figure 7-3
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BEO#

— Al
BE1#

BE1#

BHE#
BE3#

BEO#
BE2# BLE# (OR A0)

BEO#

BE1# | >

Figure 7-3. Logic to Generate Al, BHE# and BLE# for 16-Bit Buses

7.1.3.2 8-Bit I/O Interface

Due to the presence of dynamic data bus sizing and the variety of byte-enable pin combinations
(Table 7-2), byte swapping logic for 32-to-8-hit conversions can beimplemented in variousways.

This section discusses an example in which BE3#-BEO# are low and D7-DO are used when BS8
is enabled.

Figure 7-4shows the interfacing of an Intel486 processor to an 8-bit device. This implementation
requires seven 8-bit bidirectional data buffers.
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Bidirectional
Data Buffers

:i: B%FF % N
N A~ 14
BE3#

8

BUFF | N
P K ~ >
Intel4g6™ T 8Bt
Processor BE2#

Bus
Interface

> 4 > s > ¢

BEN8H# T BEN8SUL# T BEN8UH# T

A5283-02

Figure 7-4. Intel486™ Processor Interface to 8-Bit Device

In this example of a 32-bit write, the BE3#—-BEO# are enabled; hence 32 bits of data reside on the
data buffer outputs. This data is then swapped based on the control signals. Buffers are enabled
in the following manner:

For Byte # 0 Buffer 3 is enabled (BEO# is true)

For Byte # 1 Buffer 2 and 4 are enabled (BE1# and BEN8H#)
For Byte # 2 Buffer 1 and 5 are enabled (BE2# and BENBUL#)
For Byte # 3 Buffer 0 and 6 are enabled (BE3# and BEN8UH#)

Table 7-5shows the truth table for 8-bit 1/O interface to the Intel486 processor. The table also
contains the values of the control signals used to enable the second set of buffers. The PLD equa-
tions used to implement these signals are showlntes 7-3and7-4.
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Table 7-3. PLD Input Signals

BS8# The signal is from an 8-bit device or from the system logic that interfaces to an 8-bit
device.

BE3#-BEO# When processor drives all of these signals Low, external logic should look only for
BEO# while in 8-bit mode.

ADS# An address strobe from the Intel486™ processor indicates a valid processor cycle.

OUTPUTS BEN8H#,

BEN8UH#, BENSUL#

Byte enables for 8-bit interface.

Table 7-4. Equations

BEN8H = ADS * BE1 * /BEO * BS8
+ /ADS * BEN8H

BEN8UL = ADS * BE2 * /BE1 * /BEO * BS8
+ /ADS * BENSUL

BEN8UH = ADS * BE3 * /BE2 * /BE1 * /BEO * BS8
+ /ADS * BEN8UH

;Swapping second byte for 8-bit
interface

;Swapping third byte for 8-bit
interface

;Swapping fourth byte for 8-bit
interface

Table 7-5. 32-Bit to 8-Bit Steering (Sheet 1 of 2)

Intel486™ Processor () 8-Bit Interface (V)

BE3# | BE2# | BE1# | BEO# | BEN16# | BEN8UH# | BEN8UL# BENSH# [BHE# @ Al A0
0 0 0 0 1 1 1 1 X 0 0
1 0 0 0 1 1 1 1 X 0 0
0 1 0 of 1 1 1 1 X X X
1 1 0 0 1 1 1 1 X 0 0
0 0 1 of 1 1 1 1 X X X
1 0 1 of 1 1 1 1 X X X

Inputs Outputs
NOTES:

1. Ximplies “do not care” (either O or 1).

2. BHE# (byte high enable) is not needed in 8-bit interface.
3. Tindicates a non-occurring pattern of byte enables; either none are asserted or the pattern has byte
enables asserted for non-contiguous bytes.
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Table 7-5. 32-Bit to 8-Bit Steering (Sheet 2 of 2)

Intel486™ Processor ) 8-Bit Interface ()

BE3# | BE2# | BE1# | BEO# | BEN16# | BEN8UH# | BEN8UL# BENSH# PBHE# @ Al A0
0 1 1 of 1 1 1 1 X X X
1 1 1 0 1 1 1 1 X 0 0
0 0 0 1 1 1 1 X 0 1
1 0 0 1 1 1 1 0 X 0 1
0 1 0 1 1 1 1 0 X X X
1 1 0 1 1 1 1 0 X 0 1
0 0 1 1 1 1 0 0 X 1 0
1 0 1 1 1 1 0 1 X 1 0
0 1 1 1 1 0 1 1 X 1 1
1 1 1 1 1 1 1 1 X X X

Inputs Outputs

NOTES:

1. X implies “do not care” (either O or 1).

2. BHE# (byte high enable) is not needed in 8-bit interface.

3. Tindicates a non-occurring pattern of byte enables; either none are asserted or the pattern has byte
enables asserted for non-contiguous bytes.

7.1.3.3 16-Bit I1/O Interface

16-bit I/O interface byte swap logic requires six 8-bit bidirectional 1/0 data buffers as shown in
Figure 7-5. Buffers 3 through 0 are controlled by BE3#—BEO# respectively. Buffers 4 and 5 are
monitored by BEN16#.

To transfer data on the lower 16-bits, buffers 2 and 3 are enabled. While the higher 16-bits are
transferred through Buffer 0, 1, 4, and 5.
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-8 BUFF O [« 8

\

BE3# 7

< 8, o
BUFF 1 [ 8

\

BE2# ?

<84 »| BUFF2 8/ »

BEW ] 16-Bit

8 8, o
<> BUFF3 -

BEO# T

BUFF 4 |=—

A

BEN16# T

» BUFF5 |«

I

Figure 7-5. Bus Swapping 16-Bit Interface

Table 7-9 shows the truth table for 32-to-16-bit bus swapping logic and A0, A1 and BHE# gen-
eration.

The PLD equation used to implement 32-bit-to-16-bit byte swap logic is shown in Tables 7-6
and 7-7.
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Table 7-6. PLD Input Signals

In

tel.

BS16# Either from a 16-bit device or from system logic which indicates a 16-bit transfer.
BE3#-BEO# Byte enable inputs from Intel486™ processor. In 16-bit mode, the external logic should
look at BEO# and BE1# only.
ADS# Address strobe from an Intel486 processor indicating a valid CPU cycle.
Table 7-7. PLD Output Signals
BS16# Word enable for 16-bit interface.

Table 7-8. Equation

BEN16 = ADS * BE2 * /BE1 * /BEO * BS16 * /BS8

+ ADS * BE3 */BE1 * /BEO * BS16 * /BS8

+ /ADS *

BEN16

;swapping upper 16-bits

Table 7-9. 32-Bit to 16-Bit Bus Swapping Logic Truth Table (Sheet 1 of 2)

Intel486™ Processor )

8-Bit Interface @

BE3# | BE2# | BE1# |BEO# | BEN16# |BENSUH# |BENSUL# | BEN8H# PBHE# @| A1 A0
0 0 0 0 1 1 1 1 1 0 1
1 0 0 0 1 1 1 1 1 0 1
0 1 0 of 1 1 1 1 X X X
1 1 0 0 1 1 1 1 1 0 1
0 0 1 of 0 1 1 1 0 X 0
1 0 1 of 0 1 1 1 X X 0

Inputs Outputs

NOTES:

1. X implies “do not care” (either O or 1).

2. BHE# (byte high enable) is not needed in 8-bit interface.
3. Tindicates a non-occurring pattern of byte enables; either none are asserted or the pattern has byte
enables asserted for non-contiguous bytes.
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Table 7-9. 32-Bit to 16-Bit Bus Swapping Logic Truth Table (Sheet 2 of 2)

Intel486™ Processor ©) 8-Bit Interface ()

BE3# | BE2# | BEL# | BEO# | BEN16# |BENSUH# |BENSUL# | BENSH# PBHE# @| A1 A0
0 1 1 of 0 1 1 1 X X X
1 1 1 0 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 0 1
1 0 0 1 1 1 1 1 1 0 1
0 1 0 1t 1 1 1 1 X X X
1 1 0 1 1 1 1 1 1 0 1
0 0 1 1 0 1 1 1 0 1 0
1 0 1 1 0 1 1 1 1 1 0
0 1 1 1 0 1 1 1 1 1 1
1 1 1 1t 1 1 1 1 X X X

Inputs Outputs

NOTES:

1. Ximplies “do not care” (either O or 1).

2. BHE# (byte high enable) is not needed in 8-bit interface.

3. Tindicates a non-occurring pattern of byte enables; either none are asserted or the pattern has byte
enables asserted for non-contiguous bytes.

Thelogic needed to generate the byte-swapping control signals for 32-bit-to-8-bit and 32-bit-to-
16-bit data transfer can be implemented in PLDs. Propagation delay of the PLD and the bidirec-
tional buffer propagation delay of 9 ns maximum must be taken into consideration. This delay
adds into data set-up time for CPU read cycles and data valid delay for the CPU write cycle. The
byte-swapping and address bit generation logic is shown in Figure 7-6.

I 7-13



EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL

In

tel.

BS8#

BS16#

BSO0#

BS1#

BS2#

BS3#

ADS

PLD

From 8-Bit

From 16-Bit

BEN16#

BEN8UH#

BEN8UL#

BEN8H#

A0

Al

BHE#

Figure 7-6. Bus Swapping and Low Address Bit Generating Control Logic

7.1.3.4 32-Bit I/O Interface

A simple 32-bit I/O interface is shown in Figure 7-7. The example uses only four 8-bit wide bi-

directional buffers which are enabled by BE3#-BEQdble 7-2provides different combinations
of BE3#-BEO#. To provide greater flexibility in 1/0 interface implementation, the design should
include interfaces for 32-, 16- and 8-bit devices. The truth table for a 32-t0-32-bit interface is

shown inTable 7-10
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Intel486™ Processor Data Bus

32-Bit I/0O Device

<+——+—»| BUFF0 [«——F—>»

BE3#

4% BUFF 1 |e——F~—>»

BE2#

<«—#—»| BUFF2 [¢+—F—>

BE1#

<8 | BUFF3 |24 »

BEO#

Figure 7-7. 32-Bit I/O Interface
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Table 7-10. 32-Bit to 32-Bit Bus Swapping Logic Truth Table

In

tel.

Intel486™ Processor )

8-Bit Interface

BE3#

BE2#

BE1#

BEO#

BEN16#

BEN8SUH#

BEN8UL#

BEN8H#

BHE# @

>
[

>
o

o

o

-

x

rlo|r|o|r|o|r|o|lr|o|lr|o|r|o]|r

Rrlr|lo|lo|r|r|o|lo|lr|r|o|lo|r|r]|o

Pl FP|IP|IO|OC|OC|OC|(FR|FP|FRP|FP|[O[|OC|[O|O

Rlr|lRrir|Rr|r|Rr|RrRr|R|Rr[R|R[Rr|R|r

Rlr|lRrir|Rr|r|Rr|RrIRr|R|Rr[R|R[Rr|R|r

Rlr|lrir|Rr|r|Rr|RrRr|R|Rr[R|R[Rr|R|r

Rlr|lRrr|Rr|r|[r|Rr|Rr|R|Rr[R|R[R,]|R

XXX XXX X[ X[ X| X[ X[X]|X|[X|X

X XXX XXX X[ X]| X[ X[X]|X]|X|[X]|X

X XXX XXX X[ X]|X|X[X]|X]|X|[X]|X

Inputs

Outputs

NOTES:

1. X implies “do not care” (either O or 1).

2. BHE# (byte high enable) is not needed in 8-bit interface.
indicates a non-occurring pattern of byte enables; either none are asserted or the pattern has byte
enables asserted for non-contiguous bytes.

3 f
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7.2 BASIC PERIPHERAL SUBSYSTEM

All microprocessor systems include a CPU, memory and 1/0O devices which are linked by the ad-
dress, dataand control buses. Figure 7-8 illustrates the system block diagram of atypical Intel486
processor-based system.

Intel486™
Processor
LAN Cache Memory
Controller Subsystem Subsystems DMAC
Memory Bus
Bus
Translator
1/0 Bus
Bus SCSI/IPI ESDI
Interface Interface
(EISA, MCA,
PCI, ISA, or
Proprietary)

Figure 7-8. System Block Diagram

An embedded Intel486 processor system may consist of several subsystems. The heart of the sys-
tem is the processor. The memory subsystem is aso important and must be efficient and opti-
mized to provide peak system level performance. As described in Chapter 5, “Memory
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Subsystem Design,” it is necessary to utilize the burst-bus feature of the Intel486 processor for
the DRAM control implementation. The cache subsystem, as descriliglsbjpter 6, “Cache
Subsystem,also plays an important role in overall system performance. For many systems how-
ever, the on-chip cache provides sufficient performance.

A high-performance Intel486 processor-based system, requires an efficient peripheral subsystem.
This section describes the elements of this system, including the I/O devices on the expansion bus
(the memory bus) and the local I/O bus. In a typical system, a number of slave I/O devices can
be controlled through the same local bus interface. Complex peripheral devices which can act as
bus masters may require a more complex interface.

The bus interface control logic is showrFigure 7-9and consists of three main blocks: the bus
control and ready logic, the data transceiver and byte swap logic, and the address decoder.
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ADSH# | ADS# &» (To Interrupt Controller)
RECOV
CLK M/10# 1 M/IO# —
DI/C# ® D/C# |OR#
W/R# »| WIR# —
Intel486™ Bus Control
CPU and Ready «C50%
RDY# [ ROY# |ocYC |5
A A
Data Addr | BE3#-
Bus Bus |BEO# \
EN
32l 32, 4 CS1#
»| Address
Decoder cso#
DIR Data
»| OE# Bus
Data < 4
Transceiver »| RD# CS0#
32
»| WR#  1/O #2
(32-Bit)
> A2
»| RD# CSL#
> WRE o #1
»| a2 (32-Bit)

Figure 7-9. Basic I/O Interface Block Diagram
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7.2.1 Bus Control and Ready Logic

A typical peripheral device has address inputs which the processor uses to select the device's in-

ternal registers. It also has a chip select (CS#) signal which enablesit to read datafrom and write

data to the data bus, as controlled by the READ (RD#) and WRITE (WR#) control signals. For a

processor that has separate memory and 1/O addressing, either memory or 1/0O read and write sig-

nals can be used. Asdiscussed in Section 7.1.1, “Mapping Techniquesyhen memory read and

write signals are used to access the peripheral device, the device is called a memory-mapped I/O
device.

Many peripheral devices also generate an interrupt output which is asserted when a response is
required from the processor. Here, the processor must generate an interrupt acknowledge (IN-
TA#) signal.

The bus controller decodes the Intel486 processor’s status outputs (W/R#, M/IO# and D/C#) and
activates command signals according to the type of bus cycle requested.

The bus controller can be used to do the following:

1. Generate an EPROM data read when the control logic generates a signal such as a
memory read command (EPRD#). The command forces the selected memory device to
output dataChapter 8, “System Bus Desigmpfovides further explanation.

2. Generate the IOCYC# signal which indicates to the address decoder that a valid I/O cycle
is taking place. As a result, the relevant chip select (CS#) signal should be enabled for the
I/O device. Once IOCYC is generated, the IOR# and IOW# signals are asserted according
to the decoded Intel486 processor status signals (explained later).

3. Initiate I/O read cycles when W/R# is low and M/IO# is low. The I/O read command
(IOR#) is generated. IOR# selects the 1/O device which is to output the data.

4. Initiate an 1/O write cycle when W/R# is high and M/IO# is low. The I/O write command
signal (IOW#) is generated. This signal instructs a selected I/O device to receive data from
the Intel486 processor.

5. Generate a RECOV signal which is used for recovery and to avoid data contention. This
signal is detailed i®ection 7.2.6, “Recovery and Bus Contention.”

6. Generates the interrupt acknowledge signal (INTA#). This signal is sent to the 82C59A
programmable interrupt controller to enable 82C59A interrupt vector data onto the
Intel486 processor data bus using a sequence of interrupt acknowledge pulses that are
issued by the control logic. This signal is detaile®écttion 7.5, “Interfacing to x86
Peripherals.”
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7.2.2 Bus Control Signal Description

The following list describes the input/output signals for the bus control logic.

7.22.1 Processor Interface

ADS#—Address StatusThisinput signal to the bus controller is connected directly to the pro-
cessor's ADSH output. It indicates that a valid bus cycle definition and address are available on
the cycle definition linesand address bus. ADS# is driven active at the same time when addresses
aredriven.

M/10#—Memory/Input-Output Signal
D/C#—Data/Control
W/R#—Write/Read (Input signalsto bus controller)

These signals are connected directly to the Intel 486 processor’s bus cycle status outputs. For the
Intel486 processor, they are valid when ADS# is asserted. Table 7-11 describes the bus cycles of
various combinations of M/IO#, D/C# and W/R# signals.

Table 7-11. Bus Cycle Definitions

M/IO# D/C# W/R# ADS# Bus Cycle Initiated
0 0 0 0 Interrupt acknowledge
0 0 1 0 Halt/special cycle
0 1 0 0 I/O read
0 1 1 0 I/0 write
1 0 0 0 Code read
1 0 1 0 Reserved!
1 1 0 0 Memory read
1 1 1 0 Memory write
t

NOTE: Intel reserved. Do not use.

RDY#—Ready Output Signal. This signal is connected directly to the Intel486 processor’'s
RDY # input and indicates that the current bus cycleis complete. It also indicates that the I/O de-
vice hasreturned valid data to the Intel 486 processor’s data pinsfollowing an I/O write cycle. For
the Intel 486 processor, RDY# isignored when the busisidle and at the end of the first clock of
the bus cycle. The signal isutilized in wait state generation which is covered in the next section.

CLK#—Clock Input Signal. This signal provides the fundamental timings for the bus control
logic and is synchronous with the processor’s clock. All of the external timings are specified with
respect to the rising edge of the clock.

IOCYC—I/O Interface Signals. The O cycle output signal isgenerated at therising clock edge
following ADS#, M/10#, D/C and W/R# being active. The signal indicates that an 1/0 cycle is
taking place and is used to enable the address decoder.
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IOR#—The 1/0 Read Signal.Thissignal isactive low and is generated when the Intel 486 pro-
cessor's W/R# output signal is low, indicating aread cycle. When IOR# is low, data can be read
from the peripheral device. The signal is deasserted with the rising edge of the RDY # signal.

IOW#—Interrupt Write Signal. This signa is generated by the controller logic and is active
low when W/R# status signal from the Intel486 processor is high, indicating that the processor
will writeto the I/O device which hasits present address on the address bus. When IOW# islow,
datafrom the Intel486 processor can be written to the periphera device. The signal isvalid until
therising edge of the RDY# signal.

INTA—Interrupt Acknowledge Signal. Thissignal is active high and is generated to acknow!-
edge an interrupt from peripheral devices such as 82C59A, etc. The signal function is discussed
in Section 7.5, “Interfacing to x86 Peripherals.”

7.2.2.2 Wait State Generation Signals

SELO, SEL1, SEL2. These programmable wait state select inputs can be controlled by DIP
switches or can be programmed by the processor. In the control logic example, a seven-state wait
state generator is implemented. The purpose and functionality of a wait state generator is de-
scribed in the next section.

CO0, C1, C2—Counter Outputs 0, 1, and ZThese outputs are internally decoded to generate a
RDY# signal and they represent the number of wait states implemented by the bus control logic.
The wait state generation logic is used to patch timing differences between the peripheral device
and the Intel486 processor. The next section discusses thisissue in detail.

7.2.3 Wait State Generator Logic

When the memory subsystem or the 1/O device cannot respond to the processor in time, wait
states are added to the bus cycles. During wait states the processor freezes the state of the bus. On
the Intel486 processor, wait states are activated by the RDY # signal (when asserted). Additional
walit states are generated as long as RDY # stays deasserted, and the processor resumes its opera-
tionsonce RDY# is asserted.

Timing differences between microprocessors and periphera devices are common, but can be
compensated for by using wait states or some other delay techniques. Thefollowing major timing
parameters must be accounted for:

1. Minimum pulse width for read and write timings
2. Chip select accesstime

3. Address accesstime

4. Accesstime from read strobe

Itispossibleto adjust the minimum pulse width and chip select accesstime by adding wait states.
Refer to Section CHAPTER 4, “Bus Operatiofidr more detailed information on adding wait
states to basic bus cycles.
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Figure 7-10 shows PLD equations for basic 1/0 control logic. A wait state generator should be
implemented to optimize wait state generation.

Inputs ADS#, M/IO#, DIC#, WIR#, SELO, SEL1, SEL2

Outputs 10CYC, 0 C1, C2, IOR#, IOW#, RDY#
IOCYC = |IOCYCLE VALID
CO0, C1, C2 = Outputs of a 3-bit counter
Sel 0, 1, 2 = Programmable wait state select input

PLD Equation:

10 VALID CYCLE; ; start /0 cycle
IOCYC : =ADS * M/IO# *D/C ;END when ready
Wait State Counter;
CO:=10CYC * CO# ;Counter bit 0
Cl:=10CYC*CO*C1# ;Counter bit 1
+10CYC * CO# * C1
C2:=10CYC*CO*Cl1*C2# ;Counter bit 2

+10CYC * CO#* C2
+10CYC*CO#*C1*C2

1/0 Read; I/O Write

IOR : = ADS * M/IO# * D/C * W/R#
+ IOR * RDY

IOW : = ADS * M/IO * D/C * W/R
+ |OW * RDY#

READY (3 Wait States)
RDY =CO*C1* C2#

Figure 7-10. PLD Equations for Basic 1/0 Control Logic

The equation in Figure 7-10 shows an implementation of a seven-state wait state controller. The
walit state logic inserts the needed wait states according to the number required by the device be-
ing accessed. In asimple design, 1/O accesses can be designated as being equal to the number of
wait states required by the slowest device.

7.2.4 Address Decoder

The function of the address decoder is to decode the most significant address bits and generate
address select signals for each system device. The address space is divided into blocks, and the
address select signal sindicate whether the address on the address bus iswithin the predetermined
range. The block size usually represents the amount of address space that can be accessed within
aparticular device and the address select signal is asserted for any address within that range.
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Address select signals are asserted within the range of addresses which is determined by the de-
coded address lines. The relationship between memory and 1/0 mapping and address decoding is
given by the following equation:
Given thatn = bits to decoder

m = bits to I/O or memory

then # of chip selects = 2"
address range = 2™ = # of least significant address lines

For example, when the address decoder decodes A13 through the most significant address bits,
the least significant 13 address bits A2 to A12 are ignored. Hence the address select can be as-
serted for a 2-Kbyte address range.

For I/O-mapped devices, the maximum 1/O space is 64 Kbytes. When using 1/O instructions the
block size (range of addresses) for each address select signal is much smaller than the address
space of the memory-mapped devices. The minimum block size is determined according to the
number of addresses being used by the peripheral device.

A typical address decoding circuit for a basic 1/0 interface implementation is shown in Figure
7-11. 1t uses 74S138. Only one output is asserted at atime. The signal corresponding to the binary
number present at the A, B and C inputs and value of the gate enable signals.

Figure 7-12 shows the internal logic and truth table of the 74S138. It has three enable inputs; two
are activelow, and oneisactive high. All three inputs must be asserted; otherwise the outputsare
deasserted. Since al of the outputs are active low, the selected output is low and the others are
high.

RDY#

RESET

TIMEOUT
745138

S
A2 |
ADSH o o A b— 10 CS (XXEO)
A3 B E4
S E
CPU CLK ———— o# Ad ¢ 8
Mio#—— dE1
A
i
A7
. s
pic#——E3 e FC

Figure 7-11. 1/0O Address Example
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In Figure 7-11, address lines A15-A8 are ignored to maintain simplicity. Lines A7-A2 are de-
coded to generate addresses XXEO—-XXFC. When a valid cycle begins, ADS# is latched in the
flip-flop.

) 15 ]
(15 YO
14
G1 _(6)
| (13)
Enable Goar (@) Y2
Inputs
G2# ) (12)
Y3
— Data
(11) Outputs
Y4
S 10
A @ >o > y Y5
Select | p—(2 D° OD © Y6
Inputs
(7) v7
L o8 Do > —
Function Table
Inputs
Output
Enable Select utputs
Gl GZ#r C B A YO Y1 Y2 Y3 Y4 Y5 Y6 Y7
X 1 X X X 1 1 1 1 1 1 1 1
0 X X X X 1 1 1 1 1 1 1 1
1 0 0 0 0 0 1 1 1 1 1 1 1
1 0 0 0 1 1 0 1 1 1 1 1 1
1 0 0 1 0 1 1 0 1 1 1 1 1
1 0 0 1 1 1 1 1 0 1 1 1 1
1 0 1 0 0 1 1 1 1 0 1 1 1
1 0 1 0 1 1 1 1 1 1 0 1 1
1 0 1 1 0 1 1 1 1 1 1 0 1
1 0 1 1 1 1 1 1 1 1 1 1 0
TG2# = G2A# + G2B#
1 =High 0= Low Level
X = Don’t Care

Figure 7-12. Internal Logic and Truth Table of 745138
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When A5, A6 and A7 are high and ADS# is strobed, E2 on the decoder is enabled. Here, M/IO#
islow and D/C# is high, enabling inputs E1 and E3 of the decoder. When RDY # is active, E2 is
disabled and the addressisno longer valid. Reset and timeout signals may al so disablethe address
decoding logic.

Because of its non-pipelined address bus, the basic I/O interface design for the Intel 486 processor
does not require address latches following the decoder.

The number of decoders needed is usually afactor of memory mapping complexity.

7.2.5 Data Transceivers

Data transceivers are used for isolating the processor’s data bus from the external data bus and
increasing the drive capability for larger fanouts. Transceivers are used to avoid the contention
on the data bus caused when slow devices perform adelayed read on the databus following aread
cycle. When awrite cycle follows aread cycle, the Intel486 processor may drive the data bus be-
fore a slow device can remove its outputs from the bus, creating potential bus contention. If the
load on the Intel 486 processor’s data pins meets device specifications, and if the data float time
of the deviceis short enough, the transceivers can be omitted from the system.

There should be enough transceivers in the bus interface to accommodate the device with the
most inputs and outputs on the data bus. Only eight transceivers are needed if the widest device
has 16 data bits and if the 1/O device addresses are connected only to the lower byte of the data
bus.

The 74S245 transceiver is controlled through two input signals:

¢ Data Transmit/Receive (DT/R#)—The transceiver for write cycles is enabled when this
signal is high, and a read cycle is enabled when it is low. This signal is simply a latched
version of the Intel486 processor’'s W/R# output.

e Data Enable (DEN#)—When low, this input enables the transceiver outputs. It is generated
by the byte swapping logic and by the BE3#-BEO# signals.

Data transceivers may be combined with byte swapping logic, depending upon whether a 32 bit
to 8/16/32-bit transfer is used. The implementation details of this logic are discussed in previous
sections.

7.2.6 Recovery and Bus Contention

Although data transceivers help to avoid data bus contention, I/O devices may still require a re-
covery period between back-to-back accesses. At higher Intel486 processor clock frequencies,
bus contention is more problematic, particularly because of the long float delay of 1/0O devices,
which can conflict with read data from other 1/0O devices or write data from the CPU. To ensure
proper operation, I/O devices require a recovery time between consecutive accesses. All slave de-
vices stop driving data on the bus on the rising edge of IOR#. After a delay which follows this
rising edge, the data bus floats.

When other devices drive data on to the bus before the data from the previous access floats, bus
contention occurs. The Intel486 processor has a fast cycle time (30 ns at 33 MHz), and the prob-
ability of bus contentions must be addressed.
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Bus control logic should implement recovery to eliminate bus contention. The logic generates a
RECOV signa until the data from the previous read floats. It may or may not be possible to en-
forcethis recovery with the hardware counter. The hardware counter method may not be feasible
when recovery times are too fast for the hardware counter (i.e., when recovery timeis in nano-
seconds). In this case, recovery time can be enforced in software using NOPs and delay 1oops or
using a programmable timer.

The advantages of using hardware-enforced recovery are transparency and reliability. When
moving to higher processor clock speeds, no changeis needed inthe 1/O device drivers. For these
reasons, hardware enforced 1/0 recovery time is recommended.

7.2.7 Write Buffers and 1/O Cycles

The Intel486 processor contains four write buffers to enhance the performance of consecutive
writes to memory. Writes are driven onto the external bus in the same order in which they are
received by the write buffers. Under certain conditions, a memory read is reordered in front of
the writes pending in the write buffer even though the writes occurred earlier in program execu-
tion (see Chapter 4, “Bus Operatiorfor details).

However, 1/0O cycles must be handled in a different manner by the write buffers. 1/0O reads are
never reordered in front of buffered memory writes. This ensures that the Intel486 processor up-:
dates all memory locations before reading status from an 1/O device.

The Intel486 processor never buffers single 1/0 writes. When processing an 1/0O write instruction
(OUT, OUTYS), internal execution stops until the 1/0O write actually completes on the external bus.

This allows time for the external system to drive an invalidate into the Intel486 processor or to

mask interrupts before the processor continues to the instruction following the write instruction.

Repeated OUTS (REP OUTS) instructions are buffered and the next instruction is not executec
until the REP OUTS finishes executing.

7.27.1 Write Buffers and Recovery Time

The write buffers, in association with the cache, have certain implications for 1/0O device recovery
times. Back-to-back write recovery times must be guaranteed by explicitly generating a read cy-
cle to a non-cacheable area in between the writes. Since the Intel486 processor does not buff
I/0 writes, the inserted read does not proceed to the bus until the first write is completed. Then,
the read cycle executes on the external bus. During this time, the I/O device recovers and allow:
the next write.

7.2.8 Non-Cacheability of Memory-Mapped I/O Devices

To avoid problems caused by 1/O “read arounds,” memory-mapped I/O should not be cached. A
read around occurs when a read cycle is reordered in front of a write cycle. If the memory-mappec
I/0 device is cached, it is possible to read the status of the I/O device before all previous writes
to that device are completed. This causes a problem when the read initiates an action requirin
memory to be up-to-date.
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An example of when aread around could cause a problem follows:
* Theinterrupt controller is memory-mapped in cacheable memory.
* Thewrite buffer isfilled with write cache hits, so aread is reordered in front of the writes.
* One of the pending writes is awrite to the interrupt controller control register.

* Theread that was reordered (and performed before the write) was to the interrupt
controller’s status register.

Because the reading of the status register occurred before the write to the control register, the
wrong status was read. This can be avoided by not caching memory-mapped /O devices.

7.2.9 Intel486™ Processor On-Chip Cache Consistency

Some peripheral devices can write to cacheable main memory. If thisis the case, cache consis-
tency must be maintained to prevent stale data from being left in the on-chip cache. Cache con-
sistency is maintained by adding bus snooping logic to the system and invalidating any lineinthe
on-chip cache that another bus master writes to.

Cachelineinvalidations are usually performed by asserting AHOLD to allow another bus master
to drive the address of the line to be invalidated, and then asserting EADS# to invalidate the line.
Cache line invalidations may also be performed when BOFF# or HOLD s asserted instead of
AHOLD. If AHOLD, BOFF# and HOLD are all deasserted when EADS# is issued, the Intel 486
processor invalidates the cache line at the address that happens to be on the bus. Cache line in-
validations and cache consistency are explained more fully in Chapter 6, “Cache Subsystem.”
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7.3 1/0CYCLES

The 1/O read and write cycles used in a system are a factor of the 1/0 control logic implementa-
tion. Figures 7-13 through 7-16illustrate an 1/O read and write cycle for atypical implementation.

7.3.1 Read Cycle Timing

A new processor read cycleisinitiated when ADS# is asserted in T1. The address and status sig-
nals (M/IO# = low, W/R# = low, D/C# = high) are asserted. The IOCY C signal is generated by
the control logic by decoding ADS#, M/IO#, W/R# and D/C#. 10CY C indicates to an external
device that an 1/0 cycleis pending. The IOR# signal is asserted in the T2 state when IOCYC is
valid and RECOV isinactive. The RECOV signal indicates that the new cycle must be delayed
to meet the I/O devicerecovery time or to prevent data bus contention. Thel/O read signal (IOR#)
signal is not asserted until RECOV is deasserted. Databecomes valid after |OR# is asserted, with
the timing dependent on the number of wait states implemented.

In the example, two wait states are required for the slowest 1/O device to do a read, and the bus
control logic keeps |OR# active to meet the minimum active time requirement. The worst case
timing values are calculated by assuming maximum delay in the decode logic and through data
transceivers. The following equations show the fastest possible cycle implementation. Wait
States should be added to meet the access times of the 1/O devices used. Figure 7-13 and 7-14
show the 1/0 read cycle timing and the critical analysis.

TRyp Read Signal Valid Delay

TRvb = TpLppd
=10ns

TDgy Read Data Set}rjp Time
TDsy = Tgurpd * Tsu
=9+5=14ns

TDyp Read Data Hold Time

TDpp = Thp — TUFpd
=3-9=-6ns

TTSU =T,,=Intel486™ processor time (33 MHz)
Thp = Intel486 processor read hold time (33 MHz)

Figure 7-13. I/O Read Timing Analysis
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7.3.2 Write Cycle Timings

The I/O write cycle is similar to the 1/O read cycle with the exception of W/R# being asserted
high when sampled rather than low from the Intel486 processor side. This is shown in Figures
7-15 and 7-16.

I TZ 1 TL 1 T2 1 T2 1 T2 1 0TI 1
e [ [ 10 1T LT LT 10T LT 1
[ | [ I‘ [ .
ADS# \ | /
|: [ [ [ [ v — o
[ [ [ [
M/IO# |: . . . .
I I 1 1 1 1 I
DICH |: [ |/ I I I A\ |
| | | |
A31-A2 |: ) X X )
—l—l—\ [ [ [ [ /—17
wre [ | | | | | | |
e [ 11— |
1 1 —> [a—T1w,p I I
IoW# |: [ [ [ [ / |
| | | | [ [ [
Cs# |: [ [ | | | J
| | TDVD—>I l— = ~—TD¢p
I R
DATA E From CPU
[ [ [ T T T [
RDY# |: I
[ [
I I I I I I I

Figure 7-15. 1/O Write Cycle Timings

The timing of the remaining signals (the address and status signals) is similar to that of 1/O read
cycle timings. The processor outputs data in T2. The I/O write signal (IOW#) may be asserted
one or two clocks after the chip select. The exact delay between the chip select and the IOW#
varies according to the write requirements of the 1/0O device. Data is written into the 1/O device
on therising edge of IOW#, and the processor stops driving data once RDY # datais sampled ac-
tive. The critical timings for the I/O write cycle are shown in Figure 7-16.
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TW,yp Write Signal Valid Delay

TWyp = TpLppd
=10ns

TDyp Write Data Valid Delay

TDyp =Typ * TeuFpd
=19+9=28ns

TDgp Write Data Float Time

TDep = Tep — TBUFP
=0+9=9ns

Typ = T1o= Inteld86™ processor write data valid delay (33 MHz)
Tep =T 1 = Intel486 processor write data float delay (33 MHz)

Figure 7-16. /O Write Cycle Timing Analysis

Latches and data buffers can improve processor write performance. In Figure 7-17, 1/0 addresses
and data are both latched in aconfiguration called aposted write. Posted writes help increase sys-
tem performance by alowing the processor to complete acycle without wait states. Once the data
and address are latched, RDY # can be asserted during the first T2 of an 1/O write cycle. Thus, the
processor operation and the write cycle to the peripheral device can continue simultaneously.
Thisisillustrated in Figure 7-18. The write cycle appears to be only two clockslong (from ADS#
to RDY #) because the actual write overlaps other CPU bus cycles.

1/0 —— 110
Address [ 1 Address
Address Latch Decode
Intel486™
Processor
/
110
Data — I—
110
Data Buffer Data - '
Latch 1/0 Write Device
Data Bus

Figure 7-17. Posted Write Circuit
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cPU |: X ICycIe T X Cycle 2

Address f T T T T
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Latched |: >< Cycle 1
Address
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Figure 7-18. Timing of a Posted Write

DIFFERENCE BETWEEN THE Intel486 DX PROCESSOR FAMILY AND
Intel386 PROCESSORS

The IntelDX2 and Intel DX4 processors are integrated chipsthat isinclude a CPU, amath copro-
cessor, and a cache controller. 1t is fully compatible with its predecessor, the Intel386 DX pro-
cessor, yet has the following differences:

Intel 486 processor offers dynamic bus sizing to support 8-, 16-, and 32-bit bus sizes, except
for the Ultra-Low Power Intel486 GX processor, which supports a 16-bit data bus only.
Dynamic bus sizing requires external swapping logic. The Intel386 DX processor supports
only 16-bit and 32-bit bus sizes and does not require swapping logic.

The Intel486 processor has a burst transfer mode which can transfer four 32-bit words from
external memory to the on-chip cache using only five clock cycles. The Intel 386 DX
processor requires at least eight clock cyclesto transfer the same amount of data.

The Intel 486 processor has a BREQ output which supports multi-processor environments.

The Intel 486 processor’s bus is significantly faster than the Intel 386 processor’s bus. New
featuresinclude a 1x clock, parity supportT, burst cycles, cacheable cycles, cache invalidate
cycles and 8-hit support. The Hardware Interface and Bus Operation chapters of the
Embedded Intel486™ Processor Family Developer's Maexgllains of the bus
functionality and its hardware interface.

To support the on-chip cache, new bits have been added to control register 0 (CD and NW),
new pins have been added to the bus, and new bus cycle types have been added. The on-
chip cache must be enabled after reset by clearing the CD and NW hit in CRO.

T Not availablein the ULP486SX or ULP486GX processors.
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* The complete Intel387™ math coprocessor instruction set and register set have been added.
No I/O cycles are performed during floating-point instruction execution. The instruction
and data pointers are set to zero after FINIT/FSAVE. Interrupt 9 cannot occur, and interrupt
13 occurs instead.

* The Intel486 processor supports new floating-point error reporting modes to ensure DOS
compatibility. These new modesrequire anew bit in Control Register O (NE) aswell as new
pins.

* Six new instructions have been added: Byte Swap (BSWAP), Exchange and Add (XADD),
Compare and Exchange (CMPXCHG), Invalidate data cache (INV D), Write-back and
Invalidate Data Cache (WBINVD) and Invalidate TLB Entry (INVLPG).

* Two new bits are defined in control register 3 for page table entries and page directory
entries.

* A new page protection feature has been added, requiring a new bit in Control Register O.

* A new alignment check feature has been added, requiring anew bit in the flags register and
anew bit in the control register O.

* The replacement algorithm for the translation lookaside buffer (TLB) is a pseudo least-
recently-used algorithm (PLRU), like the one used in the on-chip cache.

* Three new testability registers TR5, TR6 and TR7 have been added for testing of the on-
chip cache. TLB testability has been enhanced.

* The prefetch queue has been increased from 16 bytesto 32 bytes. A jump must dways
execute after code modification to ensure proper execution of the new instruction.

* After reset, the ID in the upper byte of the DX register is 04. The contents of the base
register, including the floating-point registers, may be different after reset.

Refer to the individual Intel486 processor datasheets for more information about these features.

7.5 INTERFACING TO x86 PERIPHERALS

This section discusses the Intel486 processor interface to two peripheral devices from the x86
family: the 8041 and the 82C59A. Not all systems use these separate devices, however the exam-
plesexplain in detail many of the issues surrounding slave 1/O and interrupts.

7.5.1 Universal Peripheral Interface

Universal peripheral interface (UPI) devices allow customized solutions for peripheral device
control. These microcontrollers have aslave interface on-board and include an 8-bit CPU, ROM,
RAM, an I/O timer/counter and a clock. Intel supplies an EPROM implementation, which in-
cludes the 8741 and 8742 microcontrollers. The 8742 hasa 2 K x 8-bit ROM and 256 K x 8-hit
RAM, an eight-bit timer/counter and 18 programmable|/O pins. It & so has an 8-bit statusregister
and two dataregistersfor asynchronous slave-to-master interfacing. The 8742 supportsDMA, in-
terrupt and polled operations.
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The 32-bit Intel 486 processor requires 32-hit-to-8-bit byte-steering logic to interface to an 8-bit
UPI device.

7.5.2 82C59A Interface

The following discussion of interrupt-driven processor environments is a helpful preface to the
section on interfacing Intel486 processor systemsto the 82C59A programmableinterrupt control-
ler. It also provides a context to review other interrupt controller implementations.

In amicrocomputer system, the CPU must efficiently service 1/O devices such as keyboards and
display monitors to minimize overhead. One technique is polling, in which the processor tests
each device in sequence to determine whether servicing is needed. A large portion of the main
program must be devoted to polling, at acost of system throughpuit.

Interrupts provide a more efficient and desirable aternative for servicing I/O devices. Using in-

terrupts, a hardware signa can cause the main program to change its execution path. Theseinter-

rupts are acknowledged only between instructions—with the exception of the bus error signal.
The Intel486 processor reacts to interrupts by saving the program address and then performini
special interrupt processing (as explained inBh#edded Intel486™ Processor Family Devel-
oper’s Manua). Once the current program address and flags are saved on a stack, the Intel486
processor receives an eight-bit vector identifying an entry in the interrupt table that contains the

starting address of the interrupt service routine. The vector interrupt allows a hardware mecha-

nism to select a separate service routine for each interrupt source. Once the interrupt service rou-

tine is executed, the previous processor state is restored, and program execution resumes. The

Intel 486 processor can handle up to 256 interrupts/exceptions. Refer to the Embedded Intel486™
Processor Family Developer’'s Manufalr the interrupt table.

The interrupt-driven environment increases system throughput and allows more tasks to be ac-
complished by the processor, thus increasing overall cost-effectiveness.

The82C59A isahigh performance CM OS programmabl einterrupt controller which manages the
interrupt-driven Intel 486 processor system environment. It accepts requests from peripheral de-
vices and determines device priorities. The 82C59A provides the processor with an e ght-bit vec-
tor interrupt. The interrupt points to an address in the vector table, and the processor’'s INTA#
signal (generated by the bus controller logic) enables the vector data on the data bus.

Individual 82C59A devices can be cascaded to accommodate up to 64 interrupts. Later sections
discuss how to implement such configurations.

7521 Single Interrupt Controller

Figure 7-19 shows a basic 1/O interface between the Intel 486 processor and a single 82C59A de-

vice. The address decoder generates the chip select (CS#) signal, whilethe bus control ready logic
generates the interrupt acknowledge (INTA#), write (WR#) and read (RD#) signals. In this ex-

ample, the 82C59A is used in the master mode since the SP/EN# pinis high. The AO address pin

is used to decipher various processor command words and to determine the status that the proces-

sor wishes to read. The AO pin is connected to the processor’s A2 pin and is also used to distin
guish between two consecutive interrupt acknowledge cycles. The 82C59A register address mus
therefore be located at two consecutive doubleword boundaries.
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Figure 7-19. Intel486™ Processor Interface to the 82C59A

Aninterrupt activates the Interrupt output of the 82C59A, which is connected to the INTR input
(interrupt request) of the Intel486 processor. The processor automatically performs two consec-
utive interrupt acknowledge cycles. The 82C59A device's timings are as follows:

¢ Each interrupt acknowledge cycle must be extended by at least one wait state, which is
implemented by the wait state generator logic described in Section 7.2, “Basic Peripheral
Subsystem.”

* Four idle cycles must be inserted between two interrupt acknowledge cycles.
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7522

Cascaded Interrupt Controllers

Figure 7-20 shows how several interrupt controllers can be cascaded to handle up to 64 interrupt
requests. One device acts as the master and the rest asslaves. The interface between these devices
resembles the single device interface with the following additional features:

The cascaded address outputs are used to provide address and chip select signalsfor the
slave controllers.

The interrupt request lines (IR7—-IR0) of the master controller are connected to the INTR
outputs of the slave devices.

Master 82C59A
Programmable
Interrupt Controller Intel486™ Processor
IRQO_,
IRQ1 INTR
IRQ2
IRQ3
IRQ4
IRQ5
IRQ6
IRQ7
Slave 82C59A
Programmable
Interrupt Controller
IRQ8
IRQ9
IRQ10
From ISA IRQ11 Cascade Bus %
Slots IRQ12 E
IRQ13
IRQ14
Rols D7:D0
_LOCK#
Bus Cycle |
Type | PLOCK#
Decoder |
M/10#, DIC#, WIR#

The function of each slave controller is to identify the priorities among eight interrupt requests
and generate a single interrupt request for the master controller. The master controller must iden
tify the priorities among eight slave controllers and transmit a single interrupt request to the

Figure 7-20. Cascaded Interrupt Controller

Intel486 processor.
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The timing interface resembles that used for single devices. During the first interrupt acknowl-
edge cycle, all the 82C59A devices freeze the states of their interrupt request inputs. The master
controller outputs the cascaded address to select the slave controller that is generating the request
with the highest priority. During the second interrupt acknowledge cycle, the selected slave con-
troller outputs an interrupt vector to the Intel 486 processor.

7523 Handling More than 64 Interrupts

If an Intel486 processor-based system requires more than 64 interrupt request lines, a third
82C59A device level in polled mode is added to the configuration shown in Figure 7-19. Once
the third-level interrupt controller receives an interrupt, it drives an interrupt request input to the
slave controller on the second level. The second-level slave controller then sends an interrupt re-
quest to the master controller, which in turn interrupts the processor. The slave controller then
returns a service routine vector to the Intel486 processor. The service routine must include com-
mands to poll the third level to determine the source of the interrupt request.

The additional hardware required to implement this configuration includes additional 82C59A
devices and the chip-select logic.

7.6 Intel486™ PROCESSOR LAN CONTROLLER INTERFACE

This section describes two LAN interface solutions using Intel controllers: the 82596CA copro-
cessor and the PCI-compliant 82557 controller for fast Ethernet networks.

7.6.1 82596CA Coprocessor

The 82596CA coprocessor (hereafter referred to generically as the 82596 coprocessor) is a 32-bit
multitasking LAN coprocessor which implements the carrier-sense, multiple-access and colli-
sion-detect (CSMA/CD) link access protocol. The coprocessor supports a wide variety of net-
works. It executes high-level commands, and it performs command chaining and inter-processor
communication viamemory shared with the Intel 486 processor. This relieves the processor of all
time-critical local-network control functions.

The coprocessor’s features include:
* Complete CSMA/CD Functions
— Complete media access control (MAC) functions
— High-level command interface
— Manchester encoding or NRZ encoding and decoding
— IEEE 802.3 or CCITT HDLC frame delimiting
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* |Industry-Standard Network Support
— |EEE 802.3 (Ethernet, Ethernet Twisted Pair, Cheapernet, StarLAN, etc.)
— IBM PC Network (baseband and broadband)
— Proprietary CSMA/CD networks up to 20 Mbits/second
— HDLC frame delimiting
e Compatible Intel 486 Processor Interface
— Optimized interface to the Intel486 processor bus
— Shared Intel486 processor bus signals and memory timing
— Support for Intel486 processor byte ordering
* Architectural Features
— On-chip DMA
— Bus Throttle
— 128-byte receive FIFO, 64-byte transmit FIFO
— On-chip memory management
— Network management and diagnostics
— 82586 software-compatible mode
* Performance Features
— 9.6 msec interframe spacing for back-to-back frame transmission and reception
— 80/106 Mbytes/second bus transfer rate (burst) at 25/33 MHz
— 50/66 Mbytes/second bus transfer rate (non-burst) at 25/33 MHz

Figure 7-21is a block diagram of the 82596 coprocessor. A serial subsystem interfaces to the
physical-layer device for the network. This subsystem performs CSMA/CD media access-control
and channel-interface functions. It supports the full set of IEEE 802.3 and other industry-standard
and proprietary network functions. A parallel subsystem interfaces to the Intel486 processor. This
subsystem contains a data interface unit, a bus interface unit, a 4-channel DMA unit, and a micro
machine command processor. A FIFO subsystem connects the serial and parallel subsystems,
lowing them to run asynchronously to one another through a 128-byte receive FIFO and a 64-byte
transmit FIFO.
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Figure 7-21. 82596CA Coprocessor Block Diagram

The coprocessor can be used in either baseband or broadband networks. It can be configured for
maximum network efficiency (minimum contention overhead) for networks of any physical cable
length operating at any data rate up to 20 Mbits/second. It features a highly flexible CSMA/CD
unit, supporting address lengths from zero to six bytes. It supports 16- or 32-bit CRC. The CRC
field can optionally be transferred directly to memory on receive and dynamically inserted on
transmit. The CSMA/CD unit can also be configured for full duplex operation or for CSMA/DCR
(deterministic collision resolution).

The coprocessor provides arich set of diagnostic and network management functions, including
internal and external loopback, exception condition tallies, channel activity indicators, optional
capture of all frames (promiscuous mode), optional capture of erroneous or collided frames, and
time-domain reflectometry; for locating fault points on the network cable. The 32-hit statistical
counters; monitor CRC errors, alignment errors, overrun errors, resource errors, short frames, and
receive collisions.

The coprocessor also features a monitor mode for network analysis. This mode can capture status
bytes and update statistical counters of frames monitored, without transferring the contents of the
framesto memory. It doesthis concurrently with frame transmission and frame transfers to mem-
ory destined to that station.
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The 82596 coprocessor is an extension of the earlier 82586 LAN coprocessor, which interfaces
an Ethernet network to a 16-bit Intel bus. The 82596 coprocessor can be configured to run soft-
ware drivers written for the 82586 device without modification.

7.6.1.1 Hardware Interface

The 82596 coprocessor communicates with the rest of the system via two hardware interfaces:
the Intel486 processor bus (parallel) interface and the network (seria) interface, as shown in Fig-
ure 7-22. The signals for both interfaces are listed in Table 7-12. The coprocessor’s bus cycles
(including burst cycles), bus interface timing, bus arbitration method, and signal definitions are
compatible with the Intel486 processor. When the coprocessor is not holding the bus, its busin-
terface signals arefloated. The state machinesfor the Intel 486 processor and the 82596 coproces-
sor are very similar.

Network Cable Media

Serial
Interface

i

HOLD
Intel486™ 82596
HLDA
Processor > LAN
BREQ _ Controller

i

Processor Bus

Figure 7-22. 82596CA Application Example
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Table 7-12. 82596 Signals (Sheet 1 of 2)

tel.

Signal Type Description
Address and Data Buses
A31-A2 (0] Address
D31-D0 110 Data
BE3#-BEO# O Byte-enables
BS16# | 16-bit data bus size
LE/BE# | Little endian or big endian byte ordering
DP3-DPO /10 Data parity
PCHK# O Parity error
Cycle Definition and Control
ADS# (0] Address status
WI/R# (0] Write or read
PORT#' [ Port access
RDY# | Non-burst data ready
BRDY# | Burst data ready
BLAST# (@) Last burst cycle
Bus Control
CLK | Clock
RESET' [ Reset
INT/INT# O Interrupt
BREQ | Bus request
HOLD O Bus hold request
HLDA | Bus hold acknowledgment
AHOLD' | Address hold request
BOFF# | Bus backoff
LOCK# (0] Bus lock
cA#' | Channel attention
TSignals marked with a dagger are not included on, or operate differently than, the Intel486™ processor
bus.
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Table 7-12. 82596 Signals (Sheet 2 of 2)

Signal Type Description
Network (Serial) Interface

D' (0] Transmit data
TxC#' (0] Transmit clock
LPBK# O Loopback
RxD | Receive data
RxC# | Receive clock
RTS# O Request to send
CTS# | Clear to send
CRS# | Carrier sense
CDT# | Collision detect

TSignals marked with a dagger are not included on, or operate differently than, the Intel486™ processor

bus.

These similarities between the Intel 486 processor and the 82596 coprocessor simplify bus arbi-
tration when the processor and the coprocessor are the only two bus masters on the processor bus.
The HOLD and HL DA signals can be used for handshake arbitration and BREQ from the proces-
sor can trigger the coprocessor’s bus throttle timers when needed, as shown in Figure 7-23.
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Intel486™ 82596 LAN
Processor AHOLD, BOFF# Controller

BS16#, LOCK#

HOLD, HLDA

BREQ

M/IO#, DICH# CA, RESET
Glue PORT#

Figure 7-23. 82596-to-Processor Interfacing

Accessto memory and /O resources can be overlapped between the processor and the coproces-
sor with the bus backoff (BOFF#) output to the processor. The BOFF# overlapping method
avoids the need for a time-consuming bus hold arbitration (HOLD and HLDA) and it is done
without the risk of deadlock.

The coprocessor signals have the same significance as on the Intel486 processor bus, except for
the AHOLD signal. Becausethereisno internal cacheto invalidate on the coprocessor, thisinput
is used to rel ease the coprocessor address bus when an external cache controller needsto perform
acache invalidation cycle.

7.6.1.2 Processor and Coprocessor Interaction

The 82596 coprocessor interacts with the processor bus as either abus master or aslave (port ac-
cessmode). In normal operation, it isabus master which moves data between the system memory
and the coprocessor’s control registers or internal FIFOs. The coprocessor can use the same burst
cycles, bus hold, address hold, bus backoff, and bus lock operations that the Intel486 processor
USes.

The coprocessor and the processor communicate through shared memory, as shown in Figure
7-24. The processor and the coprocessor normally use the interrupt (INT/INT#) and channel at-
tention (CA) signalsto initiate communication, using asystem control block of memory for com-
mand and status storage. INT/INT# derts the processor to a change of contents in the system
control block. By asserting CA, the processor causes the coprocessor to examine the system con-
trol block contents for the change.
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Figure 7-24. 82596 Shared Memory

The coprocessor executes its command list from shared memory and, in parallel, receives frames
from the network and places them in shared memory. The processor manages the shared memory,
which contains command chains and bidirectional data chains. The coprocessor executes the
command chains. An on-chip DMA controls four channels, which alow autonomous transfers of
data blocks independently of the processor. Buffers containing erroneous or collided frames can
be automatically recovered without processor intervention. The processor becomesinvolved only
after acommand sequence has finished executing, or after a sequence of frames has been received
and stored, ready for processing.

In addition to this normal operating mode, the processor can initiate a port access in the copro-
cessor. This mode may be entered whenever the coprocessor is not actively driving the bus. It
allows the processor to write an alternate system configuration pointer, write an aternate dump
command and pointer (used for troubleshooting a no-response problem), perform a software re-
set, or perform a self-test.
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7.6.1.3 Memory Structure
The memory shared by the processor and 82596 coprocessor consists of four parts.
* |nitialization root
* System control block
* Command list (including transmit buffer)
* Receive frame area

The command list functions as a program. Individual commands are placed in blocks of memory
called command blocks. These command blocks contain the parameters and status of high-level
commands used by the processor to control the operation of the coprocessor.

One of three memory addressing modes can be used:

* 82586 Mode: Uses 24-hit addresses with all shared memory structures residing in one 64-
Kbyte segment.

* 32-bit Segmented Mode: Uses 32-bit addresses with all shared memory structures residing
in one 64-K byte segment.

* Linear Mode: Uses 32-bit addresses with no restrictions on the placement of any shared
memory structure.

Big-endian and little-endian byte ordering schemes are supported. For compatibility with the
Intel486 processor, the little-endian scheme should be used.

7.6.1.4 Media Access

The 82596 coprocessor accesses the cable-medianetwork through the seria subsystem. This sub-
system performsthe full set of IEEE 802.3 CSMA/CD mediaaccess control (MAC) sublayer and
channel interface functions, including framing, preamble generation and stripping, source ad-
dress generation, destination address checking, short-frame (runt packet) detection, and automat-
ic-length field handling. Data rates up to 20 Mbits per second on the cable media are supported.
|EEE 802.3 and HDL C CRC generation and checking is supported.

The following media access methods are supported:
* CSMA/CD
¢ Deterministic collision resolution
* Full duplex
The following IEEE standards are supported:
e 1BASES
e 10BASES5
e 10BASE2
e 10BROAD36
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* Proposed 10BASE-F
* Proposed 10BASE-T

7.6.15 Transmit and Receive Operation

Most of the bus traffic initiated by the coprocessor consists of DMA transfers of frame data. The
coprocessor transmits data as a series of frames by executing a series of high-level commands
from the command list in memory. These commands are fetched by the coprocessor and executed
in parallel with processor operations. A single transmit command contains all the information
necessary to prepare and execute the transmission of one or more data frames.

The data consists of a buffer descriptor and a data buffer containing the actual data. These may
also be chained into alinked list of buffer descriptors and associated data buffers. A frame with
along datafield can therefore be transmitted using several shorter buffers chained together. This
is useful when assembling frames which include nested headers generated by independent soft-
ware modules.

In order for the coprocessor to receive frames, the processor must first dedicate an area of mem-
ory as areceive buffer space and enable the coprocessor for reception. Frames arrive unsolicited
at the coprocessor network interface. The coprocessor must always be prepared to store them in
an buffer area of memory known as the free frame area. The receive frame areais alist of free
frame descriptors and alist of user-prepared buffers. The coprocessor fills the buffers as frames
are received, and it reformats the free buffer list into received frame structures. The frame struc-
ture stored is the same as that for frames to be transmitted. The data contained in the buffersis
transferred by means of the on-chip DMA controller. This allows bidirectional, autonomous
transfer of data blocks partitioned as buffers or chained into frames. Bufferswhich contain errors
are recovered automatically without processor intervention.

The coprocessor monitors the frames presented on the serial interface for a destination address
which corresponds to its own unique address, one or more multicast addresses, or the broadcast
address. When a match is found, the frame’s destination, source addresses, and length field are
stored, and the datafield is placed in the next available buffer. As one buffer isfilled, the device
automatically links the next available buffer until the entire frame is stored. This technique ac-
commodates buffer sizes which are much shorter than the maximum permitted frame length.

When a frame has been received without error, several housekeeping tasks are performed by the
coprocessor. If aframe error occurs, the coprocessor re-initializesthe DMA pointersand reclaims
any buffers to which the frame had been allocated.

7.6.1.6 Bus Throttle Timers

The 82596 coprocessor’s use of the processor busis regulated with the coprocessor’s bus throttle
timer logic. Thesetimers are independently programmed and can be triggered internally or exter-
nally. The operation of thetimersis shownin Figure 7-25. Two timers are associated with the bus
throttle function:

* TON Timer: Defines the maximum time the coprocessor can remain bus master.

* TOFF Timer: Defines the minimum time the coprocessor must wait before re-asserting the
HOLD output to request the bus again.

I 7-47



u
EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL Intel®

t1

82596 Bus Usage
Without Throttle Timers t1 =12 +13 o

2 3
82596 Bus Usage
With Throttle Timers
TON TOFF TON

Figure 7-25. Bus Throttle Timers

If thetimers are configured to be triggered internally, the coprocessor monitorsthe length of time
that the HLDA input is held asserted. When this time exceeds the time programmed in the TON
timer, the coprocessor relinquishes the bus by de-asserting HOL D; and starts the TOFF timer.

If the timers are configured externally, assertion of the BREQ); input causes the coprocessor to
start the TON timer. Upon timeout, the coprocessor relinquishes the bus and starts the TOFF tim-
er. This latter configuration is particularly useful in the Intel 486 processor environment, where
the processor’s BREQ output can be tied directly to the coprocessor’'s BREQ input.

7.6.1.7 Design Considerations

The glue logic for interfacing the 82596 coprocessor to the Intel486 processor can be contained
inasingle Intel 85C220 PLD, as shown in Figure 7-26. This logic provides four functions:

* Generate channel attention (CA) input to the coprocessor.

* Generate reset (RESET) input to the coprocessor.

* Generate processor port access (PORT#) input to the coprocessor.

¢ Drivethe M/IO# and D/C# processor bus signals when the coprocessor is bus master.

The coprocessor's RESET input is referred tBigure 7-26and the text below as “596RESET”
to distinguish it from the processor's RESET.

To assert the CA or 596RESET signals, the processor drives a memory-mapped I/O cycle. During
such a cycle, address decode is done while monitoring CLK, ADS#, HLDA, and DO to distin-
guish CA from 596RESET. A similar memory-mapped cycle is used to de-assert the signal. The
HLDA input to the 85C220 PLD gates the logic, so that CA or 596RESET is generated only when
HLDA is de-asserted (i.e., when the coprocessor is not bus master).

The PORT# input to the coprocessor can be generated by combinatorial logic which has an ad-
dress decode qualified by ADS# and CLK. This asserts the PORT# output for one clock. While
PORT# is asserted, the coprocessor treats the data bus as containing slave control information.
System software must ensure that the coprocessor is idle while the processor executes a port ac-
cess. This guarantees that the coprocessor does not attempt to acquire the bus by asserting HOLD.
Failure to comply with this restriction may result in the coprocessor entering an undefined state.
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The CA, 596RESET, and PORT# signals are generated according to the equations shown in Fig-
ure 7-26. The M/IO# and D/C# signals are also generated by the glue logic. When both HOLD
and HLDA are asserted, indicating that the coprocessor has requested and been granted the bus,
M/IO# and D/C# must be driven high.

HLDA HOLD
_— >

ADDRESS

ADS# CA
—_—

\

85C220 82596 LAN
<0 PLD Controller

%

RESET 596RESET

D/C#, M/10#

CLK PORT#

Y
)

CA = (CA Address Decode) & ADS# & DO Registered
596RESET = (596RESET Address Decode) & DO | RESET Registered
PORT# = (Port Access Address Decode) & ADS# Combinatorial

Figure 7-26. 596RESET, CA, and PORT# Equations

Caching of the coprocessor memory structures in the Intel486 processor internal cache may be
disadvantageous, because these memory structures are not directly executable by the processor.
Typically, most coprocessor bus activity consists of receiving and transmitting frames, managing
thereceive frame area, and prefetching descriptor pointers. The system control block istypically
accessed only once by the processor for every update of this area made by the coprocessor. The
processor gains no advantage from caching locations which are used only once. Also, each time
a cached memory location is written to by the coprocessor, a cache invalidation cycle must be
performed.

For systems in which caching is obligatory, external logic must monitor ADS# and W/R# and
drive the EADS# cache invalidation input to the processor.

7.6.1.8 82596 Co-processor Performance

With a25-MHz clock, the 82596 coprocessor can transfer data at up to 80 Mbyte/second in burst
cycles, or 50 Mbytes/second in non-burst cycles. With a 33-MHz clock, the rates are
106 Mbytes/second for burst and 66 Mbytes/second for non-burst. Most transfers in a Intel486
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processor environment can be in burst mode. Ethernet provides data at a maximum instantaneous
rate of 1.25Mbytes/second. The coprocessor, however, requires approximately
0.25 Mbytes/second additional bandwidth for frame processing, updating various command
blocks, and descriptors. This brings the maximum bus bandwidth requirement to approximately
1.5 Mbytes/second. The coprocessor therefore requires only asmall fraction of the available pro-
cessor bus bandwidth.

Several variables affect the total bandwidth required. The main factors are:
* Useof burst cyclesfor memory transfers
* Number of memory wait states per transfer
* Processor bus clock (CLK) frequency
* Frame and buffer size

Table 7-13 compares the percentage of 32-bit bus bandwidth used under some of these condi-
tions. These are worst-case numbers and over-estimate typical network loading. Typical bus uti-
lization numbers at non-peak rates are lower.

Table 7-13. 82596 Bus Bandwidth Utilization

Bus Frame Size Burst Non-Burst Non-Burst
Frequency (0 ws) (0 ws) (1 ws)
64 bytes 3.33% 4.05% 5.65%
25 MHz 1,518 bytes 1.70% 2.63% 3.90%
64 bytes 2.52% 3.07% 4.29%
33 MHz 1,518 bytes 1.29% 1.99% 2.95%

7.6.2 82557 High Speed LAN Controller Interface

7.6.2.1 82557 Overview

The 82557 is Intel’s first highly-integrated 32-bit PCI LAN controller for 10 or 100 Mbps Fast
Ethernet networks. The 82557 offers a high performance LAN solution while maintaining low-
cost through its high integration. It contains a 32-bit PCI Bus Master interface to fully utilize the
high bandwidth (up to 132 Mbytes per second) available to masters on the PCI bus. The bus mas-
ter interface can eliminate the intermediate copy step in Receive (RCV) and Transmit (XMT)
frame copies, resulting in faster processing of these frames. The 82557 maintains a similar mem-
ory structure to the 82596 LAN Co-processor; however, these memory structures have been
streamlined for better network operating system (NOS) interaction and improved performance.

The 82557 contains two large receive and transmit FIFOs (3 Kbytes each) which prevent data
overruns or underruns while waiting for access to the PCI bus, and enables back-to-back frame
transmission within the minimum 960 nanosecond inter-frame spacing. Full support for up to
1 Mbyte of FLASH enables network management support via Intel FlashWorks utilities as well
as remote boot capability (a BIOS extension stored in the FLASH which could allow a node to
boot itself off of a network drive). For 100 Mbps applications, the 82557 contains an IEEE MII
compliant interface to the Intel 82553 serial interface device (or other MII compliant PHYs)
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which will allow connection to 100/10 M bps networks. For 10 M bps networks, the 82557 can be
interfaced to astandard ENDEC device (such asthelntel 82503 Serial Interface), while maintain-
ing software compatibility with 100 Mbps sol utions.

The 82557 is designed to implement cost effective, high performance PCl add-in adapters, em-
bedded PCs, or other interconnect devices such as hubs or bridges. Its combination of high inte-
gration and low cost makeit idea for these applications.

7.6.2.2 Features and Enhancements
The following list summarizes the main features of the Intel 82557 controller:

* Glueless 32-bit PCI Bus Master Interface (Direct Drive of Bus), compatible with PCI Bus
Specification, Revision 2.1

* 82596-like chained memory structure

* Improved dynamic transmit chaining for enhanced performance
* Programmable transmit threshold for improved bus utilization

* Early receiveinterrupt for concurrent processing of receive data
* FLASH support up to 1 Mbyte

* Large on-chip receive and transmit FIFOs (3 Kbytes each)

* On-chip counters for network management

* Back-to-back transmit at 100 Mbps

* EEPROM support

* Support for both 10 Mbps and 100 M bps networks

* Interface to MIl-compliant PHY devices, including Intel 82553 Physical Interface
component for 10/100 Mbps designs

* Compatible with IEEE 802.3u 100Base-T, TX, and T4

* Interfaceto Intel 82503 or other serial device for 10 Mbps designs: Compatible with |EEE
802.3 10Base-T

* Autodetect and autoswitching for 10 or 100 Mbps network speeds
e Capable of full or half duplex at 10 and 100 Mbps
* 160-Lead QFP package

Figure 7-27 shows ahigh level block diagram of the 82557 part. It is divided into three main sub-
systems:. a parallel subsystem, a FIFO subsystem and the 10/100 Mbps CSMA/CD unit.
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Figure 7-27. Intel 82557 Block Diagram
7.6.2.3 PCI Bus Interface

The PCI bus interface enables the 82557 to interact with the host system via the PCI bus. It pro-
videsthe control, address and datainterface to implement a PCl-compliant device. The 82557 op-
erates as both amaster and slave on the PCI bus. Asamaster, the 82557 interacts with the system
main memory to access data for transmission or deposit received data.

Asasdave, some 82557 control structures are accessed by the host CPU which reads or writesto
these on-chip registers. The CPU provides the 82557 with the necessary action commands, con-
trol commands, and pointers which enable the 82557 to process RCV and XMT data. The PCI
businterface also provides the means for configuring PCI parameters in the 82557.

7.6.2.4 82557 Bus Operations

After configuration, the 82557 is ready for its normal operation. As a Fast Ethernet Controller,
the role of the 82557 is to access transmitted data or deposit received data. In both cases the
82557, as a bus master device, initiates memory cycles via the PCI bus to fetch/deposit the re-
quired data. In order to perform these actions, the 82557 is controlled and examined by the CPU
viaits control and status structures and registers. Some of these control and status structures re-
side on-chip and someresidein system memory. For accessto its Control/Status Registers (CSR),
the 82557 serves as a slave (target). The 82557 serves as a slave aso while the CPU accesses its
1 Mbyte Flash buffer or its EEPROM.

7.6.2.5 Initializing the 82557

A power-on or software reset prepares the 82557 for normal operation. Because the PCI specifi-
cation aready provides for auto-configuration of many critical parameters such as 1/0, memory
mapping and interrupt assignment, the 82557 is set to an operational default state after reset.
However, the 82557 cannot transmit or receive frames until a Configure command is issued
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7.6.2.6 Controlling the 82557

The CPU issues control commands to the Command Unit (CU) and Receive Unit (RU) through
the SCB, which is part of the CSR. The CPU instructs the 82557 to Activate, Suspend, Resume
or Idle the CU or RU by placing the appropriate control command in the CU or RU control field.
A CPU write access to the SCB causes the 82557 to read the SCB, including the Status word,
Command word, CU and RU Control fields, and the SCB General Pointer. Activating the CU
causes the 82557 to begin executing the CBL. When execution is complete, the 82557 updates
the SCB with the CU status, then interrupts the CPU, if configured to do so. Activating the RU
causes the 82557 to access the RFA and go into the READY state for frame reception. When a
frameisreceived, the RU updates the SCB with the RU status and interrupts the CPU. It also au-
tomatically advances to the next free RFD in the RFA. This interaction between the CPU and
82557 can continue until a software reset is issued to the 82557, at which point the initialization
process must be executed again. The CPU can also perform certain 82557 functions directly
through a CPU PORT interface.
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CHAPTER 8
SYSTEM BUS DESIGN

8.1 INTRODUCTION

With the increasing speed of microprocessors, there is a need for efficient input/output devices

(such asdisks, video controllers and local areanetwork controllers). The key to successfully sup-

porting 1/0 options is to have a standard means of connecting them to the motherboard. Each
computer supports a standard system bus. System bus types include ISA, MCA, EISA, PCI, etc.

To exercise the full potential of the Intel486™ processor’'s 32-bit system buses, support for 32-
bit 1/0 devices is required. This chapter discusses two standards supported by the embedde
Intel486 processors: the PCI (Peripheral Component Interconnect) and EISA (Extended Industry
Standard Architecture) system buses.

A typical embedded Intel486 processor system includes of a system bus that connects variou
subsystems. Each subsystem can have its own local bus with local resources and can share glot
resources. This approach allows each subsystem to perform operations simultaneously on its Ic
cal bus to yield a significant throughput improvement over single-bus systems.

Intel486 processor system designs may be divided into several subsystems. The first level is th
CPU core, which consists of CPU and second-level cache subsystem memory, cache, and I/C
control. Each of these subsystems have been described in detail in the previous chapters. The sy
tem bus is the vehicle by which the Intel486 processor communicates with other processing sub
systems that perform operations simultaneously on their own local buses.

A major concern when designing a system with various subsystems is how to divide the allocatec
resources. A designer has to decide which resources should be shared by all the subsystems
the system bus and which should be located on the local bus. The choice is based on the individu:
system's needs in the areas of reliability, integrity, throughput, and performance. Duplicating re-
sources on each local bus, for example, may increase system integrity and local bus performanc
but increase system cost.

8.2 SYSTEM BUS INTERFACE

Subsystems must communicate with one another. Each may be able to stand alone as a processi
unit but must share information. The system bus is the vehicle by which information may be

transferred. In addition, a standard system bus provides a format for all vendors to follow when
building boards or subsystems. This standard allows boards from multiple suppliers to be used ir
a system. For a subsystem to access the system bus, the protocol signals associated with that &
must be provided. In addition, buffers and drivers are needed to provide the necessary AC an
DC drive capability for the address, data, and control signals.
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8.3 EISA BUS: SYSTEM DESIGN EXAMPLE

8.3.1 Introduction to the EISA Architecture

EISA represents an extension to the Industry Standard Architecture (1SA) but maintains compat-
ibility with I SA expansion boards and software. EISA providesthe following important enhance-
ments:

* 32-bit address busfor CPU, DMA and bus masters

* 32-bit datatransfersfor CPU, DMA, I/O devices and bus masters

* High speed synchronous bus transfers of 1.5 cycles per doubleword

* Automatic trandation of bus cycles between EISA and | SA master and slaves
* Upto 33 Mbytes/second transfer rates for bus masters and DMA devices

* |nterrupts are programmabl e to be edge- or level-sensitive

* Support of intelligent bus master peripheral controllers

The EISA bus is designed to handle wider address and data buses than those of 1SA. All EISA
connector, performance, and function enhancements are a superset to those of 1SA. EISA main-
tains full compatibility with ISA expansion boards and software.

Bus masters and multiple processors on the EISA bus can be synchronized to a common clock
for greater performance. Burst cycles can be executed at 33 Mbytes/sec transfer rate and a stan-
dard EISA cycle can transfer datain two cycles. However, CPUs are permitted to generate 1.5-
clock “compressed” cycles for slaves that request such cycles.

EISA systems can support DMA transfers with 32-bit addressability, and with 8-, 16-, or 32-bit
data. 32-bit DMA devices can transfer data at 33 Mbytes/sec using burst cycles.

EISA-based computers support a bus master architecture for intelligent peripherals. The bus mas-
ter provides a high-speed channel with data rates up to 33 Mbytes/sec. The bus master provides
localized intelligence with a dedicated 1/0O processor and local memory to relieve the host of so-
phisticated memory access functions. Peripherals that use bus mastering techniques include disk
controllers, LAN interfaces, data acquisition systems and certain classes of graphic controllers.

The EISA bus provides a mechanism for data size translation which is useful when it is transfer-
ring data between 16-bit ISA bus masters and 8-bit or 16-bit memory, 1/0 slaves, or DMA devic-
es. The system board also provides a mechanism for transactions between 16-bit ISA devices and
32-bit EISA devices.

EISA systems provide a centralized arbiter that allows efficient bus sharing between multiple
EISA bus masters and DMA devices. An active bus master or DMA device may be preempted
when another device needs the bus. Further, if a device does not release the bus once it has been
preempted, then the centralized arbiter can reset the device. The EISA arbitration method grants
the bus to the DMA devices, the memory controller for DRAM refreshes, the bus masters, and
the host CPU in an efficient rotational manner. The rotational scheme provides shorter latencies
for DMA devices to ensure compatibility with ISA devices. Bus masters and CPUs have longer
latencies because often they have buffers.
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8.3.2 An Example EISA Chip Set

Figure 8-1 shows a high-performance system with an I ntel 486 processor residing on the host bus.
Three EISA support devices, an EISA bus controller (EBC), an integrated system peripheral
(ISP), and EISA busbuffers (EBB), interface the host bus to the EISA bus. Thethree devicesalso
communicate with each other.
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The EBC interfaces the host bus to the EISA/ISA bus. It provides compatibility with EISA/ISA
bus cyclesfor EISA/ISA standard memory or 1/O cycles, zero-wait state cycles, compressed cy-
clesand burst cycles. It also trandates host bus cyclesto EISA/ISA bus cycles and vice versa. It
generates | SA signals for EISA masters and EISA signals for ISA masters and it supports host
and EISA/ISA refresh cycles. The EBC supports 8-, 16-, and 32-bit DMA transfers and interacts
with the DMA controller. It provides byte-assembly and disassembly for 8-, 16-, and 32-bit data
transfers. The EBC generates the appropriate data conversion and assembly control signalsto fa-
cilitate transfers of various data widths between the host and 1SA and EISA buses. The EBC posts
processor-to-EISA/ISA write cycles to improve system performance and provides 1/O recovery
time between back-to-back 1/O cycles. Figure 8-2 showsadetailed block diagram of the EBC and
its various interface signals to the host, the EISA, ISA, ISP units and the data and address con-
trols. The interfaces are discussed later in this chapter.
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The integrated system periphera (ISP), shown in Figure 8-3, is a multi-function support periph-
era device that integrates many system functions that are normally distributed in several VLSI
and L SI components. The | SP supports high-performance DMA operations with a programmable
seven-channel controller. It has an arbiter that provides efficient bus sharing among multiple
EISA masters and DMA devices. A programmable interrupt controller provides 15 levels of in-
terrupts which can be edge-triggered or level-sensitive on a channel-by-channel basis. Non-
maskable interrupts (NM1) are also supported. The I SP has five counters/timers that can provide
system timer interrupts for atime of day, a diskette timeout, DRAM refresh requests and other
system timing operations. The DMA controller is integrated in the ISP, and it has the necessary
logic to set up, initiate, and complete DMA transfers. Various types of DMA transfers are pro-
vided for, including single transfer, block transfer, demand transfer, and cascade modes. Buffer
chaining is aso supported. The DMA controller provides the necessary timing signal s to support
a 33 Mbytes/sec transfer rate. Also supported are full 32-bit addressability on all functions and
control signal support for data transfer between devices of different data widths. Each channel
can operate independently in several modes.
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The EISA bus buffers (EBB) are used to interconnect the host data and address buses to the El-
SA/ISA data and address bus. The EBB integrates multiple address or data latches and buffers
that are typically used in EISA systems, and operates in various modes to support data and ad-
dress interfaces. It has a 32-bit mode without parity and a 32-bit data mode with parity support

8-8 I



Inte|® SYSTEM BUS DESIGN

for each of the bytes. It aso has an EISA address mode in which the addresses are interfaced with
internal latched transceivers. Polarity on the address lines is compatible with the EISA specifica-
tion, so that, for example, the most significant address byte isinverted.

8.3.3 EBC Host Bus Interface

The EBC resides between afast host bus and the EISA bus and monitors cyclesthat areinitiated
on either bus. When the host initiates a bus master cycle and no responseisreceived from the host
slaves, the EBC forwards the cycle to the EISA bus. When an EISA bus master initiates a cycle,
then it is always forwarded to the host bus. The EBC provides controls to the EBB device for the
address and the data buffers between the two buses. The EBC also inserts delays between back-
to-back 1/0 cycles between the host and the EISA bus.

8.3.3.1 Clock, Control and Status Interface

The host CPU clock (HCLKCPU) runs at the same frequency asthe CPU clock. The EBC divides
the HCLK CPU appropriately to generate the EISA BCLK signal.

Host address status (HADS1-HADSO) input signals indicate to the EBC that the addresses, byt
enables, and cycle type information is valid on the host. These two signals are received by the
EBC when there is a master on the host bus and are used to track the host bus cycles. If a hc
slave does not respond, and if an EISA/ISA slave or ISP is being addressed, then one or mor
cycles are generated on the EISA bus.

Host byte enables (HBE3#-HBEO#) are bidirectional signals that indicate valid bytes during an
operation. They are inputs during host bus master cycles and are outputs during EISA bus maste
cycles as well as when the ISP is performing DMA or refresh cycles.

Host Byte High Enable (HBHE#) is a bidirectional signal. When asserted, it indicates that the up-
per byte of the 16-bit host bus is involved in the transfer. It is an input during host bus master
cycles when an EISA/ISA slave is being accessed and an output during EISA master cycles o
when the ISP is performing DMA or refresh cycles.

Host address bits 1,0 (HA1, HAO) are bidirectional signals that are used in the Intel386™ SX mi-
croprocessor systems.

Host next address (HNA#) is an output to the host CPU when it accesses an EISA/ISA slave
HNA# is asserted to indicate that the CPU can put a new address on the host bus.

Host data or control (HD/C#) is a bidirectional signal that differentiates between data and control
cycles. It is an input to the EBC during host bus master cycles and is used to decode shutdow
and interrupt acknowledge cycles. It is an output from the EBC during EISA/ISA master cycles

and when the ISP performs DMA or refresh cycles. The signal is asserted to a high level when it
is an output.

Host write or read (HW/R#) is a bidirectional signal that distinguishes between read and write
cycles. It is an input to the EBC on host bus master is accessing an EISA/ISA slave, or when the
ISP is performing DMA or refresh cycles. It is an output from the EBC on EISA/ISA master cy-
cles.

Host memory or I/O (HMI/O#) is a bidirectional signal that differentiates between memory and
I/0 cycles. It is an input to the EBC when the host bus master cycles and is an output from the

I 8-9



u
EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL Intel®

EBC that is asserted high when the ISP is performing DMA or refresh cycles. It is also used to
decode shutdown and interrupt acknowledge cycles.

Host bus ready input (HRDY I#) isan input signa that indicates the termination of acycle onthe
host bus.

Host bus ready output (HRDY O#) is an output signal indicating that the EBC has completed a
cycle. It is asserted when the host is addressing an EISA/ISA slave and the cycle has completed
by appropriate inputs from EXRDY, CHRDY, NOWS#, and DRDY .

Host bus early ready output (HERDY O#) is an early version of the ready output from the EBC
for situations in which HRDY O# does not provide enough setup time.

8.3.3.2 Host Local Memory and I/O Interface

Host buslocal memory (HLOCMEM#) isan input signal which indicates that a host bus memory
slave has decoded the current address as its own without preconditioning the HM1/O# signdl. If
this signal is asserted on host bus master memory cycles, it prevents an EISA bus cycle from ini-
tiating. This signal is used to determine if the memory is being accessed on the host bus during
EISA/ISA master memory cycles or during DMA cycles.

Host bus local 1/0 (HLOCIO#) is an input signal which indicates that a host bus 1/0 slave has
decoded the current address as its own without preconditioning the HM1/O# signal. If this signal
is asserted on host bus master 1/O cycles, it prevents EISA bus cycle from initiating. This signal
isused to determine if the I/O device is being accessed on the host bus during EISA/ISA master
I/O cycles.

Host bus stretch (HSTRETCH#) is an input used by host bus slaves during EISA/ISA master cy-

cles to run zero (EISA) wait state cycles. This input can be used during DMA cycles and
EISA/ISA bus master cyclesto stretch the low period of the BCLK during the CM D# portion of

the cycle. BCLK remains low until HSTRETCH# is sampled high. This produces a “stalling” ef-
fect of the EISA/ISA master without adding BCLK wait states. If the host memory subsystem is
capable of performing EISA cycles without wait states, then the HSTRETCH# can be pulled high
and no CPU clock-based logic is required for bus master or DMA cycles.

8.3.3.3 Host Bus Acquisition and Release

Host bus hold request (HHOLD) is an output signal which is asserted by the EBC to indicate a
hold request to the host. This occurs when the ISP asserts DHOLD to indicate that an EISA/ISA
bus master wants control or that a DMA device requires service.

Host hold acknowledge (HHLDA) is an input signal to the EBC from the bus master to indicate
that it has relinquished control.

8.3.34 Lock, Snoop, and Address Greater than 16 Mbytes

Host bus lock (HLOCK#) is an input signal which is asserted by the host master when a locked
bus cycle is in progress. If the addressed device is on the EISA bus, the signal is propagated to
the LOCK# signal on the EISA bus.
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Host snoop strobe (HSSTRB#) is an output signal which is driven by the EBC during any write
cycle on the host bus. It is asserted during 1/0 to memory DMA cycles, EISA/ISA bus master
write cycles to memory, and CPU write cycles to host memory.

8.3.4 EISA/ISA Bus Interface to the EBC

The EBC trandlates cycles from EISA masters that can be handled by ISA slaves and translates
cycles between ISA masters that can be handled by EISA saves. It also facilitates transfers be-
tween 32-bit and 16-bit EISA devices and 16-bit and 8-bit |SA devices.

Most of the EISA and ISA bus signals connect directly to the EBC or ISP without buffers. The
direct connection assumes a worst case load of 300 pF and an IOL of 24 mA, with aworst case
clock-to-output propagation delay of 30 ns. Only the AENS8 control signal lacks a direct connec-
tion to EISA/ISA. AENX is a slot-specific signal that is decoded and asserted for a specific slot
of aparticular address. The ISP unit provides aglobal AEN# that is decoded with the LA bus ad-
dress bit to generate the AENXx signals. Thisis shown in Table 8-1.

Table 8-1. AENx Decode Table

AENX
Address AEN#

1 2 3 4 5 6
XXXX 1 1 1 1 1 1 1
00xx, 04xx, 08xx, 0Cxx 0 1 1 1 1 1 1
01xx--03xx, 05xx-07xx, 09xx-0Bxx, 0Dxx-0Fxx 0 0 0 0 0 0 0
10xx, 14xx, 18xx, 1Cxx 0 0 1 1 1 1 1
20xx, 24xX, 28xx, 2Cxx 0 1 0 1 1 1 1
30xx, 34xx, 38xx, 3Cxx 0 1 1 0 1 1 1
40xx, 44xx, 48xx, 4Cxx 0 1 1 1 0 1 1
50xx, 54xx, 58xx, 5Cxx 0 1 1 1 1 0 1
60xx, 64xX, 68xX, 6CxX 0 1 1 1 1 1 0

Thefollowingisabrief functional description of theinterface signals between the EISA/ ISA bus
and the EBC.

8.3.4.1 EBC and EISA Bus Interface Signals

Byte enables (BE3#—BEO#) are bidirectional signals that indicate which bytes are involved in the
current cycle. They are outputs during host bus master cycles and are inputs during ISA bus mas
ter cycles. They are inputs during EISA bus master cycles and when the ISP is performing DMA
or refresh cycles.

Memory or 1/O cycle (M/IO#) is an output signal that distinguishes between memory and /O
EISA cycles. It is an output during ISA master cycles and during host bus master-to-EISA/ISA
slaves cycles. The signal floats during CPU, DMA, or EISA bus master cycles.
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Write or read cycle (W/R#) is abidirectional signa that is an input during EISA bus master cy-
cles. Itisan output of the EBC during host bus master to EISA/ISA slave cycles, and during ISA
master cycles.

Start cycle (START#) is a bidirectional input signal to the EBC which starts cycles on the host
bus. It isan output from the EBC on host master cycles when no responses are received from the
host slaves. It is an output during ISP requests for DMA and refresh cycles. It is aso an output
during ISA master 1/0O cycles to 8-bit devices and when the EBC trandates a 32-bit or 16-bit
EISA bus master into cyclesfor an EISA/ISA slave with a smaller data bus size.

Command (CM D#) is an output which providestiming control within cycles. It isasserted simul-
taneously with the negation of START# and remains asserted until the cycle terminates. It isgen-
erated by the EBC during any EISA cycle.

Master burst (M SBURST#) is a bidirectional, open-collector output asserted by an EISA master
toindicatethat it is capable of supporting a burst operation in the next cycle. It isan input during
EISA bus master cycles and an output during DMA cycles, when a burst mode DMA has been
selected, and when memory is capable of supporting burst operations.

Slave burst (SLBURST#) is a bidirectional open-collector signal that is asserted by EISA slaves
to indicate that they can accept burst cycles. It is an input when the ISP requests burst cycles and
an output from the EBC when an EISA master isin control. It is asserted if the host memory is
accessed and has asserted HSLBURST#.

EISA 32-hit device (EX32#) is a bidirectional, open-collector signal that is asserted by 32-bit
EISA dlaves to indicate 32-bit bus size. The signal is used to determine matched or unmatched
data sizes on masters and slaves. Once the sizes are determined, the EBC assembles and disas-
sembles data and performs multiple EISA or ISA cycles when necessary.

EISA 16-hit device (EX16#) is a bidirectional, open-collector signal that is asserted by 16-bit
EISA dlaves to indicate 16-bit bus size. The signal is used to determine matched or unmatched
data sizes on masters and slaves. Once the sizes are determined, the EBC assembles and disas-
sembles data and performs multiple EISA or ISA cycles when necessary.

EISA ready (EXRDY) is a bidirectional, open-collector signal which indicates that a dlave is
ready to terminate a cycle. It isan input to the EBC on host master cycles which access EISA or
ISA slaves and is propagated to the host as the HRDY # signal. It is also an input for performing
DMA or refresh cyclesand is propagated as DRDY . It is an output from the EBC when an EISA
master is accessing a host bus slave or the ISP. It is an output from the EBC during EISA master
cyclesto ISA slaves and is derived from CHRDY . It is an output for CPU cyclesto ISA slaves
for which an EISA cycle has been initiated.

Locked cycle (LOCK#) is an output signal which indicates to EISA slaves that the host CPU is
executing alocked cycle. It is asserted by the EBC when the HLOCK# signal is asserted.

8.3.4.2 EBC and ISA Bus Interface Signals

Bus address latch enable (BALE) is an output from the EBC which indicates that avalid address
is present on the latched address (LA) bus.
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Bus clock (BCLK) is an output signal derived from the host CPU clock (HCLKCPU). The
HCLKCPU can be divided by 3, 4, 5, 6 or 8 to give clock frequencies ranging between 8.0 and
8.33 MHz. The high or low time of BCLK can be stretched to synchronize it to four conditions.

16-bit master (MASTER1#16) isan input that indicatesthat a 16-bit EISA or ISA master has con-
trol of the EISA bus. It is sampled twice, at the beginning and at the end of START#. If negated
at the first sampling time but asserted at the second sampling time, then it indicates to the EBC
that a 32-bit EISA master is translating to 16 bitsin order to perform burst operations.

16-bit memory (M 16#) is abidirectional open-collector signal that indicates that the | SA memory
is capable of performing 16-bit transfers. It isan output during |SA master cyclesin which ahost
slave or EISA memory slaveis accessed. It is an input during host bus master cyclesin which the
EISA/ISA busis accessed. It isan input during EISA master cycles.

Standard memory read control strobe (SMRDCH#) is an output signal that commands the ISA
memory to place data on the data bus. It is asserted during CPU, DMA or EISA/ISA master read
cyclesto 16-bit or 8-bit ISA memory slaves when the address range is less than one megabyte. It
behaves like the MRDC# signal .

Standard memory write control strobe (SMWTCH#) is an output signal that commands the 1SA
memory slave to accept data from the data bus. It is asserted during CPU, DMA or EISA/ISA
master write cyclesto 16-bit or 8-bit ISA memory slaves when the address range is less than one
megabyte.

Channel ready (CHRDY ) isabidirectional, open-collector signal whichisused by the |SA slaves
toinsert wait states. It isan output during | SA master cycles and accesses host bus slaves or EISA
slaves.

No wait states (NOWSH) is an input asserted by | SA slaves to request compressed standard wait
states, and by EISA bus slaves to request compressed or 1.5 BCLK cycles.

System address bits 1 and 0 (SA1, SAQ) arethe least significant bits of the latched EISA address
bus. They areinputs during | SA bus master cycles and generate appropriate EISA bus or host bus
controls. They are outputs during host bus master cycles and access EISA/ISA slaves. Further,
they are outputs during EI SA master cyclesto | SA slavesand during DMA accessesto | SA mem-
ory.

System byte high enable (SBHE#) is a bidirectional signal that indicates the vaidity of the high
byte on the EISA bus. It isan input during ISA bus master cycles and an output during host ac-
cesses to EISA/ISA slave. Further, it is an output during EISA master cyclesto |SA slaves and
during DMA accessesto I|SA memory.

Refresh (REFRESH#) isan input which indicatesthat the ISP is performing arefresh cycle. Dur-
ing refresh cycles the EBC generates the MRDC#, CMD# and other host bus signals to refresh
the entire system’s DRAM memory.
8.3.5 EBC and ISP Interface

The EBC and ISP have a tightly coupled interface, and they interact with the host bus requests,
DMA status, EISA bus master size, and other control and status signals described below:
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* |SPhold request (DHOLD) isan input from the | SP which is used to request the host bus on
behalf of ISA/EISA masters or when aDMA device requests service. DHOLD is used to
generate HHOLD.

* |SPready (DRDY) isabidirectional signal. It isan input to the EBC when the ISPisin the
slave mode. It is an output from the EBC during DMA cycles and refresh cycles.

* Greater than one megabyte (GT1M#) is an input to the EBC that indicates that the current
addressis above the 00000000h to O000FFFFFh range. If it is not asserted during a host bus
master cycle or an EISA/ISA bus master cycle, or during DMA cycles on accessing ISA
memory slave, then the EBC generates SMRDC# or SMWTCH# signals. The | SP generates
the GT1M# signals for al cyclesincluding DMA and non-DMA cycles.

* Host address greater than 16 megabytes (HGT16M#) is an input signa which indicates that
the address of the current cycle is greater than OOFFFFFFh. 1t is driven on DMA cycles,
based on the address from the ISP. This signal is used by the EBC during DMA cyclesto
determine whether to generate the ISA memory command signals, MRDC# and MWTCH.
MRDC# and MWT C# are generated during DMA cycles but are inhibited when HGT16M#
isactive.

* DMA status (ST3-STO0) are bidirectional signals. They are inputs to the EBC during DMA
and refresh cycles. They indicate the timing that has been programmed for the current cycle
and the size of the I/O device involved in the DMA transfer. They are outputs form the EBC
when the ISP is not a bus master. The four signals function as address strobe for the ISP,
memory or I/O cycle indicator, the interrupt acknowledge cycle indicator, and the EISA bus
master cycle indicator, respectively.

* EISA master (EXMASTER#) isan input signal to the EBC, which indicates that a 16-bit or
32-bit EISA master has control of the EISA bus. It is used with the MASTER16# signal to
differentiate between 32-bit EISA masters, 16-bit EISA masters, and 16-bit |SA masters.

* Early indication of 16-bit ISA master (EMSTR16#) isan input signal to the EBC which
indicatesthat a 16-bit master isin control is or about to assume control of the EISA bus.

8.3.6 EBC and EBB Data and Address Buffer Controls

The host data and address buses are connected to the EISA/ISA data and address buses using the
EISA bus buffer (EBB). The EBB hasinternal latches and the outputs can be controlled in either
direction. Data from the EISA bus can flow to the host bus on port B and on an individua byte
basison port A. Data can be stored using the provided control signal. Data can also flow from the
host bus to the EISA/ISA bus.

The EBB controls byte assembly. Bytes can betransferred as shown in Figure 8-4. The EBC pro-
vides signals used to copy the individual bytes. For multiple cycle operations the octal registered
transceivers are used to temporarily store the data until an entire word or doubleword is assem-
bled. Following assembly, the word or doubleword is transferred to the destination. Byte assem-
bly logic is used for al bus size mismatches and non-aligned address trand ations between the
host bus, a 32-bit or a 16-bit EISA busand a 16-bit | SA bus. The EBC generates controlsto steer
the data buses and to latch the address and data.
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EISA/ISA
Host Data Bus Data Bus

- > EBB <
REG

< > EBB - >
REG

- | EBB | a
REG

< > EBB
REG

Figure 8-4. EBB Byte Transfer

Copy enable between bytes SDCPYEN(03#-01#, 13#) are output controls that enable the byt
copy transceivers between the EISA bus bytes 0, 1, 2, and 3. Data bits 7—0 can be copied betwet
data bits 15-8, 23—-16 and 31-24. Data bits 15—-8 can be copied between data bits 31-24.

Copy up (SDCPYUP) is an output that controls the direction of the byte copy transceivers to copy
the lower bytes to the higher bytes and vice versa.

System (EISA) to host data latch enables (SDHDLE3#-SDHDLEOQO#) are outputs that control the
latching of data from the EISA bus to the host bus.

System (EISA) data output enable (SDOE2#-SDOEOQ#) are output enables to data buffers on th
EISA bus.

Host data to system (EISA) data latch enables (HDSDLE1#-HDSDLEO#) are outputs that con-
trol the latching of data from the host data bus to the EISA data bus.

Host data output enables (HDOE1#, HDOEOQ#) are output enables to the host data bus buffers.
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Host address busto EISA LA bus output enable (HALAOE#) is an output signal which enables
the output of the address buffers for host address bus bits 31-2 on to the EISA LA bus bits 31-2.
The signal is asserted during CPU, DMA and refresh cycles along with HALAOE#.

Host address latch enable (HALE#) is an output signal which latches the LA address bus on to
the host address bus. The latch closes on the trailing edge, and the host address bus is held until
the slave terminates the cycle.

EISA LA to EISA SA output enable (LASAOE#) is an output signal which enables the EISA LA
bus bits 19-2 on the EISA SA bus. It is asserted during CPU, EISA bus master, DMA and refresh
cycles.

EISA LA to host address output enable (LAHAOE#) is an output signal which enables address
buffers from the EISA LA bits to the host address bus. It is asserted during EISA/ISA bus master
cycles.

LA latch enable (LALE#) is an output signal which latches the host address bus on to the LA ad-
dress bus. Itis useful when the CPU operates in burst mode or when additional address pipelining
is required on the host bus.

EISA SA to EISA LA output enable (SALAOE#) can be used to the output of the address buffers
from the EISA SA bus bits 16-2 on to the EISA LA bus 16-2. It is asserted during ISA bus master
cycles.

SA latch enable (SALE#) is an output signal which latches the LA address bus on to the SA ad-
dress bus. It can be asserted during EISA master, CPU, regular DMA, and DMA burst cycles.

8.3.6.1 Functions of the ISP

The ISP provides system arbitration, DMA control, interrupt control, and counting by using in-
terval timer/counters.

The system arbiter on the ISP evaluates requests from several sources including DMA channels,
EISA devices, refresh requesters, and the host CPU: DREQ is generated by 8-, 16-, or 32-bit de-
vices that require DMA service; MREQ# is generated by 16-bit or 32-bit EISA devices; and
CPUMISS# is generated by the host CPU. Refresh requests are generated internally using the
timers. Request priority is assigned on different levels, and at each level, devices are given rotat-
ing priority. Examples of priorities and assignments are shown in the ISP datasheet. The arbiter
determines which requester receives the bus from EISA masters, DMA slaves, refresh requesters
and the host CPU.

The on-chip DMA controller is functionally equivalent to two 8237 DMA controllers. Seven in-
dependent channels can be programmed. Data widths of 8-, 16-, and 32-bits are supported, as are
ISA-compatible, ISA/EISA compatible, type A/type B modes, and EISA type C mode. Single,
block, demand, or cascade transfer modes are supported. The DMA controller provides refresh
address generation, and buffer chaining.

The ISP provides an ISA-compatible interrupt controller and the functionality of two 8259 inter-
rupt controllers. The ISP can handle fourteen external interrupts and two internal interrupts. The
internal interrupts are for internal functions only and not available externally. A nhon-maskable
interrupt can be generated by hardware or software.
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The ISP hasfiveinterval timers. The counter timers are addressed asiif they are contained in two
separate 8254 timers.

The | SP operates as a slave device or as amaster device. In slave mode, the | SP monitors the ad-
dresslines and decodes all bus cycles. Here, an EISA master or host bus master can read or write
to any of the | SPregisters. 16-bit | SA masters can read and write to any of the non-DMA registers
and to some of the non-8237/PC AT compatible registers. In the master mode, the | SP becomes
the bus master and can perform DMA or refresh cycles.

8.3.6.2 ISP-to-Host Interface

Host addresses HA31-HA?2 are 3-stateable address signals which connect to the host bus. HA31
HA20 and HA15-HA2 are bidirectional, whereas HA19-16 are outputs. In master mode all of
the address lines are outputs. In slave mode HA15-2 and HA31-2 are inputs. Upon reset thes
lines are 3-stated and configured as inputs.

Byte enables (BE3#—BEO#) are 3-stateable EISA bus byte enables. In slave mode the BE2#
BEO# are inputs and are used to access ISP internal registers. In master mode BE3#-BEO# a
outputs. BE3# is always an output.

Host write/read (HW/R#) is a bidirectional signal which indicates a read or write cycle. It is an
input during slave mode and an output during master mode. It is sent to the EBC which propa-
gates the appropriate read/write signals to the EISA bus. Upon reset this signal is 3-stated an
configured as an input.

Slow down host CPU (SLOWH#) is an output from CPU slowdown timer 2, which is used to
slow down the host CPU.

CPU cache miss (CPUMISS#) is an input signal from the host CPU, or the cache controller sub-
system which indicates that a host bus cycle is pending and must contend for the next bus arbi
tration.

Hold acknowledge (DHLDA) is an input signal which indicates that the system has granted ISP
to the host bus.

Interrupt (INT) is an output signal which indicates that an interrupt request is pending and must
be serviced. Once asserted, it remains asserted until it receives the first INTA# pulse via the ST2;
signal. Upon reset, the state of INT is undefined.

Non-maskable interrupt (NMI) is an output used to force a non-maskable interrupt to the host
CPU. Once asserted, it remains asserted until the CPU reads to one of the NMI registers. Upo
reset this signal is low.

Parity (Parity#) is an input from the system board which indicates a main memory parity error.

8.3.7 ISP-to-EISA Interface

DMA requests (DMA 7-5, 3-0) are inputs to the ISP, which indicate requests for control of the
system bus. They are generated externally by DMA subsystems or by 16-bit masters.

DMA acknowledge (DACK 7-5, 3-0) are outputs from the ISP which indicate that the bus has
been granted to the respective requester.
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Master requests (MREQ5-MREQO) are slot-specific inputs to the ISP which are used by EISA
masters to request bus access.

Master acknowledges (MACK#5-MACK#0) are outputs from the ISP that acknowledge that the
bus has been granted to a requesting EISA master.

Refresh (REFRESH#) is a bidirectional signal. It is an output during refresh cycles and should be
used to refresh the entire system memory at once. It is an output only when the ISP DMA is a bus
master, while an internal request for a refresh cycle is generated in the ISP. The REFRESH# is
an input when an expansion bus adapter acts as a 16-bit ISA bus master.

Start of cycle (START#) is an input which connects to the EISA START# signal. Command
(CMD#) is an input that connects directly to the EISA CMD# signal. It is used to 3-state the data
buffers following a read cycle.

End of process (EOP) is a bidirectional signal which is directly connected to the TC signal of the
ISA/EISA bus. It is used in three modes: as an input in one mode, it is used by DMA slaves to
stop DMA transfers; as an input from a slave in a second mode, it is used as a terminal count; as
an output in a third mode, it indicates that a chain buffer has expired and that a new chain buffer
must be programmed. Interrupt request (IRQ 15-3,1) are interrupt inputs to the ISP.

Byte enables (BE3#—-BEOQO#) are the EISA bus byte enables. BE3-BE1 are bidirectional, and BEO
is output only. In master mode, the ISP drives these lines. In slave mode the BE3-BE1 are inputs
to the ISP and are used to access the internal registers. BEO is remains an output in slave mode.

Ready signal (DRDY) is a bidirectional signal. In slave mode, it is an output which is driven when
the ISP detects a slave write to its registers. In master mode, it is an input which indicates to the
DMA controller that the current cycle has completed and that the DMA controller must pipeline
addresses for DMA burst transfers.

Data (D7-D0) are bidirectional signals that function as outputs when the ISP is in the slave mode.
These signals are not used in the master mode. The pins are in output mode when CSOUT# is
asserted during an 1/O read or interrupt acknowledge cycle.

Slave mode selected (CSOUT#) is an output from the ISP which indicates that it is accessed in
the slave mode.

Address enable (AEN#) is an output signal, which indicates whether the host, EISA, or ISA is the
current bus master.

I/0 check bus error (IOCHK#) is an input from the ISA bus and is used for parity error checks
and for other high priority interrupts. It can be programmed to cause a non-maskable interrupt.
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8.4 PCIBUS: SYSTEM DESIGN EXAMPLE

8.4.1 Introduction to PCI Architecture

The PCI (Peripheral Component I nterconnect) bus is the descendant of the VESA VL busand is
awidely-implemented embedded system solution. The PCI standard was defined by Intel to en-
courage designers to adopt a common system bus architecture that would accommodate future
computing needs. Because the VESA VL standard does not take a sufficient long-term approach,
the PCI standard does not support VESA VL. The PCI standard provides the following features.

* 32-hit or 64-bit address buses to accommodate 32-bit and 64-bit CPUs and bus masters
* 32-hit or 64-bit data transfers
* 33 MHz and 66 MHz PCI bus operation speeds

* 132 Mbytes/sec transfer rate for 33 MHz/32-bit implementation, 264 Mbytes/sec for
66 MHz/32-bit or 33 MHz/64-bit implementations, and 524 Mbytes/s for 66 MHz/64-bit
implementation.

* All read and write transfers over the PCI bus are burst transfers.

The PCI bus handles 32-bit wide address and data buses in the 32-bit implementation. The PCI
specification also provides for 64-bit wide address and data buses (address and data buses by PCI
standards are muxed).

All actions on the PCI bus are synchronized using the PCICLK signal. Revision 1.0 of the spec-
ification requires that all devices support 16-33 MHz operation. Revision 2.1 requires that all de-
vices support operation down to 0 MHz. Revision 2.2 adds support for 66 MHz implementation,
requiring that all devices operate from 0 MHz-66 MHz.

PCl-based computers support a Bus Initiator/Target architecture for intelligent peripheras. All
transactions on the PCI bus are in burst mode. The initiator starts by driving an address on the
PCl Address/Data bus and by driving the command type onto the PCI Command/Byte Enable
bus. Each PCI target latches the address and decodes the start address and command type to de-
termine if it is the addressed device. The device also determines the type of transaction in
progress. Upon compl etion of the address phase, the PCl Address/Data busis used to transfer da-
ta. The target must latch the start address and increment the address to point to the next address
for each subsequent data transfer.

PCI systems provide a centralized arbiter that allows efficient bus sharing between multiple PCI
bus initiators. Although the PCI specification does not specify the exact method of arbitration
(such asfixed and rotational), the 2.1 specification states that the arbiter is required to implement
afairness algorithm to avoid deadlocks. Fairness means that each potential bus master must be
granted access to the bus independent of other requests. However, this does not mean that all
agents are required to have equal access to the bus.

8.4.2 Example PCI System Design

This section describes an example of the PCI architecture implemented in an embedded I ntel 486
processor system.
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Thisexample PCI chipset supportsall Intel 486 processors and upgrades, including write-back in-
ternal (L1) cacheand Intel SMM power management. PCI local bus IDE isincorporated for high-
er performance IDE. A block diagram of a system that uses this type of PCI chip setis shown in
Figure 8-5.

Intel486™ Processor
Family and Upgrades
Y
Host Bus
A A y
/
L2 Data
HA[17:2] Cache
A Y
7 Optional
System A A a 245(5)
Controller/
ISA Bridge
ISA Bridge nterface »|  System Controller Main Memory
'\ A Opti
ptional
Power Management 244(3)
Interrupt Y
DMA PCl Bus o H
v Timer 5 Slots A A
ISA Bus ] |:| |:| |:| |:| (
A |v A| pelI
Graphics
Y ;
Device
S— PN
A IDE
Interface
Y
X-Bus
A A A A
\ Y \ \
82091AA | KBC | | BIOS | | RTC |
AIP

Figure 8-5. Example System Block Diagram

8-20



Inte|® SYSTEM BUS DESIGN

The chipset consists of two components: the system controller and the ISA bridge. The system
controller integrates the second-level (L2) cache controller and the DRAM controller. The cache
controller supports both write-through and write-back cache policies and cache sizes from 64
Kbytesto 512 Kbytes in an interleaved or non-interleaved configuration. The DRAM controller
interfaces main memory to the Host bus and the PCI bus. The system controller supports atwo-
way interleaved DRAM organization for optimum performance. Up to ten single-sided SIMMs
or four double-sided and two single-sided SIMMs provide a maximum of 128 Mbytes of main
memory. The system controller provides memory write posting to PCI for enhanced CPU-to-PCI
memory write performance. In addition, the system controller provides a high performance PCI
local busIDE interface. Figure 8-6 shows ablock diagram of the system controller component of
the PCI chip set.
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Figure 8-6. System Controller Block Diagram

The ISA bridge links the ISA bus and Host bus, and integrates the common 1/O functions found
in today’s | SA-based systems: a seven channel DMA controller, two 82C59 interrupt controllers,
an 8254 timer/counter, Intel SMM power management support, and control logic for NMI gen-
eration. The I SA bridge a so providesthe decode for the external BIOS, rea time clock, and key-
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board controller. Edge/level interrupts and interrupt steering are supported for PCI plug-and-play
compatibility. The ISA bridgeintegratesthe | SA address and data path, reducing TTL and system
cost. In addition, theintegration of system clock generation logic eliminates the need for external
host and PCI clock drivers.
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Figure 8-7. ISA Bridge Block Diagram
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This PCI chip set interfaces to three system buses: the CPU, PCI, and the | SA buses. The system
controller provides positive decode for certain 1/0 and memory space accesses on the CPU and

PCI buses. These decodes include accesses to the PCI Local bus IDE (CPU only), main memory

(CPU, ISA, and PCI), and the system controller’'s I/O Control registers (CPU only). In addition,
the system controller subtractively decodes certain CPU/PCI cycles.

The ISA bridge provides the positive decode for certain ISA I/O and memory space accesses.
These decodes include accesses to the ISA-compatible registers (for ISA master and DMA initi-
ated cycles), main memory (for ISA and DMA initiated cycles), BIOS, X-Bus, and system events

for SMM support. Note that DMA devices and ISA masters cannot access the PCI or CPU buses.

This PCI chip set provides bus arbitration on the Host bus, the PCI bus, and the PCI/ISA interface
(to the ISA bus). A device that is the master on any bus is the master of the entire system. (i.e.,
concurrency of more than one active master is not supported).

When there are no active requests, the CPU owns the system. The system arbitration rotates be-
tween the PCI bus, CPU bus, and Link Interface bus (on behalf of DMA and ISA Master devices),
with the CPU permitted access every other transition.

8.4.3 Host CPU Interface

This PCI chip set provides a host interface to all of the Intel486 family processors and upgrades.

8.4.3.1 Host Bus Slave Device

The PCI chip set can be configured (via the HOST Device Control register) to support an Intel486
Host bus slave device (for example, a graphics device). Two special signals (HDEV# and
HRDY#) as defined by the VL bus specification are used in the interface to the Host bus slave.
The system controller can be configured to monitor HDEV# for all memory and 1/O ranges that
are not positively decoded by the system controller. The system controller can be configured to
monitor HRDY# and assert the RDY# input to the CPU, based on HRDY#. The host device may
include an 1/O range, a memory range, or both 1/O and memory ranges. In all cases, these ranges
must not be programmed (positively decoded) by the system controller. The host device’s mem-
ory ranges are non-cacheable.

8.4.3.2 L1 Cache Support

The PCI chip set provides signals that support the CPU’s L1 cache. For the S-Series CPUs, these
signals are PCD, KEN#, and EADS#. For the D-Series and P24T CPUs, the signals are the KEN#,
EADS#, CACHE#, and HITM#. The P24T and the D-Series CPUs include certain signals that
are not connected to the PCI chip set. These signals are fixed to 1 or 0, depending on the system
configuration.

8.4.3.3 Control and Status Interface

Soft Reset/Initialize, SRESET/INIT, is the soft reset output of the PSSC and should be connected
to the SRESET or INIT input to the CPU, depending on the CPU type.

Host Address, A31-A30, A26—A2, are used as inputs to the system controller for CPU-driven cy-
cles. A31-A30, A26—A4 are outputs during Snoop cycles. Note that A29-A27 are not driven by
the system controller. These signal lines must be externally driven low either by weak pull-down
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resistors or by driving these lines low when HLDA is asserted. A17—A2 are also used for system
controller/ISA bridge link interface transfers. These signals are 3-stated after a hard reset.

The Byte Enable signals BE3#-BEO# indicate active bytes during read and write cycles. These
signals are 3-stated after a hard reset.

Host Data HD3-HDO are connected to the host CPU data bus. These signals are inputs after
hard reset.

The Host Data Parity signals, HPD3—HPDO, are bi-directional parity signals for the host data bus.
These signals provide parity to the system controller during main memory read cycles. The sys-
tem controller sends parity information to main memory during non-CPU main memory write cy-
cles. These signals are 3-stated after a hard reset.

Bus Cycle Definition, M/IO#, D/C# and W/R#, are signals that define the Host bus cycle. M/IO#
is a bi-directional signal that distinguishes between memory and I/O cycles. D/C# is a bi-direc-
tional signal that differentiates between data and control cycles. W/R# is a bi-directional signal
that distinguishes between read and write cycles. Note that special cycles are identified by BE3#-
BEO# and A4—A2. These signals are 3-stated after a hard reset.

Page Cache Disable/Cache, PCD/CACHE#, is a multiplexed signal pin with two functions, de-
pending on the type of CPU used. The PCD cache input signal, when asserted, indicates the cu
rent cycle cannot be cached in the L2 cache during line fill operation. When PCD is asserted, the
line is not cached in L1 or L2. The CACHE# signal is active along with the first ADS# until the
first RDY# or BRDY#. For line fills, the functionality of the CACHE# signal is identical to that

of the PCD signal. During write-back cycles, CACHE# is always asserted at the beginning of the
line write-back. The beginning of a write-back cycle is uniquely identified by active ADS#, W/R#
and CACHE#. Beginning of the snoop write-back is identified by the ADS#, W/R#, CACHE#
and HITM# being active.

The Address Status, ADS#, input indicates that the bus cycle definition signals (M/IO#, D/C#,
W/R#), BE3#-BEO#, and A31-A30, A26—A2 are available on their corresponding pins.

Ready, RDY#, indicates that the current non-burst bus cycle is complete. This signal is deasserte
after a hard reset.

Burst Ready, BRDY#, performs the same function during a burst cycle that RDY# performs dur-
ing a non-burst cycle. This signal is deasserted after hard reset.

Burst Last, BLAST#, indicates the end of a burst access for CPU-initiated cycles.

The system controller asserts HOLD to the CPU to request ownership of the Host bus. This signa
is deasserted after a hard reset.

Hold Acknowledge, HLDA, must be asserted by the CPU for the system controller to grant a new
master on the PCI or ISA buses. When HLDA is deasserted, the CPU is the Host bus master an
the system controller is the PCI bus master. When HLDA is deasserted, the system controller i
also the master on the system controller/ISA bridge link interface.

Address Hold, AHOLD, output signal forces the CPU to float its address bus in the next clock.
The system controller asserts this signal in preparation to perform a system controller/ISA bridge
interface transfer, when SRESET needs to be asserted, or upon Deturbo logic requests. This si
nal is deasserted after a hard reset.
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External Address, EADSH, when asserted, indicates that an external address has been driven onto
the CPU address lines. This addressis used to perform an internal cache snoop cycle. Thissignal
is deasserted after ahard reset.

Cache Enable, KEN#, when asserted, indicates whether the current cycleis cacheablein the CPU
L1 cache. Thissignal is deasserted after a hard reset.

Hit Modified, HITM#, when asserted, indicates that a hit to amodified data cache has occurred
during the snoop cycle. A pull-up is used to keep HITM# deasserted when not used.

The system controller has a standard master/slave PCI businterface. AsaPCl device, the system
controller can be either amaster initiating a PCI bus operation or atarget responding to a PCl bus
operation. The system controller is a PCl bus master for Host-to-PCl accesses and a target for
PCIl-to-main memory accesses (or accesses that are forwarded to the | SA bus). The Host can read
or write configuration spaces, PCl memory space, and PCI 1/0O space.

8.4.3.4 PCI Bus Cycles Support

When the host initiates abus cycle to a PCI device, the system controller becomes a PCl bus mas-
ter and trand ates the CPU cycle into the appropriate PCI bus cycle. Post buffers permit the CPU
to complete Host-to-PCl writes in zero wait-states.

When a PCI bus master initiates amain memory access, the system controller becomesthe target
of the PCI bus cycle and responds to the read/write access. As a PCl master, the system controller
generates address parity for read and write cycles, and data parity for write cycles. As atarget,
the system controller generates data parity for read cycles. During PCI-to-main memory accesses,
the system controller automatically performs cache snoop operations on the Host bus, if needed,
to maintain data consistency.
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PCI buscommandsindicateto thetarget the type of transaction desired by the master. These com-
mands are presented on the C/BE3#-C/BEO# signals during the address phase of a transfe
Table 8-2summarizes the system controller’'s support of the PCI bus commands.

Table 8-2. Supported PCI Bus Commands

C/BE[3:0] Command Type SUDE;?Z? As Sup'\ag;tteecri As
0000 Interrupt Acknowledge No No
0001 Special Cycle No No
0010 I/0 Read Yes Yes
0011 1/O Write Yes Yes
0100 Reserved D D
0101 Reserved D D
0110 Memory Read Yes Yes
0111 Memory Write Yes Yes
1000 Reserved D D
1001 Reserved D D
1010 Configuration Read No Yes
1011 Configuration Write No Yes
1100 Memory Read Multiple Yes® No
1101 Dual Address Cycle No No
1110 Memory Read Line Yes® No
1111 Memory Write and Invalidate Yes® No

NOTES:

1. As atarget, the system controller treats this command as a memory read command.
2. As atarget, the system controller treats this command as a memory write command.

8.4.35 Host to PCI Cycles

Host bus accesses to PCI bus are always in the Host bus address range, as defined by A31-A:
A26-A2 and the four BE lines. The PCI address lines are driven during the address phase. AD29-
AD27 lines are driven to the value of A30, during Host accesses to PCI.

The system controller has the ability to burst up to 32 back-to-back CPU memory writes on the
PCI bus. This function in controlled by the PCICON register. The system controller is capable of
merging 8/16-bit graphic write cycles to the same dword address into the same posted write buff
er location (controlled by the PCICON register). The merged data is then driven as a single dworc
cycle on the PCI bus. Byte merging is performed in the compatible VGA range only.

8.4.3.6 Exclusive Cycles

The system controller, as a PCI master, never performs LOCKed cycles. The CPU does not returi
active HLDA while it is performing a LOCKed sequence. Also, the CPU is the only active mas-
ter, as long as HLDA is inactive. Thus, the system controller does not need to drive LOCK to
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guarantee the CPU atomic LOCK sequence. Note that this PCI chip set supports a bus locking
mechanism (i.e., when a PCl master performslocked accesses, the arbitration isnot changed until
the locked sequence is compl eted).

The system controller does not check parity or generate SERR# based on the PCI parity. The sys-
tem controller only generates SERR# (if enabled viathe PCICOM register), when a main mem-
ory read results in a parity error. When main memory parity error is detected, the system
controller activates SERR#, if enabled, for asingle PCICLK.

When amain memory parity error is detected and SERR# generation is enabled, the MMPERR
bit in the DS register is set to 1. When SERR# is activated, the SERRS bit in the DS register is
setto 1.

8.4.3.7 Status and Control Interface

Address/Data, AD31-ADO, are connected to the PCI multiplexed address/data bus. These signals
are also multiplexed with the IDE interface. These signals are driven high after a hard reset.

Bus Command/Byte Enable, C/BE3#—C/BEO#, are multiplexed on the same pins. These signals
are driven high after a hard reset.

FRAME# is an output when the system controller is a master on the PCI bus. FRAME# indicates
that a PCI cycle has started. This signal is 3-stated after a hard reset.

Target Ready, TRDY#, is an input when system controller is a master on the PCI bus. TRDY# is
an output when the system controller acts as a PCI slave. TRDY# indicates that the target device
is ready. This signal is 3-stated after a hard reset.

Initiator Ready, IRDY#, is an output when system controller is a PCI master. IRDY# is an input
when the system controller is a PCI slave. IRDY# indicates that the initiator of the cycle is ready.
This signal is 3-stated after a hard reset.

LOCK# indicates an exclusive bus operation and may require multiple transactions to complete.
The system controller supports a bus type of LOCK only. Thus, when a PCI master locks the PCI
bus, it owns the system for the duration of the locked transactions.

Stop, STOP#, indicates that the current bus target is requesting the master to stop the current
transaction. STOP# is used to disconnect, retry, and abort sequences on the PCI bus. This signal
is 3-stated after a hard reset.

Parity, PAR, is driven by the system controller, as a PCI master, during the address and data phas-
es for a write cycle and during the address phase for a read cycle. When the system controller is
a PCl slave, parity is driven by the system controller for the data phase of a PCI read cycle. Parity

is even across AD31-ADO and C/BE3#—-C/BEO#. PAR lags the corresponding address and data
phase by one PCICLK. This signal is asserted after a hard reset.

System Error, SERR#, when driven by the system controller, indicates that either a main memory
parity error occurred or the system controller, as a master, received a target abort.

Device Select, DEVSEL#, when asserted, indicates that a PCI slave device has decoded the bus
cycle address as the target of the current access. The system controller drives DEVSEL# based
on the main memory address range being accessed by a PCI master. As an input, DEVSEL# in-
dicates whether any device on the bus has been selected. This signal is 3-stated after a hard reset.
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Requestl/Host Device, PREQ1#/HDEV#, is a multiplexed signal that has two functions.
PREQ1# is used by the PCI master to gain control of the PCI bus. Thissignal can be externally
cascaded to support multiple PCI masters. The HDEV# function is used when the system control -
ler is programmed to support a Host bus slave device.

RequestO, PREQO#, is used by the PCI master to gain control of the PCI bus. This signal can be
externally cascaded to support multiple PCI masters.

Grantl/Host Ready, PGNT1#, is driven by the system controller to grant control of the PCI bus
to a PCl master. PGNT1# can be externally cascaded to support multiple PCI masters. The
HRDY # function is used when the system controller is programmed to support a Host bus slave
device. Thissignal is driven high during and after a hard reset.

Grant0, PGNT0#, is driven by the system controller to grant control of the PCI busto aPCl mas-
ter. PGNTO# can be externally cascaded to support multiple PCI masters. This signal is driven
high during and after a hard reset.

8.4.4 System Controller/ISA Bridge Link Interface

The system controller and | SA bridgeinterface communicationsinclude CPU/PCI accesses of the
ISA bridgeinternal registers, CPU/PCI cyclesforwarded to the I SA bus, and | SA master or DMA
accesses to main memory. The system controller/ISA bridge link interface is a point-to-point
communication connection between the system controller and the ISA bridge.

Four sideband signals synchronize data flow and bus ownership: Link Request (LREQ#), Link
Grant (LGNT #), Command Valid (CMDV#), and Slaveldle (SIDLE#). LREQ# and LGNT# are
used by the I SA bridge to arbitrate for link mastership. Only the ISA bridge drives LREQ# while
on the system controller drives LGNT#. CMDV# is driven by the current link master, whereas
SIDLE# is driven by the current link slave. Commands, addresses, and data are transferred be-
tween the system controller and ISA bridge using the host address bus signals (A17-A2).

8.44.1 Status and Control Interface

Command Valid, CMDV#, is asserted by the link master to indicate the beginning of a link trans-
fer. The system controller deasserts this signal after a hard reset. CMDV# is used along with SI-
DLE# to set the system controller/ISA bridge system clock configuration during a PWROK hard
reset. These inputs are strapped to the appropriate levels, sampled while PWROK is inactive, an
latched when PWROK goes active.

Slave Idle, SIDLE#, is asserted by the link slave to indicate that it is available for data transfers.
The ISA bridge asserts this signal after a hard reset. SIDLE# is used along with CMDV# to set
the system controller/ISA bridge system clock configuration during PWROK hard reset. These
inputs are strapped to the appropriate levels, sampled while PWROK is inactive, and latchec
when PWROK goes active.

Link Request, LREQ#, is asserted by the ISA bridge to request a link transfer. This signal is deas
serted after a hard reset.

Link Grant, LGNT#, is asserted by the system controller to grant the ISA bridge a link transfer.
This signal is deasserted after a hard reset.
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Host Address/Link, A17—A2 for system controller/ISA bridge, link transfers of data/commands
between the ISA bridge and system controller. These signals are 3-stated after a hard reset.

8.45 |ISA Interface

The ISA bridge incorporates a fully ISA bus compatible master and slave interface. The ISA

bridge directly drives five ISA slots without external data or address buffers. The ISA interface

also provides byte swap logic, 1/0 recovery support, wait-state generation, and SYSCLK gener-
ation. The ISA interface supports the following cycle types:

* CPU or PCI master initiated 1/0 and memory cyclesto the ISA bus.

* DMA-compatible cycles between main memory and ISA 1/0, and between ISA 1/0 and
ISA memory.

* |SA refresh cyclesinitiated by either the ISA bridge or an external | SA master.

* |SA master-initiated memory cycles to main memory and | SA master-initiated 1/0 cyclesto
theinternal 1SA bridge registers.

8.45.1 I/O Recovery Support

The 1/O recovery mechanism in the |SA bridge is used to add additional recovery delay between
the CPU or PCI master initiated 8-bit and 16-bit 1/0 cycles to the ISA bus. The ISA bridge auto-
matically forces a minimum delay of 3.5 SY SCLK's between back-to-back 8- and 16-bit 1/O cy-
clesto the ISA bus. This delay is measured from the rising edge of the I/0O command (IOR# or
|OWH#) to the falling edge of the next I/O command. If adelay of greater than 3.5 SYSCLKsis
regquired, the ISA 1/0 Recovery Timer register can be programmed to increase the delay inincre-
ments of SY SCLKs. No additional delay isinserted for back-to-back 1/0 sub-cycles generated as
aresult of byte assembly or disassembly.

8.45.2 SYSCLK Generation

The I SA bridge generates the | SA system clock (SY SCLK). SY SCLK isadivided down version
of HCLKOUT and has a frequency of either 8.00 or 8.33 MHz, depending on the HCLKOUT
frequency.

For CPU or PCl initiated cyclesto the I SA bus, SYSCLK is stretched to synchronize BALE fall-
ing to the rising edge of SY SCLK. During CPU or PCl initiated cyclesto the ISA bridge, BALE
isnormally driven high, synchronized to the rising edge of SY SCLK and then driven low to ini-
tiate the cycle on the ISA bus. However, if the cycle is aborted, BALE remains high and is not
driven low until the next cycle to the ISA bus.

8.45.3 Data Byte Swapping (ISA Master or DMA to ISA Device)

The data swap logic is integrated in the ISA bridge. For slaves that reside on the ISA bus, data
swapping is performed if the slave (1/0 or memory) and ISA bus master (or DMA) sizes differ
and the upper (odd) byte of datais being accessed. The data swapping direction is determined by
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the cycle type (read or write). Table 15 shows when data swapping is provided during DMA and
ISA master cyclesto I SA saves.

Table 8-3. DMA Data Swap

DMA I/(_) Device | ISA Memory Swap Comments
Size Slave Size (/0) - Memory
8-bit 8-bit No SD[7:0] - SD[7:0]
8-bit 16-bit No SD[7:0] - SD[7:0]
8-bit 16-bit Yes SD[7:0] -~ SD[15:8]
16-bit 8-bit No Not Supported
16-hit 16-bit No SD[15:0] - SD[15:0]

Table 8-4. 16-bit Master to 8-bit Slave Data Swap

SBHE# SAO SD[15:8] SD[7:0] Comments
0 0 Odd Even Word Transfer (data swapping not required)
0 1 Odd Odd Byte Swap (1, 2)
1 0 Even Byte Transfer (data swapping not required)
1 1 Not Allowed

8.454 Wait-State Generation

The ISA bridge adds wait-states to the following cycles, if IOCHRDY is sampled low (deassert-
ed).

* During Refresh and I SA bridge master cycles (not including DMA) to the I SA bus.
* During DMA-compatible transfers between 1SA 1/0 and ISA memory only.
Wait states are added as long as IOCHRDY remains low.

For ISA master cycles targeted for the ISA bridge’s internal registers or main memory, the ISA
bridge always extends the cycle by driving IOCHDY low until the transaction is complete.

8.455 Cycle Shortening

The ISA bridge shortens the following cycles, if ZEROWS# is sampled asserted (low).
* During ISA bridge master cycles (not including DMA) to 8-bit and 16-bit ISA memory.
* During ISA bridge master cycles (not including DMA) to 8-bit ISA 1/0 only.

For ISA master cycles targeted for the ISA bridge’s internal registers or main memory, the ISA
bridge does not assert ZEROWS#. When IOCHRDY and ZEROWS# are sampled low at the
same time, IOCHRDY takes precedence and wait states are added.
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8.4.5.6 Status and Control Interface

Bus Address Latch Enable, BALE, is asserted by the ISA bridge to indicate that the address
(SA19-SAO0, LA23-LA17) and SBHE# signal lines are valid. This signal is deasserted after a
hard reset.

Address Enable, AEN, is asserted during DMA cycles to present I/O slaves from misinterpreting
DMA cycles as valid 1/0 cycles. This signal is also asserted during ISA bridge-initiated refresh
cycles. This signal is deasserted after a hard reset.

I/O Channel Ready, IOCHRDY, is deasserted by resources on the ISA bus to indicate that addi-
tional time (wait-states) is required to complete the cycle. This signal is normally high on the ISA
bus. IOCHRDY is an input when the ISA bridge owns the ISA bus and the CPU or a PCI agent
is accessing an ISA slave, or during DMA transfers. IOCHRDY is output when an external ISA
bus master owns the ISA bus and is accessing main memory or an ISA bridge register. As an ISA
bridge output, IOCHRDY is deasserted from the falling edge of the ISA commands. After data is
available for an ISA master read or the ISA bridge latches the data for a write cycle, IOCHRDY
is asserted for 70 ns. After 70 ns, the ISA bridge three-states IOCHRDY. The ISA bridge does
not drive this signal when an ISA bus master is accessing an ISA bus slave. IOCHRDY is 3-stated
upon CPURST.

16-bit I/O Chip Select, ISCS16#, is driven by 1/O devices on the ISA bus to indicate that they
support 16-bit I/O bus cycles.

I/O Channel Check, IOCHK#, can be driven by any resource on the ISA bus. When asserted, it
indicates that a parity or an uncorrectable error has occurred for a device or memory on the ISA
bus. If IOCHK# is asserted and NMIs are enabled, an NMI is generated to the CPU.

I/0 Read, IOR#, when asserted indicates to an ISA I/O slave device that the slave may drive data
on the ISA data bus (SD15-SD0). The I/O slave device must hold the data valid until after IOR#
is deasserted. IOR# is an output when the ISA bridge owns the ISA bus. IOR# is an input when
an external ISA master owns the ISA bus. This signal is deasserted after a hard reset.

I/O Write, IOW#, asserted indicates to an ISA 1/O slave device that the slave may latch data from
the ISA data bus (SD15-SD0). IOW# is an output when the ISA bridge owns the ISA bus. IOW#
is an input when an external ISA master owns the ISA bus. This signal is deasserted after a hard
reset.

Unlatched Address, LA23-LA17, are bi-directional address lines allowing accesses to physical
memory on the ISA bus up to 16 Mbytes. LA23—-LA17 are outputs when the ISA bridge owns the
ISA bus. The LA23-LA17 lines become inputs when an ISA master owns the ISA bus. The
LA23-LA17 signals are driven to an unknown state after a hard reset.

System Address bus, SA19-SAQ0, are outputs when the ISA bridge owns the ISA bus. SA19-SA0
are inputs when an external ISA master owns the ISA bus. Note that SA19—-SA17 have the same
values as LA19-LA17 for all memory cycles. For I/0O accesses only SA15-SAOQ are used. SA19—

SAQ are driven to an unknown state after a hard reset.

System Byte High Enable, SBHE#, indicates, when asserted, that a byte is being transferred on
the upper byte (SD15-SD8) of the data bus. SBHE# is deasserted during refresh cycles. SBHE#
is an output when the ISA bridge owns the ISA bus and an input when an external ISA master

owns the ISA bus. This signal is at an unknown state after a hard reset.
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Memory Chip Select, 16 MEMCS16#, isdriven low by ISA slavesthat are 16-bit memory devic-
es. MEMCS16# is an input when the ISA bridge owns the ISA bus. MEMCS16# is an output
when an |SA bus master owns the ISA bus. The ISA bridge drives this signal low during ISA
master to main memory cycles.

Memory Read, MEMRY, is the command to a memory slave that it may drive data onto the |SA
data bus. MEMR#is an output when the | SA bridge is a master on the ISA bus and an input when
an | SA master, other then the I SA bridge, ownsthe | SA bus. Thissignal is also driven by the ISA
bridge during refresh cycles. For DMA cycles, the | SA bridge, asamaster, asserts MEMR#. This
signal is 3-stated after ahard reset.

Memory Write, MEMWH#, is the command to amemory slave that it may latch datafrom the ISA
data bus. MEMWH# is an output when the | SA bridge ownsthe I SA bus and an input when an ISA
master, other then the ISA bridge, ownsthe I SA bus. For DMA cycles, the |SA bridge, asa mas-
ter, asserts MEMW#. This signal is 3-stated after a hard reset.

Standard Memory Read, SMEM R#, is asserted to request an |SA memory slaveto drive dataonto
the data lines. If the access is below the 1 Mbyte range (00000000-000FFFFFh) during DMA
compatible, 1SA bridge master, or ISA master cycles, the ISA bridge asserts SMEMR#.
SMEMR# is a delayed version of MEMR#. This signal is deasserted after a hard reset.

Standard Memory Write, SMEMW#, is asserted to request an |SA memory slave to accept data
from the data lines. If the access is below the 1 Mbyte range (00000000-000FFFFFh) during
DMA compatible, ISA bridge master, or ISA master cycles, the ISA bridge asserts SMEMWH#.
SMEMW# is adelayed version of MEMW#. This signal is deasserted after a hard reset.

Zero Wait-States, ZEROWSH, is asserted by an |SA slave after its address and command signals
have been decoded to indicate that the current cycle can be shortened. If IOCHRDY is deasserted
and ZEROWSH# is asserted during the same clock, then ZEROWS# is ignored and wait-sates are
added as afunction of IOCHRDY (i.e. IOCHRDY has precedence over ZEROWSH).

System Data, SD15-SD8, provide the 16-bit data path for devices residing on the ISA bus. SD15-
SD8 correspond to the high order byte and SD7-SDO0 correspond to the low order byte. SD15-
SDO are undefined during refresh. These signals are 3-stated after hard reset.

8.4.6 DMA Controller

The DMA circuitry incorporates the functionality of two 82C37 DMA controllers with seven in-
dependently programmable channels (Channels 3—-0 and Channels 7-5). The DMA support:
8/16-bit devices using ISA-compatible timings and 27-bit addressing as an extension of the ISA-
compatible specification. The DMA channels can be programmed for either fixed (default) or ro-
tating priority. The DMA controller also generates ISA refresh cycles. DMA Channel 4 is used
to cascade the two controllers and default to cascade mode in the DMA Channel Mode (DCM)
register (Figure 10). In addition to accepting requests from DMA slaves, the DMA controller also
responds to requests that are initiated by software. Software may initiate a DMA service reques
by setting any bit in the DMA Channel Request register to a 1. The DMA controller for Channels
3-0 is referred to as “DMA-1" and the controller for Channels 7—4 is referred to as “DMA-2".

Each DMA channel is hardwired to the compatible settings for DMA device size channels 3-0
are hardwired to 8-bit, count-by-bytes transfers and channels 7-5 are hardwired to 16-bit, count
by-words (address shifted) transfers. The ISA bridge provides the timing control and data size
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tranglation necessary for the DMA transfer between the memory (ISA or main memory) and the
ISA bus I/0O. ISA-compatible DMA timing is supported. The DMA controller aso features re-
fresh address generation and auto-initialization following a DMA termination.

Note that a DMA device (1/0 device) isalways on the | SA bus, but the memory referenced islo-
cated on either an ISA bus device or in main memory. When the ISA bridge is running aDMA
cycle, it drives the MEMR# or MEMW# strobes, if the addressis less than 16 Mbytes (000000-
FFFFFFh). The ISA bridge always generates |SA-compatible DMA memory cycles. The
SMEMR# and SMEMW# are generated if the address is less than 1 Mbyte (0000000-
OOFFFFFh). To avoid aiasing problems when the address is greater than 16 Mbytes (1000000-
7TFFFFFFh), the MEMR# or MEMWH# strobe is not generated.

The channels can be programmed for any of four transfer modes: single, block, demand, or cas-
cade. Each of the three active transfer modes (single, block, and demand), can perform three dif-
ferent types of transfers (read, write, or verify). Note that memory-to-memory transfers are not
supported by the |SA bridge. The DMA supports fixed and rotating channel priorities.

Channel 0 — Channel 4

Channell1—  pmMA-1 J Channel5 —{  DMA-2
Channel 2 — Channel 6 —

Channel 3 —7 Channel 7 —

Figure 8-8. Internal DMA Controller

8.4.6.1 DMA Status and Control Interface

DMA Request lines, DREQ3-DREQO, DREQ7-DREQ5, are used to request DMA service from
the ISA bridge’s DMA controller or for a 16-bit master to gain control of the ISA expansion bus.
The active level (high or low) is programmed via the DMA Command register. All inactive to
active edges of DREQ are assumed to be asynchronous. The request must remain active until the
appropriate DACK# signal is asserted.

DMA Acknowledge output lines, DACK3#-DACKO0#, DACK7#-DACK5#, indicate that a re-
quest for DMA service has been granted by the ISA bridge or that a 16-bit master has been grant-
ed the bus. The active level (high or low) is programmed via the DMA Command register. These
signals are deasserted after a hard reset.

Terminal Count, TC, is asserted by the ISA bridge to DMA slaves as a terminal count indicator.
This signal is deasserted after a hard reset.

Refresh, REFRESH#, is an output when asserted indicates when a refresh cycle is in progress. As
an output, this signal is driven directly onto the ISA bus. This signal is an output only when the
ISA bridge DMA refresh controller is a master on the bus responding to an internally generated
request for refresh. As an input, REFRESH# is driven by 16-bit ISA bus masters to initiate refresh
cycles. This signal is 3-stated after a hard reset
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CHAPTER 9
PERFORMANCE CONSIDERATIONS

9.1 INTRODUCTION

System performance is a key attribute of any embedded computer system. How quickly a pro-
gram isrun is the common measure of performance. Program performanceis afunction of many
parameters. CPU speed, clock speed, memory latency, memory data transfer rate, memory size,
disk accesstime, disk datatransfer rate, video access time, compiler efficiency, operating system
efficiency, program algorithms, etc. This chapter focuses on the memory system parameters that
affect performance. External caches are also examined as a means of improving memory system
performance. Chapters 5 and 6 give specific examples of memory and cache designs.

Memory system design is important. The Intel486™ processor is faster than any practical mem-
ory system. It contains a significant amount of logic (e.g., caches, write buffers, prefetcher) to
allow the execution logic to keep operating even with slow external memories. The on-chip cach-
es and data bandwidth requirements of the Intel486 processor are different than earlier micropro
cessors. Memory system design should be approached differently as well. This chapter describe
the memory requirements and bus usage characteristics of the Intel486 processor.

9.1.1 Memory Performance Factors

The ideal memory subsystem would operate without wait states. All bus cycles on the Intel486
processor would complete in only two clocks for single access and five clocks for cache fill. This
is impractical for almost all applications since they would require huge amounts of 15 ns memory
to run at 33 MHz. Practical systems use DRAM of 60-100 ns access times. The Intel486 proces-
sor is designed to effectively use DRAM. This chapter examines memory system design using
DRAM.

There are many different performance options in the design of the memory subsystem for the
Intel486 processor. The CPU clock speed sets the maximum possible performance. Higher is fast
er, but it then requires faster memories to keep the whole system performance scaling at the fre
guency rate. The Intel486 processor is designed to allow overall performance to increase up to
point with higher clock speed and constant memory speed.

The most common attribute of memory design is the number of wait states, if any, that are re-
quired to read a data item. At 33 MHz, a read operation requires 15 ns SRAM. For slower DRAM

or Flash access, at 33 MHz add 30 ns access time for each wait state. Wait states exist in practic
memory system design. This chapter examines how they affect Intel486 processor performance

The Intel486 processor adds a new metric to memory design: read transfer rate. It is important fol
filling the internal cache of the Intel486 processor. The Intel486 processor can transfer data from
memory on every clock for most read transfers. This is twice the rate of individual memory cy-
cles. Memory systems supporting this high speed transfer rate increase performance 10-20% ove
those without.

A third important attribute is write cycle time. The Intel486 processor write-through cache gen-
erates approximately twice as many writes as reads. Write performance is especially importan
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for 16-bit programs, which generate more writes than 32-bit programs. The cycle time of the
write can limit system performance as the total bus usage approaches the maximum allowed.

A common method of improving memory system performance is to add a cache. The Intel 486
processor has an on-chip cache (known as L1 cache), which handles most of the read requests.

The performance gain is highly dependent on the application—some applications benefit less
than 5% with an external cache. Most applications benefit 10-15% in performance, while a few
benefit as much as 40%. An external cache is not required for many Intel486 processor applica-
tions.

A high-performance Intel486 processor design needs to consider all of these issues in the memory
design. The following sections provide more detail on the activity of the Intel486 processor dur-
ing typical program execution. The memory activity of the CPU needs to be understood to best
design the memory subsystem.

9.2 INSTRUCTION EXECUTION PERFORMANCE

The Intel486 processor was designed to execute instructions in fewer clocks than earlier
Intel386™ family microprocessors. The reduced clock counts increase performance relative to
earlier products. This section reviews how the Intel486 processor accomplishes this and com-
pares it to earlier Intel microprocessors.

The instruction execution rate and internal design is important to understand when designing
memory systems. It accounts for the heavy write traffic on the Intel486 processor as compared to
earlier microprocessors. It also explains how memory bandwidth and latency affect performance.

9.2.1 Intel486™ Processor Execution Times

The Intel486 processor uses several techniques to execute many frequent instructionsin asingle
clock. The processor has an on-chip code/data cache and a five stage pipelined execution unit.
The Intel 486 processor decodes many simpleinstructions directly into hardware actions and uses
write buffers to match the execution rate to memory bus speed.

One high-level way to examine the impact of these techniques is to compare the execution time
of atypical application. To do so, Intel has measured a set of applications for the frequency of
instruction usage. For each instruction we multiply the frequency timesthe clocks required to ex-
ecute. The sum of these products then yields the typical number of clocks required to execute an
instruction.

Table 9-1 shows such acomparison. The Intel486 processor requires 1.95 clocks for atypical in-
struction while the Intel386 microprocessor requires 4.919 clocks. Thisis a 2.5x improvement
for integer programs. The floating-point instructions have an even larger improvement, as dis-
cussed later. The numbers in Table 9-1 do not include effects of cache misses for the Intel486
processor.

Oneimplication of these numbersisthat the Intel 486 processor cannot sustain that rate of execu-
tion with the cache disabled. The bus bandwidth required for the Intel486 processor with cache
disabled would be 2.5 times that of the Intel 386 CPU. The Intel486 processor bus has 60% more
data bandwidth for reads than the Intel386 CPU, but the same bandwidth for writes. The on-chip
cache of the Intel486 processor handles most (90-95%) of the read requests. The external bus
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must handle all of the writes. A later section examines bus utilization and on-chip cache hit rates

in more detail.
Table 9-1. Typical Instruction Mix and Execution Times for
the Intel486™ Processor
Intel486™ Intel486™
Instruction P&:ﬁfg&i?‘e Processor Accumulated

Clocks Clocks
Move R,M 16.2% 1.16 0.188
Move M,R 6.9% 1 0.069
Push R 6.1% 1 0.061
Move R,R 5.7% 1 0.057
Move R,| 5.5% 1 0.055
JCC taken 4.6% 34 0.156
JCC fall 4.5% 1 0.045
ALU2 R,R 4.3% 1 0.043
POP R 4.0% 1.16 0.046
JMP M 2.9% 3.4 0.099
ALU2 R,M 2.9% 2.16 0.063
ALU2 M,I 2.9% 3.16 0.092
Call 2.8% 3.4 0.095
Shift R 2.8% 2 0.056
ALU2 R, 2.8% 1 0.028
RET 2.7% 5.56 0.028
String 2.6% 3.16 0.150
ALU1R 1.2% 1 0.082
LDS 1.4% 12 0.020
ALU2 M,R 1.3% 3.16 0.168
ALU1 M 1.2% 3.16 0.041
Push M 1.1% 2.16 0.024
NOP 1.1% 1 0.011
Others 11.7% 2.25 0.263
Average clocks per instruction 1.95

NOTE: All percentages are approximate.
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9.2.2 Application Programs Used in Analysis

For the bus utilization and cache statistics presented later, a series of five programs were used.
Each was traced to record the address access pattern. These patterns were then used in a cache
simulator to measure how many accesses could be handled in the on-chip cache of the Intel486
processor. The cache simulator isan accurate representation of on-chip cache. Externa bustraffic
was aso measured to give bus utilization statistics. An external DRAM controller and externa
cache can also be simulated to measure their effect on program execution.

The programs represent different types of work. Each was run in the UNIX environment. Some
are 16-bit DOS applications run under a DOS emulator. Each had 16 million memory references
recorded.

9.3 INTERNAL CACHE PERFORMANCE ISSUES

The Intel486 processor is capable of high speed operations, as fast as 1 clock for many common
instructions. Since external memory cannot provide data for the CPU every clock, an on-chip
cache that can be accessed very quickly is necessary to enhance the overal performance. The
cache eases the bandwidth differences between the external bus and the CPU. The size, organi-
zation, write policy, miss replacement, and busing of the Intel486 processor on-chip cache were
chosen to support a broad range of applications.

9.3.1 On-Chip Cache Organization Issues

The Intel 486 processor contains an 8-Kbyte (16-K byte on the Intel DX 4 processor) on-chip cache.
The cacheis unified (containing both code and data), and is organized as 4-way set-associétive,
with four 2-Kbyte (4-Kbyte on the IntelDX4 processor) sets. Each set contains 128 lines (256
lines on the IntelDX4 processor). Cachelines are 16 byteslong. Linesin the cache are either valid
or not valid. Thereis no provision for partialy valid lines.

Read requests are generated either by program flow (datarequest) or an instruction prefetch (code
reguest). The great magjority of the time, these requests are usualy satisfied by the on-chip cache.
However, if acache missoccurs, an external bus request is generated. For reads to non-cacheable
areas of memory, the read is completely normal. If, however, the read request is to a cacheable
portion of memory, then the CPU initiates a cache bus linefill. Cache line fills require the exe-
cution of additional bus cyclesin order to read the remainder of the 16-byte line into the CPU.

Cache line size can impact system performance. If the line size istoo large, then the number of
blocks that can fit in the cache is reduced. In addition, as the line length is increased, the latency
for the external memory system to fill a cache line increases, reducing overall performance.

However, the Intel486 processor busisoptimized for aline size of 16 bytes. Because the Intel 486
processor can access four bytes in each bus cycle and the cache lines are 16 bytes long, four bus
cycles are necessary to fill a cache line. To reduce latency of reading cache lines, the CPU uses
burst cycles. During burst cycles, four bytes of data can be read into the CPU every clock. With
the use of burst cycles, a 16-byte cache line can be read into the CPU in as few as five clock cy-
cles. Static column DRAMSs can be implemented to support burst cycles to the CPU.

During writes, the main memory update method utilized by the Intel486 processor (except for the
IntelDX4 processor) is the write-through policy. All writes from the Intel486 processor initiate
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an external buscycle. In addition, theinternal cacheisupdated when the addresswritten to is con-
tained in the cache. This policy ensures consistency between the on-chip cache and the external
memory. The IntelDX 4 processor can be configured to update main memory using the write-back
policy. During writes, the cache is updated when the address being written to is contained in the
cache. The write is not propagated through the system to memory, but is stored and written to
memory during a future update.

9.3.2 Performance Effects of the On-Chip Cache

If all program operations use on-chip resources, the fastest possible execution is achieved, as the
on-chip registers and cache satisfy all requests. However, on cache read misses or any memory
write operation, the externa bus has to be accessed, reducing system performance.

A hit rate of approximately 95% isrealized from the on-chip cache, depending on the application.
The high level of cache hits has three main effects.

1. Performanceisimproved. The Intel486 processor can access data from its on-chip cache
every clock. This high bandwidth alows the execution unit of the Intel486 processor to
execute many common instructions in one clock.

2. The system bus utilization decreases. Because a high percentage of reads are satisfied by
the cache, the Intel486 processor busisidle alarge percentage of the time. Additiona bus
masters can reside in the system without bus saturation and the resulting performance
degradation.

3. Theratio of writesto readsis increased on the external bus. The number of readsis
decreased but the amount of writes remains constant. Therefore, main memory systems
should have low latency on write operations.

Internaly, two separate 128-bit wide prefetch buffers interface to the L1 cache unit. These can
be filled with data fetched from the on-board cache in one clock cycle, or by external memory in
as few as four clock cycles. Because the wide prefetch buffers satisfy multiple prefetches, the
usual degradation caused by a combined code cache and data cache scheme is avoided.

To optimize performance during cache line fills, a technique called bypassing is used. The first
cycle of acachelinefill satisfies the original request. Data read in during the first cycle is sent
directly to the requesting unit. Because of this, it isnot necessary to wait for the entire cache line
to fill before the requested data can be used.

Figure 9-1 shows the on-chip hit rates for prefetch and read operations when running the pro-
grams shown in Table 9-2.
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On-Chip Cache Hit Rates
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Figure 9-1. Cache Hit Rate for Various Programs
Table 9-2. Programs Used
Name Description
A FRAME Desktop publishing package
B PHONGS4 Small benchmark program
C Sunview Window manager
D INVFRAME Desktop publishing package
E TPASCAL Pascal compiler
F TROFF Text Formatter

9.3.3 Bus Cycle Mix with and without On-Chip Cache

Microprocessors that lack an on-chip cache must devote a significant portion of execution time
to external bus accesses. Code prefetches and data reads must come from the external memory
system; subsequently a high percentage of bus accesses are reads. Traditional memory systems
are optimized for reads because of this mix of bus cycles.

With the Intel486 processor’s on-chip cache, however, the high hit rate reduces the number of ex-
ternal reads. Asthe on-chip cache implements awrite-through policy, the number of writesto the
bus is not reduced. As aresult, external bus read cycles are now a minor portion of the overall
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bus cycles, as shown in Figure 9-3. For best performance, memory systems that use the Intel 486
processor should be optimized for write cycles.

Writes
7%

Reads
8%

Prefetches
15%

A5441-01

Figure 9-2. Intel486™ Processor Bus Cycle Mix with On-Chip Cache

9.4 ON-CHIP WRITE BUFFERS

As previously discussed, low write latency ismore critical for Intel486 processor systemsthanin
previous processors. The Intel486 processor has four write buffersto alow CPU execution with-
out latency for write operations. The buffers can be filled at the rate of one per clock cycle until
al four arefilled.

When dl four write buffers are empty and the busisidle, awrite request propagates to the exter-
nal bus, bypassing the write buffers directly. If the bus is not available when the write cycle is
generated internally, then the write is buffered and propagated as soon as the busis available. If
acache hit occurs on awrite, then the on-chip cache is updated immediately.

Writes are normally executed on the external bus in the same order in which they are received by
thewrite buffers, asin aFIFO. Under certain conditions amemory read can take priority, and the
sequence of external bus cycles can be reordered, even though the writes occurred earlier in pro-
gram execution.

A memory read will only be reordered before all writes under the following conditions. If al
writesin the buffers are cache hits and the read is a cache miss, then the read i s guaranteed not to
conflict with the pending writes. In this case, the bus cycles can be reordered to allow the read
operation to occur before the write buffers have been retired.

Intel 486 processor performance is enhanced because of the write buffers and bus cycle reorder-
ing. The write buffers decouple the internal execution unit from the bus. Program execution can
continue without delay of writelatency. In addition, reordering allows program execution to con-
tinue in some cases even if some write buffers arefilled.
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9.5 EXTERNAL MEMORY CONSIDERATIONS

9.5.1 Introduction

A well-designed external memory system is needed to optimize Intel486 processor system per-
formance. A system can be designed using different combinations of SRAMsand DRAMsto pro-
vide different price/performance levels. SRAMs have faster access times and do not require
precharging between accesses or refresh cycles. DRAMSs offer higher densities and are less ex-
pensive, but they require refresh circuitry, and require the addition of wait states due to the longer
access times.

The overall performance of a microprocessor system is directly related to the performance of the
memory subsystem. The great mgjority of bus cycles are used to access memory for instructions
and data. As processor speeds increase, so does the demand for higher-speed memories because
a high-performance processor that is coupled with alow performance memory offers no better
throughput than a low-performance processor.

The cost of using only fast memoriesin a system may be prohibitive. Y et as slower devices are
added to lower the overall cost, the performance penalty of added wait states increases. At fre-
quencies of 25 MHz or more, optimum memory performance can only be achieved by using very
fast memory devices.

The cost performance trade-off can be compromised by partitioning functions and using a com-
bination of both fast and slow memories. The most frequently used functionsare placed in afaster
memory. A common use of faster memory devicesis implementation of an external cache, built
of fast SRAM devices.

Fast SRAM devices have high enough bandwidth to achieve optimum performance. An external
cache (also called L 2 cache) can also be used for higher performance. Chapter 6 covers L2 cache
concepts.

Regardless of the use of an externa cache, the external memory system consists of acombination
of EPROM and DRAM devices. EPROM devices tend to have along accesstime. Being nonvol-
atile, EPROMs are used primarily for initialization routines. After initialization EPROMs are ac-
cessed infrequently. Thus, system performanceis not dependent upon EPROM latency. If ahigh-
level of performance is desired, EPROM contents may be copied to the DRAM memory array.
Thistechnique is called shadowing.

Organization of the DRAM memory array is more critical to system performance. DRAM opti-
mi zation techniques can be used to reduce the average latency of accessesto DRAM devices.

Severa of the memory design concepts described in this chapter depend on the principle of lo-
cality for high performance. The locality principle basically states that when a program referenc-
esaparticular location in memory, thereis ahigh probability that nearby locations will then also
be referenced. Caches and paged memory DRAM design techniques offer high performance be-
cause of locality.
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9.5.2 Wait States in Burst and Non-Burst Modes

The Intel486 processor can execute non-burst cyclesin as little as two clocks. These cycles are
called 2-2 cycles, as read and write cycles take two cycles each. Thefirst 2 refers to read cycle
time and the second 2 to write cycle time. Accessesto devices that cannot respond by the end of
the second clock require the addition of wait states. If await state must be added to write cycles,
then a 2-3 system is created. The externa system generates RDY # and the RDY # signal is sam-
pled at the end of the second clock. If it is asserted (low) at the sample time, it indicates that the
external system has placed valid data on the pins for reads, or that the system has accepted the
data for writes. Wait states are inserted by driving RDY # inactive (high) at the end of the second
clock.

The Intel486 processor non-burst cycles are very similar to non-pipelined Intel386™ DX CPU

cycles. In the Intel386 DX processor, the read and write accesses can be as fast as two cycles ea
Thus, adding a wait state increases the bus cycle time by 50 percent of the zero wait state bu
cycle time. Overall performance does not degrade in direct proportion to the bus cycle increase.

To enhance read performance, the Intel486 processor supports burst cycles. The Intel486 proce!
sor bus can burst successive words from memory into the cache every clock. Most memory read
can be performed in bursts as indicated by the BLAST# pin. The Intel486 processor keeps the
BLAST# output inactive in the second clock of the cycle, indicating that it is able to perform a
burst cycle. The external system indicates that it will initiate a burst cycle by asserting BRDY#.
If BRDY# is not asserted at the second clock, wait states are inserted. If a system executes nor
burst reads in two clocks, burst reads in one clock, and writes in three clocks, a 2-1-3 system i
indicated.

Because of the on-chip cache, the addition of external wait states affects the Intel486 processor
performance less than previous processors. A wait state in a Intel386 DX system incurs a perfor
mance degradation of about 20 percent. The Intel486 processor achieves optimum performanc
through a 2-1-2, zero wait state bus cycle. Adding one wait state in an Intel486 processor systen
causes a performance degradation of only about 6 percent.

The Intel486 processor can execute an external bus cycle in as little as two clock cycles. Fol
achieving the optimum system performance, memory accesses must also execute in two cycle
to eliminate wait states. At higher frequencies, however, it is impractical and cost-prohibitive to
implement zero wait states for all memory.

At 25 MHz, a wait state adds 40 ns to the available access time. While an operation with one walit
state increases the bus cycle time by 50 percent, system performance does not degrade in dire
proportion. The amount of degradation incurred is application-dependent and varies with instruc-
tion mix, external cache size, and the number of memory references.

Several DRAM design techniques can reduce wait states and keep system performance at a hic
level using slower memory devices. These techniques, page mode design and interleaving, an
their impact on performance, are discusse@hapter 5
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9.5.3 Impact of Wait States on Performance

There are many benchmarks used to eval uate the performance of microprocessor systems. Figure
9-3 demonstrates the performance of 1ntel486 processor systems using different bus cycleimple-
mentations. The 100 percent performance level isan Intel486 processor with an external memory
that operates a 2-1-2 cycle. The 2-1-2 cycle achieves the highest level of performance while a5-
1-4 cycle achieves the lowest.

100% —=_ Intel4d86™ Processor Performance vs. Memory Latency
95% —
90% —

85% —

80% —

Execution Rate (normalized)

75% —

| | | | | | |

2-1-2 3-1-2 4-1-2 2-1-3 3-1-3 2-2-2 4-1-4 5-14

Memory Latency

Figure 9-3. Effect of Wait States on Performance

Note that the performance effect of the four on-chip write buffers is apparent. Since more than
75% of external cycles are writes, write latency due to slower external memory should impact
overal performance more than read latency. However, the on-chip write buffers reduce the de-
pendence on write latency.

9.5.4 Bus Utilization and Wait States

Figure 9-4 demonstrates externa bus utilization versus systems with different wait state config-
urations. The percentage figures were calculated by dividing the number of bus cyclesin which
the processor required the bus by the total number of bus cycles. A smaller percentage is better
because it indicates that the external bus is accessed less frequently. In the benchmarks used in
this demonstration, the percentages varied from 39 percent for a2-1-2 cycle system to 90 percent
for a5-1-4 cycle system.
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Intel486™ Processor External Bus Utilization

100% —j
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80% —
75% —
60% —
50% —j
40% —
30% —
20% —
10% —

Execution Bus Utilization

| | | | | | |

2-1-2 3-1-2 4-1-2 2-1-3 3-1-3 2-2-2 4-1-4 5-14

Memory Latency

Figure 9-4. Effect of External Bus Utilization versus Wait States

The bus utilization percentage is not critical for single-processor systems. However, when con-
sidering multi-processing systems, the amount of time that each CPU needsthe bus becomes very
important.

9.6 SECOND-LEVEL CACHE PERFORMANCE CONSIDERATIONS

9.6.1 Advantages of a Second-Level Cache

As previously described, approximately 90%-95% of the read cycles generated internally by the
Intel 486 processor will be satisfied by the processor’s on-chip cache. However, the remaining
5%-10% that miss the internal cache will result in external read bus cycles being executed. For
best system performance, an external (L2) cache reduces wait states for these read cycles.

This section discusses the use of a L2 cache. Different applications and operating environments
experience varying performance benefits from use of an L2 cache. Hit ratesfor L2 caches depend
on the application being executed and the randomness with which the application addresses mem-
ory. Systems which make extensive use of multi-tasking should see avery beneficial gainin sys-
tem performance with use of a L2 cache.
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9.6.2 An Example of a Second-Level Cache

The 485Turbocache* Module was a high performance cache designed for the I ntel 486 processor.
ThisModule provides 64- or 128-K bytes of cache depth. Multiple 485T urbocache M odules could
be cascaded to give 256 Kbyte or 512-K byte cache depths. The 485T urbocache Module is orga
nized as a 64- or 128-Kbyte, 2-way set-associative memory. Like the processor, the
485Turbocache Module has a line size of four doublewords. On a cache read operation the ad-
dressis presented to the 485Turbocache Module, and the tags are compared. If they match, a hit
condition has occurred and the data is burst to the Intel486 processor. Data can be sent over in
two cycles for the first word, and one cycle for each of the subsequent three doublewords. This
impliesthe fastest read cycle time for cache hits on the 485Turbocache Module. For cache miss-
es, the data is fetched from the main memory, and then sent to both the Intel486 processor and
the 485Turbocache Module. On write operations, the 485Turbocache Module operates like the
Intel486 processor’s cache by updating write hits and not updating write misses. The main mem-
ory is updated on all writes, because of the write-through policy.

9.6.3 System Performance with a Second-Level Cache

The performance of an example L2 cache is shown in Figure 9-5. The 1.0 level of performance
reflects an Intel 486 processor system that operates with 2-1-2 memory accesses. For example, a
system which has 4-2-4 cycles for page hits and 7-2-5 cycles for page misses may result in less
than 0.6 of optimum (2-1-2) performance with no cache. Adding 256 K of external cache and one
level of write buffering to this system increasesthe performance level to greater than 0.9 optimum
performance.
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L2 Cache Performance Data with One Write Buffer
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Figure 9-5. L2 Cache Performance Data with One Write Buffer

9.6.4 Impact of Second-Level Cache on Bus Utilization

A second-level cache reduces the number of processor reads to main memory, lowering external
system bus utilization. The benefit is more bandwidth available to other bus master devices like
DMA or LAN controllers. Systems with multiple CPUs are sensitive to the amount of bus band-
width used by each CPU. Note that with a write-through cache the minimum bus bandwidth is
the number of writes performed.
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9.7 DRAM DESIGN TECHNIQUES

An efficient DRAM memory designis needed for a high-performance I ntel 486 processor system.
For some applications, the principle of locality will not be as applicable. A common technique of
improving performance with DRAMs uses the commonly seen attribute of locality of reference
in programs. This works well with the fast access modes offered by DRAMs that use the same
row address. As aresult, system performance is more dependent upon DRAM latency.

Normally, a DRAM access is made by first asserting RAS# (Row Address Strobe) to latch the
presented row address into the DRAM device. Asthe DRAM devices have multiplexed address
pins, the address must then be externaly switched to present the column address. Finally, the
CAS# (Column Address Strobe) is asserted to latch the column address and enable the DRAM
output buffers. Refer to Chapter 5, “Memory Subsystem Desidot specific details of memory
accessing.

The simplest DRAM design offers a fixed number of wait states for each access. As an example,
a system could be designed such that all DRAM accesses occur in six clocks. However, many
DRAMs offer special modes of operation based on the policy of updating the row address which
have higher performance. Some of these modes and their impact on performance are discussed
below.

9.8 EXTENDED DATA OUTPUT RAM (EDO RAM)

In Extended Data Output (EDO) RAM designs, a set of gates latch the output data until the CPU
reads the data. This is important for high-speed designs because EDO RAM handles sequential
reads better than Fast Page Mode (FPM) RAM. Extended Data-Out page mode read accesses are
similar to FPM read accesses, except that when CAS is driven high, the data outputs are not dis-
abled, and the data latch is used to guarantee that the valid data is held until CAS goes low again.
With EDO RAM, the data latch is controlled during page-mode accesses by CAS. Data is then
captured in the latch as a result of CAS going high. A new address can then be applied, and new
data accessed, without corrupting the output data from the previous access.

The advantage of an EDO RAM design is that EDO memory has a shorter Page Mode cycle than
standard FPM DRAM. Since EDO RAM does not turn the data off by the rising edge of CAS, the
data is available longer, enabling the system to read the output data while readying for the next
cycle, thus saving one clock cycle for every page access. By eliminating data cycles, EDO mem-
ory designs offer an increased peak bandwidth and simplified constraints on access timing, which
increase memory performance.

9.8.1 Interleaving

A more complicated DRAM design technique is called interleaving. Interleaving is possible
when more than one memory bank is used. Effective implementation of interleaving brings high-
er performance to a desig@hapter 5, “Memory Subsystem Desigiiscusses design issues in
detail.

Interleaving controls each bank separately. As an access is occurring, the other (non-accessed)
banks are being readied for their next access. Interleaving can help provide fast burst accesses for
designs. In addition, another use of interleaving is to hide the RAS# precharge time, which is in-

curred on page misses for paged memory designs. As the number of banks is increased, the
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chancefor hiding the precharge timeisincreased. Asaresult, the performance increases with ad-
ditional banks.

Figure 9-6 demonstrates the performance differences between an interleaved system supporting
one clock bursting and a non-interleaved system in two applications. The performance levels are
measured with respect to a zero wait state (2-1-2 bus). Interleaving can improve system perfor-
mance as much as 15%.

Intel486™ CPU Performance vs. Interleaving

90 —
Application A

) Interleaved
g 80— . o
£ Application B
g Interleaved
& Application A Py

70 — Non-Interleaved

[ ]
60 — Application B
Non-Interleaved
[

Figure 9-6. Performance in Interleaved and Non-Interleaved Systems

9.8.2 Impact of Performance for Posted Write Cycles

In an Intel486 processor system, the on-board cache reduces the external read cycles so that as
much as 77 percent of the external bus cyclesarewrite cycles. In program execution, writes occur
in strings of two about 60 to 70% of the time. Writes occur in strings of three 40-50% of thetime.
The DRAM subsystem must be optimized for write strings, one method is to support posted
writeswith write buffers. Posting writes meansthat RDY #isreturned to the CPU before the write
transaction is completed. This avoids the CPU depending on the write latency time. Thisisdis-

cussed further in Chapter 5, “Memory Subsystem DesigRigure 9-6demonstrates the perfor-
mance in two different applications and shows the improvement gained by using posted writes.
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Intel486™ CPU Performance vs. Optimized Write
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Figure 9-7. Performance in Systems with and without Posted Writes

9.9 FLOATING-POINT PERFORMANCE

9.9.1 Floating-Point Execution Sequences

The floating-point unit on the Intel486 processor contains the logic to execute the floating-point
instruction set that is 100% binary compatible to Intel math coprocessors. The floating-point unit
operatesin parallel with the arithmetic and logic unit, and provides arithmetic functions and tran-
scendenta functions. The enhanced floating-point unit provides three to four times the perfor-
mance of a non-integrated Intel math coprocessor.

An overlap of floating-point instruction execution and non-floating point instruction execution
increases the overall throughput.

The floating-point unit can take advantage of pipelined instruction execution. Within the Intel 486
processor, the floating-point instructions share the microcode ROM with integer instructions.
However, floating-point operations do not utilize the microcode ROM &fter the operation has
been prepared for execution. For example, only the first three clocks of the floating-point add,
multiply and divide instructions use the microcode ROM. After the third clock, the floati ng-point
unit completes the operations independently, and the microcode ROM can be utilized by non-
floating-point instructions.

Another feature that enhances performance is an efficient on-chip interface. The Intel386 DX
CPU and the Intel math coprocessor communicate asynchronously, whereas the I ntel 486 proces-
sor communicates with its on-chip floating-point unit synchronously, alowing higher perfor-
mance.
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The Intel486 processor’s on-chip cache dramatically speeds floating-point loads and stores. For
the Intel386 processor with a math coprocessor, instructions such as FLD (floating-point load)
will take 14-20 clock cyclesif any external memory addressing is required. Once operands are
ontheinternal stack, it takes 23 to 31 cyclesto execute the floating-point add instruction, depend-
ing on the value of the operands. Finally an external memory store can take up to 11-44 cycles.

Because the floating-point unit of the Intel486 processor is integrated, the entire operation exe-
cutesin fewer cycles. Datafrom the external memory can be cached. After that it can be accessed
by the floating-point unit, and loaded into the stack in three cycles on a cache hit. The floating-
point add instruction takes between 8 to 20 cycles depending on the va ue of the operands. Final-
ly, the store instruction takes 7 clocks.

Because the Intel486 processor provides a higher performance not only for floating point loads
and stores, but also for floating-point compute operations, a 3x to 4x performance boost is real -
ized for numerics-intensive routines. A large portion of the performance improvement is attrib-
uted to the fact that synchronous floating-point transfers occur on-chip.

9.9.2 Performance of the Floating-Point Unit

To achievethree to four times the floating-point performance of anon-integrated math coproces-
sor, the Intel 486 processor’s floating-point circuitry has been enhanced to reduce the number of
clock counts needed to execute frequently used instructions. Also, the interface to the processor’s
registers and busesis much more efficient since all of the interacting units are on the same chip.

Table 9-3 shows the number of clock counts per instruction on the Intel 486 processor.

Table 9-3. Floating-Point Instruction Execution

Instruction Clock Counts
Intel486™ Processor
FLD-Load 3
FST-Store 3
FADD/FSUB 8-20
FMUL
Floating multiply 16
FDIV
Floating divide &
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CHAPTER 10
PHYSICAL DESIGN AND SYSTEM DEBUGGING

An Intel486™ processor system can easily be implemented using standard interface logic,
DRAMs, EPROMSs or Flash, and 1/0O devices. The clock speeds of Intel486 processor family sys-
tems require some design guidelines. This chapter outlines the basic design issues, ranging froi
power and ground issues to achieving the proper thermal environment for the Intel486 processor.

10.1 GENERAL SYSTEM GUIDELINES

The proper operation of any system depends on proper physical layout. The layout issues and d¢
sign guidelines presented in this chapter are relevant to both higher- and lower-frequency systen
design implementation.

The improvement of integrated circuit technology has led to an enormous increase in the numbe
of functions that are being implemented on a single chip. Improved technology allows higher

clock frequencies. The Intel486 processor, with bus operating frequencies of 25 MHz/33 MHz

and corresponding high edge rates and internal clock multiplication, presents a challenge to the
conventional interconnection technologies which to date have been adequate for interconnectin
less sophisticated devices. This challenge especially applies to system designers who are respo
sible for providing suitable interconnections at the system level.

The interconnections in a circuit behave like transmission lines which degrade the system's over
all speed and distort output waveforms.

In laying out a conventional printed circuit board, there is freedom in defining the length, shape

and sequence of interconnections. But with devices such as the Intel486 processor, this tas
should be carried out with careful planning, evaluation, and testing of the wiring patterns. It is

also critical to understand the physical properties of transmission lines because interconnectiol
at high edge rates is analogous to a transmission line.

10.2 POWER DISSIPATION AND DISTRIBUTION

The Intel486 processor uses one-micron or smaller CHMOS IV process technology. The main
difference between the previous HMOS microprocessors and the more recent versions is tha
power dissipation is primarily capacitive, and there is almost no D.C. power dissipation. Because
power dissipation is directly proportional to frequency, accommodating high-speed signals on
printed circuit boards and through the interconnections is critical. The power dissipation of the

Very Large Scale Integration (VLSI) device in operation is expressed by the sum of the power
dissipation of the circuit elements, which include internal logic gates, 1/O buffers and cache

RAMs. It is also a function of the operating conditions.
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The worst-case power dissipation of any VLS| device is estimated in the following manner:
* Estimate typical power dissipation for each circuit element:

Pg: Typical power dissipation for internal logic gates (mW)
P,o: Typical power dissipation for 1/O buffers (mW)
Pcram: Typical power dissipation for instruction/data cache RAMs (mW)

* To estimate tota typical power dissipation for the device:
(1)  Py=Pg+Pig + Pcram (MW),
where Py isthe total typical power dissipation (mW)

* To estimate the worst case power dissipation:
(2) Pg=PrxCy(mW),

where Py is the worst case power dissipation (mW) and C,, is amultiplier that is
dependent upon power supply voltage.

Internal logic power dissipation varies with operating frequency and to some extent with wait
states and software. It is directly proportional to supply voltage. Process variations in manufac-
turing also affect the internal logic power dissipation, although to a lesser extent than with the
NMOS processes.

The /O buffer power dissipation, which accountsfor roughly 10 to 25 percent of the overall pow-
er dissipation, varies with the frequency and the supply voltage. It is also affected by the capaci-
tive bus loading. The capacitive bus loading for all output pins is specified in the Intel486
processor family datasheets. The Intel486 processor’s output valid delays increase if these load-
ings are exceeded. The addressing pattern of the software can affect 1/O buffer power dissipation
by changing the effective frequency at the address pins. The frequency variations at the data pins
tend to be smaller; avarying data pattern should not cause a significant change in thetotal power
dissipation.

To calculate the total power dissipated by a system board, the following formulas can be used to
calculate the maximum statistical power:

2 2
Pri+ Pt + (Pmaxl - I:)typicall) + (Pmaxz - Ptypicalz)

where Pyq and P41 @re the typical and maximum power dissipation of each of the integrated
circuits on the board.

10.2.1 Power and Ground Planes

Today’s high-speed CMOS logic devices are susceptible to ground noise and the problems this
noise createsin digital system design. This noiseisadirect result of the fast switching speed and
high drive capability of these devices, which are requisites in high-performance systems. Logic
designers can use techniques designed to minimize this problem. One technique is to reduce ca
pacitance loading on signal lines and provide optimum power and ground planes.

Power and ground lines have inherent inductance and capacitance, which affect the total imped-
ance of the system. Higher impedances reduce current and therefore offer reduced power con-
sumption, while low impedance (ground plane) minimizes problems such as noise and
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el ectromagnetic interference (EMI). It is very important for a designer to have a controlled im-
pedance design where high speed signals areinvolved. Theformulafor impedanceisasfollows:

Impedance = (L/C)12

Thetotal characteristicimpedance for the power supply can bereduced by adding morelines. The
effect of adding more lines to reduce impedance is illustrated in Figure 10-1 which shows that
two linesin paralel has half the impedance of a single line. To reduce impedance even further,
more lines should be added. To lower the impedance, the number of lines or planes should be in-
creased.

1 .
. J—c0 Z= | o

-|- G

8

g
HF— I

O
IS}

= | Loz f'—o
Z, ?02_1/2?0

A5284-01

Figure 10-1. Reduction in Impedance

For multi-layer boards, power and ground planes must be used in the Intel 486 processor family
designs. The ground plane allows best performance at high speeds. It serves two purposes. First
it provides a constant characteristic impedance to signal interconnections. Second, it provides a
low impedance path for ground currents on the V supply. The advantage of a power planeisto
reduce EMI. For example, when adjacent signal lines are switching, EMI may occur. The power
plane is used to separate adjacent layers of signal lines, which reduces EMI.

All power and ground pins must be connected to their respective planes. I deally, the Intel486 pro-
cessor should be placed at the center of the board to take full advantage of these planes. Although
Intel 486 processors generally demand less power than conventional devices, the possibility of
power surges is increased due to the processor’s higher operating frequency and its wide addre
and data buses. Peak-to-peak noise relative to V should be maintained at no more than 200 mV

Although power and ground planes are preferable to power and ground traces, double-layel
boards present a need for routing of the power and ground traces.
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The inductive effect of aprinted-circuit board (PCB) trace can be reduced by bypassing. Careful
layout procedures should be observed to minimize inductance. Figure 10-2 shows methods for
reducing the inductive effects of PCB traces. The power and ground trace layout has alow resis-
tance. Thisis because the loop area between the integrated circuits (1Cs) and the decoupling ca-
pacitors is small and the power and ground traces are physically close. This results in lower
characteristic impedance, which in turn reduces the line voltage drop.
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Figure 10-2. Typical Power and Ground Trace Layout for Double-Layer Boards
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Another placement technique is called orthogonal arrangement, which requires more area than
the previous technique but produces similar results. This arrangement is shown in Figure 10-3.
These techniques reduce the electromagnetic interference (EMI), which is discussed in Section

10.3.3.1, “Electromagnetic Interference (EMI).”
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GND Trace Vee Vee
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TTypical values should range between .01 pF and .1 pF

Figure 10-3. Decoupling Capacitors
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High-speed CMOS logic families have much higher edge rates than slower logic technologies.
The switching speeds and drive capability for high performance also increase noise levels. The
switching activity of one device can propagate to other devices through the power supply. For
example, in the TTL NAND gate shown in Figure 10-4, both the Q3 and the Q4 transistors are
on for ashort time while the output is switching. This increased loading causes a negative spike
on V¢ and a positive spike on Vs,

. Vee . .
% R1 R2 R3
A o Q1
D2

hQ2 Q3

D1

Figure 10-4. Circuit without Decoupling

In synchronous systems where several gates switch simultaneously, the result is a significant
amount of noise on the power and ground lines. This noise can be removed by decoupling the
power supply. First, it is necessary to match the power supply’s impedance to that of the individ-
ual components. Any power supply presents a low source impedance to other circuits, whether
they are individual components on the same board or other boards in a multi-board system. It is
necessary to match the supply’simpedance to that of the componentsin order to lessen the poten-
tial for voltage drops that can be caused by IC edge rates, ground- or signal-level shifting, noise
induced currents or voltage reflections.

This mismatch can be minimized using suitable high-frequency capacitors for bulk decoupling

of major circuitry sections, or for decoupling entire printed circuit boards in multi-board systems.

This capacitor is typicaly placed at the supply’s entry point to the board. It should be an alumi-

num or tantalum-electrolytic type capacitor with a low equivalent series capacitance and low
equivalent series inductance. This capacitor’s value is typically 10 & 47lacing several ca-
pacitors in parallel provides the lowest effective series resistance (ESR) in the system. Additional
0.1uF capacitors may be needed if supply noise is still a problem.

Additional decoupling capacitors can be used across the devices betweandNgglines. The
voltage spikes that occur due to the switching of gates are reduced since the extra current require
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during switching is supplied by the decoupling capacitors. These capacitors should be placed
closeto their devices, astheinductance of lengthier connection traces reducestheir effectiveness.

Most popular logic families require that acapacitor of 0.01 YF to 0.1UF be placed between every

two to five packages, depending on the exact application. For high-speed CMOS logic, a good
rule of thumb is to place one of these bypasses between every two ICs, depending on the supply
voltage, the operating speed and EMI requirements. The capacitors should be evenly distributed
throughout the board to be most effective. In addition, the board should be decoupled from the
external supply line with a 10 to 4iF capacitor. In some cases, it might be helpful to adpgra 1
tantalum capacitor at major supply trace branches, particularly on large PCBs.

Surface mount (chip) capacitors are preferable for decoupling the Intel486 processor because
they exhibit lower inductance and require less total board space. They should be connected as
shown inFigure 10-5 These capacitors reduce the inductance, which keeps the voltage spikes to
a minimum.

. . Under the
/ 7 Device

Intel486™
Processor

. . . =0.1pF
_ -

Figure 10-5. Decoupling Chip Capacitors

NOTE
Using Tantalum capacitors allows for smaller capacitance values. Aluminum
capacitors in the same applications should be two to five times larger to
account for aluminum’s higher ESR.

Inductance is also reduced by the parallel inductor relationships of multiple pins. Six leaded ca-

pacitors are required to match the effectiveness of one chip capacitor, but because only a limited
number can fit around an Intel486 CPU, the configuration showigire 10-s recommended.
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Figure 10-6. Decoupling Leaded Capacitors

10.3 HIGH-FREQUENCY DESIGN CONSIDERATIONS

The overwhelming concern in dealing with high speed technologies is the management of trans-
mission lines. Asthe edge rates of the signal increase, the physical interconnections between de-
vices behave like transmission lines. Although transmission line theory is straightforward, the
difference between ordinary interconnection and transmission line is fairly complex. Transmis-
sion lines have distributed el ements which are hard to define and designers tend to over-compen-
sate for the effects of these elements.

Efficient Intel486 CPU designsrequire the identification of thetransmission linesover backplane
wiring, printed circuit board traces, etc. Once this task is accomplished, the designer’s next con-
cern should beto deal with three major problems which are associ ated with electromagnetic prop-
agation: impedance control, propagation delay, and coupling (electromagnetic interference).

The following sections discuss the negative effects of a transmission line that occur when oper-
ating at higher frequencies.
10.3.1 Transmission Line Effects

Asageneral rule, any interconnection is considered a transmission line when the time required
for the signd to travel the length of the interconnection is greater than one-eighth of the signal
rise time. The rise time can be either rise time or fall time, whichever is smaller, and it corre-
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sponds to the linear ramp amplitude from 0% to 100%. Normally the rise times are specified be-
tween 10% to 90% or 20% to 80% amplitude points. The respective values are multiplied by 1.25
or 1.67 to obtain the linear-ramp duration from 0% to 100% amplitude.

For example in a PCB using G-10 and polymide (the two main dielectric systems available for
printed circuit boards) signals travel at approximately 5 to 6 inches per nanosecond (ns).

When T,/I x v = 8, the signal path is not atransmission line but it is alumped element,
where:

T, = rise time 0% - 100%;
V = speed of propagation (5 to 6 inches/sec); and
L = length of interconnection (one-way only).

The calculation is given by:

T/Lx6<8,s0
L= (T, x6)/8=(1.25 x4 x 6)/8 = 3.75 inches

This calculation is based on the fact that the maximum rise time of the signals for the Intel486
processor is4 ns. For L = 3.75 inches, interconnections act as transmission lines.

Every conductor that carries an AC signal and acts as a transmission line has a distributed resis-
tance, an inductance and a capacitance which combine to produce the characteristic impedance
(Z2). The value of Z depends upon physical attributes such as cross-sectional area, the distance
between the conductors and other ground or signal conductors, and the diel ectric constant of the
material between them. Because the characteristic impedance isreactive, its effect increaseswith
frequency.

10.3.1.1  Transmission Line Types

Although many different types of transmission lines exist, those most commonly used on the
printed circuit boards are micro-strip lines, strip lines, printed circuit traces, side-by-side conduc-
tors and flat conductors.

10.3.1.2 Micro-Strip Lines

The micro-strip trace consists of asignal planethat is separated from a ground plane by adielec-
tric as shown in Figure 10-7. G-10 fiberglass epoxy, which is common, has an g, = 5,
where:

e is the dielectric constant of the insulation;

w is the width of signal line (inches);

t is the thickness of copper (.0015 inches for 1 0z. Cu/.003 inches for 2 o0z. Cu);
h is the height of dielectric for controlled impedance (inches).

The characteristic impedance Z, is a function of dielectric constant and the geometry of the
board. Thisistheoretically given by the following formula

Zo = [87/ (e, + 1.41)] In (5.98h/.8w + t) ohms
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where e, isthe relative dielectric constant of the board material and h, w, and t are the dimensions
of the strip. Knowing the line width, the thickness of Cu and the height of dielectric, the charac-
teristic impedance can be easily calculated.

The propagation delay (t,q) associated with the trace is a function of the dielectric only. Thisis
calculated asfollows:

thg =1.017 ,/(0.475e,+0.67) ns/ft

For G-10 fiberglass epoxy boards (e, = 5.0), the propagation delay of micro-strip is calculated to
be 1.77 ns/ft.

Micro-strip ) w > ¢

Dielectric

Figure 10-7. Micro-Strip Lines
10.3.1.3  Strip Lines

A strip line isaflat conductor centered in a dielectric medium between two voltage planes. The
characteristic impedance is given theoretically by the equation below:

Zy=[60/ /e, ] In (5.98b/1(0.8w + t)) ohms,

where b = distance between the planes for controlled impedance as shown in Figure 10-8
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Strip Line

Dielectric

Insulating

<« W >
Ground

Planes

Figure 10-8. Strip Lines
The propagation delay is given by the following formula:

tog = 1.017 Je, ns/ft

For G-10 fiberglass epoxy boards (e, = 5.0), the propagation delay of the strip linesis 2.26 ns/ft.

Typical values of the characteristic impedance and propagation delay of these types of lines are
asfollows:

Zy =50 ohms
tpg = 2 ns/ft (or 6"/ns)

The three mgjor effects of transmission line phenomenon are impedance mismatch, coupling and
skew. The following section discusses them briefly and provide solutions to minimize their ef-
fects. For more information on high-frequency design, refer to High-Speed Digital Design, A
Handbook of Black Magic by Howard W. Johnson and Martin Graham (Publisher: Prentice-Hall
Inc.).

10.3.2 Impedance Mismatch

As mentioned earlier, the impedance of atransmission line is a function of the geometry of the
ling, its distance from the ground plane, and the loads a ong the line. Any discontinuity in theim-
pedance causes reflections.

Impedance mismatch occurs between the transmission line characteristic impedance and the in-
put or output impedances of the devicesthat are connected to theline. Theresult isthat thesignals
are reflected back and forth on theline. These reflections can attenuate or reinforce the signa de-
pending upon the phase relationships. The results of these reflections include overshoot, under-
shoot, ringing and other undesirable effects.
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At lower edge rates, the effects of these reflections are not severe. However at higher edge rates,
the rise time of the signal is short with respect to the propagation delay. Thus it can cause prob-
lems as shown in Figure 10-9.

Overshoot

Expected Output Signal
Output Signal Received

Voltage

Undershoot

A5285-02

Figure 10-10. Loaded Transmission Line

Overshoot is caused by poor matching, which occurs when the voltage level exceeds the maxi-
mum (upper) limit of the output voltage. Undershoot occurs when the level exceedsthe minimum
(lower) limit. These conditions can cause excess current on the input gates which resultsin per-
manent damage to the device.

10-13



u
EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL Intel®

The amount of reflection voltage can be easily calculated. Figure 10-10 shows a system exhibit-
ing reflections.

The magnitude of areflection is usually represented in terms of a reflection coefficient. Thisis
illustrated in the following equations:

t = v,/v; = Reflected voltage/Incident voltage
tL = tioad = (ZL — Zo)/ (2L + Zo)
ts = tsource = (Zs — Zo) (Zs + Zo)

Reflection voltage v, is given by v;, the voltage incident at the point of the reflection, and the re-
flection coefficient.

The model transmission line can now be completed. In Figure 10-10, the voltage seen at point A
is given by the following equation:

Va=Vs* Zol(Zo + Zs)
ThisvoltageV 5 enters the transmission line at “A” and appears at “B” delayegyby t

Vg = Va(t — x/Vv) H(t — x/v)

where x = distance along the transmission line from point “A” and H(t) is the unit step function.
The waveform encounters the loagd, Znd this may cause reflection. The reflected wave enters
the transmission line at “B” and appears at point “A” after time dejay: (t

Vi =1 Vg

This phenomenon continues infinitely, but it is negligible after 3 or 4 reflections. Hence:

Vig =15V,

Each reflected waveform is treated as a separate source that is independent of the reflection co-
efficient at that point and the incident waveform. Thus the waveform from any point and on the
transmission line and at any given timeis as follows:

V) = ZolZo + Zs) { [VsE-XM)H(E-xV)]
1, [Vs(t-L-X)V)] [H(t-(2L-X)V)]
1, ts [Vs(t-(2L + x)V)] [H(t-(2L + X)A)]
1,2 tg [Vs(t-(AL-X)V)] [H(t-(4L-X)V)]
1,2 tg? [V(t - (AL+X)V)] [HEAL+X)V)]

Each reflection is added to the total voltage through the unit step function H(t). The above equa-
tion can be rewritten as follows:
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V()= Zol(Zo+Zs) { [Vs(t-tpaX) H(tpa—tX)]
+ 1 [V (t-tpg (2L—X)) H[t-tp4(2L—x))]
+ 1 Ts [Vs (ttpa(RL+X))H(tpa(2L+X))]

This can be further explained by an example.

Let: Vg = sin(2m 10° t)
Zg =35 ohms
Z, =20 ohms
Zy =50 ohms

L=14in
X = 6 inches
tod = 2 ns/ft= .17 nsf/in

v = [2 ns/ft) = .5 ft/ns = 6 in/ns
t. = (20 — 50)/(20 + 50) = .43
tg=.18

att=.5ns

V(x,t) =V(6in, .5 ns)
= 50/(50+35){[sin (2r10°(0.5-0.17ns/in(6in))ns)}
+ (—0.43) {sin (2m10°(0.5-0.17(6))ns)H(0.5-0.17(6))}
= .59 {sin (-1.04m) +0} att = .5 ns

Voltage at A with the transmission line properties accounted for. Thereis no reflection yet.

V(x,t) =V(6in, 5ns)
= [50/50 + 35] {sin[21110° (5 — (.17)(6)]
+(=.43) {sin [21110° (5 - .17 (28 = 6))] H [5 — .17 (28 — 6)]}
+ (—.43)(—.18) {sin [21110 (5 — 17 (28 + 6))] H [5 —.17(28 + 6)]}
=.59 {sin (-1.04 ) —.43 sin (2.52 1) + .08 sin (-1.56 )}

The lattice diagram is a convenient visual tool for calculating the total voltage due to reflections
as described in the previous equations. Two vertical lines are drawn to represent points A and B
on the horizontal dimension, x. The vertical dimension represents time.

A waveform travel s back and forth between points A and B of the transmission line in time, pro-
ducing the lattice diagram shown in Figure 10-11. The voltage at a given point is the sum of all
theindividual reflected voltages up to that time. Notice that at each endpoint, two waves are con-
verging, theincident wave and the reflected wave. Therefore, the voltage at the end points A and
B at the time of the waveform reflection are cal culated by summing both the incident and reflect-
ed waves up to and including the point in question.
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A B
t=0
tog
2toq
3tpg
Atpg
5tpg
Btpg
X ] Yt

Figure 10-11. Lattice Diagram

Asan example, let the simple configuration shown in Figure 10-10 be assumed. Assume the fol-
lowing:

Vg = 3.70 H(t)v
Zo =75 ohms
Zg =30 ohms
Z, =100 ohms

The appropriate reflection coefficients can be calculated as follows:

source = (30-75)/(30+75)= 0.42857
load = (100—75)/(100+75)= 0.14286
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V, = Vs - {75/(75+30)} = 2.64286 V

V1 = 2.64286 x 0.14286 = 0.37755 V
V,,=0.37755 x -0.42875 = —0.16181 V
V,3=-0.16181 x 0.14286 = —0.02312 V
V,4=-0.02312 x —0.42857 = 0.00991 V
V5= 0.00991 x 0.14286 = 0.00142 V
V/g = 0.00142 x —0.42857 = —0.00061 V
V,7 =-0.00061 x 0.14286 = —0.00009 V

Figure 10-12 shows the corresponding lattice diagram.

A B
V@B
VAHt=0
1543.02V
2.857 V 2ty
3ty 2.835V
2.845 V 4t
5tpg 2.847 V
2.846 V 6tpq
6 = 0.00067
Ttpg 2.846 V

Figure 10-12. Lattice Diagram Example

Impedance discontinuity problems are managed by imposing limits and control during the rout-
ing phase of the design. Design rules must be observed to control trace geometry, including spec-
ification of the trace width and spacing for each layer. Thisis very important because it ensures
the traces are smooth and constant without sharp turns.
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There are several techniques which can be employed to further minimize the effects caused by an
impedance mismatch during the layout process:

1. Impedance matching.
2. Daisy chaining.
3. Avoidance of 90° corners.

4. Minimization of the number of vias.

10.3.2.1 Impedance Matching

Impedance matching is the process of matching the impedance of the source or load with that of
the trace and it is accomplished with a technique called termination. The reflection, overshoot and
undershoot of signals are reduced by terminating the remote end of the transmission line from the
source. The terminating impedance combines with the destination input circuitry to produce a
load that closely matches the characteristic impedance of the line (board traces have characteristic
impedances in the range of 30 ohms to 200 ohms).

The calculation of characteristic impedance was already discussed. Impedance of the printed cir-
cuit board backplane connectors have the impedance in the same range as the traces (i.e., 30-200
ohms).

Depending upon the length of the conductors or when using twisted pairs of coaxial cable in place
of printed circuit traces, the characteristic impedance of a backplane may change. Backplane im-
pedance is also affected by the number of boards plugged into the backplane.

Need for Termination

The transmission line should be terminated whenjhexceeds one-third of frisetime). If the
thg = 1/3 ¢ (rise time), the line can be left un-terminated, provided the capacitive coupling be-
tween the traces does not cause electromagnetic interference.

Termination thus eliminates impedance mismatches, increases noise immunity, suppresses
RFI/EMI and helps to ensure that signals reach their destination with minimum distortion. There
are five methods for terminating traces on the board:

1. Series

2. Parallel
3. Thevenin
4. AC

5. Active

Terminations usually cost money, because they require additional components and power. In the
case of passive terminations, extra drivers are needed to deliver more current to the line. In case
of active terminations extra power is needed, which increases the power dissipation of the system.

Series Termination

One way of controlling ringing on longer lines is with the series termination technique also
known as damping. This is accomplished by placing a resistor in series with the transmission line
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at the driving device end. The receiver has no termination. The value of the impedance looking
into the driving device (Ryiver + Riine = Zo) should approximate the impedance of the line as
closely as possible. In thiscircuit the ringing dampens out when the reflection coefficient goesto
zero. Figure 10-13 illustrates the series termination.

Z,=750Q
NS s S0
Driver R_ }4* L=g" *»‘ Receiver

Figure 10-13. Series Termination

One main advantage of seriestermination isthat only logic power dissipation results so that lower
overall power isrequired. Thereisone penalty, however, in that the distributed |oading along the
transmission line cannot be used because only half of the voltage waveform is travelling down
theline. Thereis no limit on the number of loads that can be placed at the end of the series ter-
minated connection. However, the drop in voltage across a series terminating resistor limits load-
ing to maximum 10.

Parallel Terminated Lines

Parallel termination is achieved by placing aresistor of an appropriate value between the input of
theloading device and the ground as shown in Figure 10-14. To determine an appropriate value,
the currents required by all inputs and the leakage currents of the drivers are summed. A resistor
should be selected so that its addition to the circuit does not exceed the output capacity of the
weakest driver. For the type of termination shown in Figure 10-14, only high logic levels need to
be calculated.

Z,=75Q

—>

Driver Receiver

Figure 10-14. Parallel Termination

Since the input impedance of the device is high compared to the characteristic line impedance,
the resistor and the line function as a single impedance with a magnitude that is defined by the
value of theresistor.
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When the resistor matches the line impedance, the reflection coefficient at the load approaches
zero, and no reflection occurs. One useful approach is to place the termination as close to the
loading device as possible.

Parallel terminated lines are used to achieve optimum circuit performance and to drive distributed
loads, which is an important benefit of using parallel terminations.

There are two significant advantages of using the parallel termination. First, it provides an undis-
tributed waveform aong the entire line. Second, when along line is loaded in parallel termina-
tion, it does not affect the rise and fall time or the propagation delay of the driving device. Note
that parallel termination can also be used with wire wrap and backplane wiring where the char-
acteristicimpedanceis not exactly defined. If the designer approximatesthe characteristic imped-
ance, the reflection coefficient is very small. This results in minimum overshoot and ringing.
Parallel termination is not recommended for characteristic impedances of less than 100 ohms be-
cause of large DC current requirements.

Thevenin’s Equivalent Termination

Thistechniqueis an extension of paralel termination technique. It consists of connecting one re-
sistor from the line to the ground and another from the line to the V . Each resistor hasa value
of twice the characteristic impedance of the line, so the equivalent resistance matchesthe lineim-
pedance. This schemeis shown in Figure 10-15.

O Ve

> >

Driver Receiver

Figure 10-15. Thevenin's Equivalent Circuit

If there were no logic devices present, the line would be placed halfway between the V ¢ and the
Vss When thelogic deviceisdriving theline, aportion of the required current is provided by the
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resistors, so the drivers can supply less current than needed in parallel termination. The resistor

value can be adjusted to bias the lines towards the V o or V gs. Ordinarily it is adjusted such that

the two are equal, providing balanced performance. The Thevenin’s circuit provides good over-
shoot suppression and noise immunity.

Due to power dissipation, this technique is best suited for bipolar and mix MOS devices and is
not suitable for pure CMOS implementations. The reasons for not having Thevenin’s equivalent
for the pure CMOS system design are as follows:

CMOS circuits have very high impedance to both ground ggdavid their switching threshold
is 50% of the supply voltage. Besides dissipating more power, multiple input crossing may occur
creating output oscillations.

The main problem is high power dissipation through the termination resistors in relationship to

the total power consumption of all of the CMOS devices on the board. Most designers prefer se-
ries terminations for CMOS to CMOS connections, because as this does not introduce any addi
tional impedance from the signal to the ground. The main advantage of the series terminatior
technique, apart from its reduced power consumption, is its flexibility. The received signal am-

plitude can be adjusted to match the switching threshold of the receiver simply by changing the
value of the terminating resistor. This is a very useful technique for interconnecting the logic de-
vices with long lines.

AC Termination

AC termination is another technique which can be used for designs which cannot tolerate high
power dissipation of parallel termination and delays created by series termination. It consists of
a resistor and a capacitor connected in series from the line to the ground. It is similar to the par:
allel termination technique in functionality except that the capacitor blocks the DC component of
the signal and thus reduces the power dissipation. This technique is shieiyara 10-16

> - >
Driver Receiver
%R
I C

Figure 10-16. AC Termination

The main disadvantage of this technique is that it requires two components. Further the optimurr
value of the RC time constant of the termination network is not easy to calculate. It usually begins
as a resistive value which is slightly larger than the characteristic line impedance. It is critical to
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determine the capacitor value. If the value of RC time constant is small, the RC circuit actsas an
edge generator and creates overshoot and undershoot. Increasing the capacitor value reduces the
overshoot and undershoot, but it increases power consumption. As arule of thumb, the RC time
constant should be greater than twice the delay line. The power dissipation of the AC termination
isafunction of the frequency.

Active Termination

These terminations consist of resistors that are connected between the inputs and outputs of a
buffer driver as shown in Figure 10-17.

PCBs in
backplane

Connectors

A%

VWA

| One line of backplane bus

N
>

Active Termination Active Termination

Figure 10-17. Active Termination

The main advantage of this technique is that it can tolerate large impedance variations and this
toleranceisvaluablewhen three-state drivers are connected to backplane buses. However, the ter-
minations are costly, and the signals that are produced are not as clean as other terminations. A
common solution is to place active terminations at both ends of the bus. This helps to maintain
the uniform drive levels along the entire length of the bus, and it reduces EMI and ringing.

Table 10-1 shows the comparisons of different termination techniques.

Table 10-1. Comparison of Various Termination Techniques

Termination Co#nc:];:)gzterr?ts R, Power Consumption Prop Delay
Series 1 Zo- Zout Low Yes
Parallel 1 Zy High No
Thevenin 2 27, High No
ACT 2 2Z, Medium No
Active 1 27 Medium No

Beyond matching impedances, there are other techniques that can help avoid reflections. These

are discussed in the following sections.
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Impedance M atching Example

We have aready discussed the techniquesfor calculating characteristic impedances (using trans-
mission line theory) and the termination procedures used to avoid impedance mismatching. This
section describes an impedance matching example that utilizes these techniques. Figure 10-18
shows a simple interconnection which actslike atransmission line, as shown by the calculations.

Source Load
|~ L-g |~
Zg = 10 Kohms Z, =10 Kohms
ts =3 ns Trace is Micro-strip ty=3ns

Figure 10-18. Impedance Mismatch Example
In this exampl e the different values are given as follows:

Zg = source impedance = 10 ohms

t;s = source rise-time = 3 ns (normalized to 0% to 100%)
Z, = load impedance = 10 Kohms

t; = load rise-time = 3 ns (normalized to 0% to 100%)

L = length of interconnection = 9"

trace = micro-strip

e = dielectric constant = 5.0

H =.008"
W =.01"
T =.0015" Cu (1 oz. Cu) thickness
v =6"/ns

Theinterconnection actsas atransmission lineif (aswas shownin Section 10.3.1, “Transmission
Line Effects).

| = (tr x v) / 82 (3 x6)/8= 3".
The value of | = 9", thus the interconnection acts like a transmission line.

The impedance of the transmission line is calculated as follows:

Zy =87/ Je,+1.41 xIn (5.98H/(.8W +T))
=34.39 In 5.05 = 55.6 ohms

Because £= 10 ohms, the termination techniques described previously are needed to match the
difference of 45.6 ohms. One method is to use a series terminating resistor of 45.6 ohms or us
AC termination where r = 55.6 ohms and ¢ = 300 pF. The terminated cirdtigoe 10-18s

shown inFigure 10-19
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> MAN—— >

Z5=10Q 456 Q Zy=556Q 7, =10KQ

Figure 10-19. Use of Series Termination to Avoid Impedance Mismatch
10.3.2.2  Daisy Chaining

In laying out printed circuit boards, a stub or T-connection is another source of signal reflection.
These types of connections act as inductive loads in the signal path. In daisy chaining, a single
trace isrun from the source, and the loads are distributed along this trace. Thisisshownin Figure
10-20.

| Load | | Load |

*I/

Source

Figure 10-20. “Daisy” Chaining

An alternative to this technique is to run multiple traces from the source to each load. Each trace
has unique reflections. These reflections are then transmitted down other traces when they return
to the source. In such cases a separate termination is required for each branch. To eliminate these
T-connections, high-frequency designs are routed as daisy chains.

Along the chain, each gate provides its own impedance load; thus it is necessary to distribute
these loads evenly along the length of the chain. Hence, the impedance along the chain changes
inaseriesof stepsand it iseasier to match. The overall speed of thislineisfaster and predictable.
Also, al loads should be placed at equal distances (regular intervals).

10.3.2.3  90-Degree Angles

Another major cause of reflections are 90-degree anglesin the signal paths, which cause an abrupt
changeinthesignal direction. It promotes signal reflection. For high-frequency layout of designs,
avoid 90-degree trace angles and use 45- or 135-degree trace angles as shown in Figure 10-21.
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>
>

Receiver Receiver

%

Driver Driver

Bad Good

Figure 10-21. Avoiding 90-Degree Angles
10.3.2.4  Vias (Feed-Through Connections)

Another impedance source that degrades high-frequency circuit performanceisvias. Expert lay-
out techniques can eliminate vias to avoid reflection sites on PCBs.

10.3.3 Interference

We have discussed reflectionsin high-frequency design, their causes and techniques to minimize
them. The following sections discuss additional issues related to high-frequency design, includ-
ing interference. In general, interference occurs when electrical activity in one conductor causes
transient voltage to appear in another conductor. Two main factors increase the interference in
any circuit:

1. Variation of current and voltage in the lines causes frequency interference. This
interference increases with the frequency.

2. Coupling occurs when conductors are in close proximity.
Two types of interference are observed in high-frequency circuits:

1. Electromagnetic Interference (EMI)

2. Electrostatic Interference (ESI)

10.3.3.1  Electromagnetic Interference (EMI)

Electromagnetic Interference (EMI) is a problem at high operating frequencies: when operating
frequency increases, signal wavelength becomes comparable to the lengths of some of the inter-
connections on the printed circuit board. EMI is a phenomenon of asignal in one trace whichin-
ducesanother similar signal in an adjacent trace. There are two types of coupling between parallel
traces which determine the amount of EMI in a circuit. These are called the inductive coupling
and the radiative coupling.
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Inductive coupling occurs when a current in one trace produces current in a paralle trace. This
current reduces with the distance from the source. Hence, closely spaced wires or traces incur the
greatest degree of inductive coupling. Both tracesin this case act like normal conductors.

Radiative coupling occurs when two parallel traces act as adipole antennawhich radiates signals
that parallel wires can pick up. This results in the corruption of signal that is already present in
the trace. The intensity of this type of coupling is directly proportiona to the current present in
the trace. Howeuver, it is inversely proportional to the distance between the radiating source and
the receiver.

10.3.3.2  Minimizing Electromagnetic Interference

When laying out a board for an Intel486 processor-based system, several guidelines should be
followed to minimize EMI.

One source of EMI is the presence of a common impedance path. Figure 10-22 shows a typical
layout which does not have the same earth ground or the signal ground.

Vee Vee
] >
GND GND
Z, Zy
Z3
AAN—
C ~ (Czaprzsiitt:nce) = Chassis Ground c apZiir;srigZ —~ C

Figure 10-22. Typical Layout

To reduce EMI, it is necessary to minimize the common impedance paths, which are Z,, Z3 and
Z, shown primarily as ground impedances. During current switching, the ground line voltage
drops, causing noise emission. By enlarging the ground conductor (which reduces its effective
impedance), this noise can be minimized. This technique also provides a secondary advantage in
that it forms a shield which reduces the emissions of other circuit traces, particularly in multi-
layer circuit boards.
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The impedances Z, through Z, depend upon thickness of copper printed circuit board foil, the
circuit switching speeds and the effective lengths of the traces. The current flowing through these
common impedance paths radiates more noise as its value increases. The amount of voltage gen-
erated by these switching currents and multiplied by the impedance is difficult to predict.

An effective way to reduce EMI isto decouple the power supply by adding bypass capacitors be-
tween V ¢ and Ground. Thistechnique is similar to the general technique discussed earlier. (The
goal of the previous technique was to maintain correct logic levels.)

The design of effective coupling and bypass schemes centers on maximizing the charge stored in
the circuit bypass loops while minimizing the inductances in these loops. Some other precautions
that can minimize the EMI are as follows:

* Running aground line between two adjacent lines. The lines should be grounded at both
ends.

* The address and data busses can be separated by a ground line. This technique may be
expensive due to large number of address and data lines.

* Removing closed loop signal paths, which create inductive noise as shown in Figure 10-23.
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Figure 10-23. Removing Closed Loop Signal Paths

Minimizing EMI involves first examining the circuit’s interconnection with its nearest neighbors
since parale and adjacent lines can interact and cause EMI. It is necessary to maximize the dis-

tance between adjacent parallel wires.

10.3.3.3 Electrostatic Interference

We have discussed two types of coupling, namely inductive and radiative coupling which are re-
sponsible for creating el ectromagnetic interference. A third, known as capacitive coupling, oc-
curswhen two parallel traces are separated by a diel ectric and act as a capacitor. According to the
standard capacitor eguation, the electric field between the two capacitor surfaces varies with the

permittivity of the dielectric and with the area of the parallel conductors.
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Electrostatic interference (ESI) is caused by this type of coupling. The charge built on one plate
of the capacitor induces opposite charge on the other. To minimize the ESI, the following steps
should be taken.

* Separate the signal lines so that the effect of capacitive coupling is negated.
* Runaground line between the two lines to cancel the electrostatic fields.

For high-frequency designs, arule of thumb isto include ground planes under each signal layer.

Ground planes|limit the EMI caused by a capacitive coupling between small sections of adjacent

layers that are at equipotentials. Additionally, when the width and the thickness of signal lines

and their distance from the ground is constant, the effect of capacitive coupling upon impedance
remains uniform within approximately +5 percent across the board. Using fixed impedance does
not reduce capacitive coupling, but it does simplify the modeling of propagation delays and cou-
pling effects. In addition, capacitive coupling can cause interference between layers, so the wires
should be routed orthogonally on neighboring board layers.

10.3.4 Propagation Delay

The propagation delay of a circuit is a function of the loads on the line, the impedance, and the
line segments. The term propagation delay means the signal rise time delay in the entire circuit
including the delay in the transmission line (which is a function of the dielectric constant).

Also, the printed circuit interconnection adds to the propagation delay of every signal on the wire.
These interconnections not only decrease the operating speed of the circuits, but also cause r
flection, which produces undershoot and overshoot.

When the propagation delays in the circuit are significant, the design must compensate for the
signal skew. Signal skew occurs when the wire lengths (and thus the propagation delays) betwee
each source and each corresponding load are unequal.

Another negative aspect of propagation delay is that it causes a generation of race condition. Thi
condition occurs when two signals must reach the same destination within one clock pulse of one
another. To avoid race conditions, it is necessary to have the signals travel through the sam
length traces. But if one route is shorter, the signals arrive at different timings, causing race con-
ditions.

One way to minimize this is by decreasing the length of the interconnections. Overall route
lengths are shorter in multi-layer printed circuit boards than in double-layer boards because
ground and power traces are not present. In addition to adding ground planes, a routing prograr
can help to shorten the routing paths.

The guidelines discussed thus far are prominent at the higher operating frequencies. Debuggin
an Intel486 processor-based system at higher frequencies requires careful layout of the physice
design. This section also covers latch-up and thermal characteristics which are system desig
considerations that stem from the device itself.

I 10-29



u
EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL Intel®

10.4 LATCH-UP

“Latch-up” is triggered when the voltage limits on the 1/O pins are exceeded, causing the internal
PN junction to become forward-biased. The following steps ensure the prevention of latch-up.

* Observe the maximum input voltage rating of I/O pins.

* Never apply power to an Intel486 processor pin or to any device connected to it before
applying power to the Intel 486 processor.

* Use good termination techniques to prevent overshoot and undershoot.
* Ensure proper layout to minimize reflections and to reduce noise on the signals.

10.5 CLOCK CONSIDERATIONS

For best performance, the clock signal (CLK) for the Intel486 CPU must be free of noise and
within the specificationslisted in theindividual Intel486 datasheets. The transmission line effects
must also be considered for the clock paths. These paths should be suitably terminated to mini-
mize signal reflections and prevent overshoot and undershoot.

Skew is an effect of unequal transmission line length and matching. Thisis very important in a
synchronous system. Long traces add propagation delay. A longer trace or aload placed further
down atrace experiences more delay than ashort trace or |oads very closeto the source. Thismust
be taken into account when doing the worst case timing analysis. In a system where events must
occur synchronous to a clock signal, it isimportant to make sure the signal isavailable to all in-
puts a sufficient amount of time prior to the corresponding clock edge. When performing the
component placement this is one of the considerations that must be accounted for.

To maintain proper logic levels, al digital signal outputs have a maximum load, they are capable
of driving. DC loading is the constant current required by an input in either the high or the low
state. It limits the ability of a device driving the bus to maintain proper logic levels. For an
Intel486 processor-based system, a careful analysis must be performed to ensure that in aworst
case situation no loading limits are exceeded. Even if a bus is loaded slightly beyond its worst
case limit, problems may result if a batch of parts whose input loading is close to maximum is
encountered. The proper logic level may not be maintained and unreliable operation may result.
Marginal loading problems are particul arly troublesome, since the effect is often erratic operation
and non-repetitive errors that are difficult to track down. For both the high and low logic levels,
the sum of the currents required by all the inputs and the leakage currents of al outputs (drivers)
on the bus must be added together. Thissum must belessthan the output capability of the weakest
driver. Since the Intel 486 processor isa CHMOS device having negligible DC loading, the main
contributorsto D.C. loading arethe TTL devices.

The AC or capacitive loading is caused by the input capacitance of each device and limits the
speed at which adevice driving abus signal can change the state from high to low or low to high.

For high-frequency designs, the component and system margins are no longer availableto the de-
signer. With lessthan 1 nsof timing margin, even the small amount of trace capacitance can make
acircuit path critical.

A more accurate calculation of capacitive loading can be derived by modeling the device loads
and system traces as a series of Transmission Lines Theory. Transmission Line Theory provides
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amore accurate picture of system loading in high-frequency systems. In addition, it allows new
factors to be considered, such as inductance and the effect of reflections upon the quality of the
signal waveform.

10.5.1 Requirements

The Intel486 processor facilitates an easy-to-implement 1x clock interface. An external, TTL-
compatible 25/33 MHz clock synchronizes both the internal functional blocks of the micropro-
cessors and the external signals. Most of the Intel 486 processor’s board logic circuitry also uses
this clock.

The clock input requirements for Intel486 processor systems are more stringent than those for
many commonly used TTL devices, however. The specifications are -0.3 Voltsto 0.8 voltsfor a
logic low and 2.0 voltsto V¢ plus 0.3 volts for alogic high.

The minimum high and low times are specified as 11 nsat 25 MHz and 5 ns at 33 MHz. Thetyp-
ical clock timings are shown in Figure 10-24.

15V Z S 15V

1.5vg- D

08V /
CLK —/

tx = Input Setup Times
ty = Input Hold Times, Output Float, Valid and Hold Times

Figure 10-24. Typical Clock Timings

10.5.2 Routing

Achieving the proper clock routing around a 25/33 MHz (or higher) printed circuit board is del-
icate because problems can arise if certain design guidelines are not followed. For example fast
clock edges cause reflections from high impedance terminations. These reflections can cause sig-
nificant signal degradations in the systems operating at 25/33 MHz clock rates. This section cov-
ers some design guidelinesfor properly laying out the clock lines for efficient Intel486 processor
operation.

Sincetherise/fal time of the clock signal istypically in the range of 2-4 ns, thereflections at this
speed could result in undesirable noise and unacceptable signal degradation. The degree of re-
flection depends on the impedance of the trace of the clock connection. These reflections can be
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optimized by using proper terminations and by keeping the length of the traces as short as possi-
ble. The preferred method isto connect all of the loads viaa singletrace as shown in Figure 10-25,
thus avoiding the extra stubs associated with each load. The loads should be as close to one an-
other as possible. Multiple clock sources should be used for distributed loads.

Clock
Source

Thevenin’s
Termination

| Load l| | Load 2| | Load 3|

VN ———ANN

1]}

Figure 10-25. Clock Routing

A less desirable method is the star connection layout in which the clock traces branch to the load
as closely as possible (Figure 10-26). In this layout, the stubs should be kept as short as possible.
The maximum allowabl e length of the traces depends upon the frequency and thetotal fanout, but
the length of &l of the traces in the star connection should be equal. Lengths of less than oneinch
are recommended.

Load 1

Clock
Source /\/\/\/

Load 3 Load 2

Series
Termination

Figure 10-26. Star Connection
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10.6 THERMAL CHARACTERISTICS

There are thermal and electrical limitations associated with all the operating electronic devices.
In an Intel486 processor-based system, these limitations must be accommodated to achieve prop-
er system performance due to power dissipation concerns.

Generally, thermal and electrical characteristics are interrelated, and actual constraints depend
upon the application of a particular device.

To help the user, most of the general information on case temperature (T ), maximum current
and voltage ratings, maximum thermal resistance (6) at various airflows, and package thermal
specifications are given in the individual Intel486 processor datasheets. Despite the wealth of in-
formation presented in the datasheet, it is impossible to provide graphs and reference tables to
cover al applications. The designer must accurately calculate several factors such as junction
temperature (Tj) and total power dissipation (Py) in particular applications.

This section explains how to perform these calculations, thereby making designing with the
Intel486 processor more straightforward.

The thermal specifications for the Intel486 processor are designed to ensure atolerable tempera-
ture at the surface of the Intel486 chip. This temperature, called Junction Temperature (T;), can
be determined from external measurements using the known thermal characteristics of the pack-

age.
The following two equations facilitate the calculation of the Junction Temperature (T)):

Let Ti= junction temperature
T, = Ambient temperature
T, = Case temperature
ejc = Junction to Ambient temperature co-efficient
eja = Junction to Ambient temperature co-efficient
P4 = Power Dissipation (worst case Py = lcc * V)

Then:
T=Ta+ @7 Py

and
Tj=Te+(@" Py

Given a heat sink with athermal resistance of 84, (sink to ambient), and given the thermal resis-
tance from the junction to the case 6;, then the equation for calculating T is as follows:

Tj= Pd(ejc + 85+ Ogp) + Ty

Case temperature calculations offer many advantages over ambient temperature calculations:

* Case temperature is more easily measured compared to ambient temperature because the
measurement islocalized to a single point (the center of the package).
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* Theworst casejunction temperature (T;) islower when cal cul ated with case temperature for
two reasons. Firgt, the junction-to-case thermal coefficient (6;) islower than the junction-
to-ambient thermal coefficient (8;5). Therefore, the calculated junction temperature varies
less with power dissipation (Py). Second, the junction-to-case coefficient (8;) isnot
affected by the airflow in the system, whereas the junction-to-ambient coefficient (8;5) does
vary.

Given the case temperature specification, adesigner can either set the ambient temperature or use
fansto control the case temperature. Finned heatsinks or conductive cooling may also be used in
an environment which prohibits the use of fans.

A designer has considerable freedom in designing the heatsink and faces only practical and eco-
nomic limits. Multiple parallel devices may be helpful in reducing 6, because if the heat input
to the heat sink is dispersed rather than concentrated, the effective thermal impedanceis lower.

To approximate the case temperature for varying environments, the two equations discussed ear-
lier should be combined by making the junction temperature the same for both, resulting in the
following eguation:

Ta=Te— [(eja ejc) P4l

Refer to the Intel 486 processor datasheetsto determine the values of 6;, (per the system's airflow
reguirement) and the ambient temperature that will yield the desired casetemperature. The proper
calculations are important in achieving an efficient and reliable Intel486 processor system.

One packaging option for the Intel486 processorsis a 168-pin ceramic PGA. The recommended
heatsinks for the device are offered in the pin fin design that utilizes air cooling. T 4is greatly im-
proved by adding a heat sink. The heat sink is mounted on the PGA package with a frame and
spring. A typical heat sink is shown in Figure 10-27. The dimensions are shown in Figure 10-28.
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Figure 10-27. Typical Heat Sinks
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Airflow-Ft/Min (M/Sec)

0 | 200 | 400 | 600 | 800 | 1000
| O | a6 @06

B¢ With Heat Sink (°C/W) 12 7.5 55 4.5 35 3.0
B¢ without Heat Sink (°C/W) | 155 | 13.0 | 11.0 | 95 8.5 8.0

Heat Sink Dimensions

050" —> 4—»‘ t«—— 120"

.300"
o
- 1.58" >

Figure 10-28. Heat Sink Dimensions

10.7 DERATING CURVE AND ITS EFFECTS

A derating curve is a graph that plots the output buffer delay against the capacitive load. The
curveisused to analyze asignal delay without necessitating a simulation every time the proces-
sor's|oading changes. This graph assumes the lumped-sum capacitance model to calcul ate the to-
tal capacitance. The delay in the graph should be added to the specified AC timing value for the
device that is driving the load. The derating curve is device-dependent because each device has
different output buffers.

A derating curve is generated by tying the chip’s output buffers to a range of capacitors. The volt-
age and resistance values chosen for the output buffers are at the highest specified temperature
and are rising (worst case) values. The value of the capacitors centers around the AC timing val-
ues for the chip. For 25 MHz and above, this is 50 pF. Since the AC timing specifications are
measured for a signal reaching 1.5V, the output buffer delay is the time that it takes for a signal
to rise from OV to 1.5 V. A curve is then drawn from the range of time and capacitance values,
with 50 pF representing the average, with nominal or zero derating. These curves are valid only
for a 25 pF-150 pF load range. Beyond this range the output buffers are not well characterized.
The derating curves for the Intel486 processor are shoWwigure 10-29 These curves use the
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lumped capacitance model for circuit capacitance measurements and must be modified slightly
when doing worst-case calculations that involve transmission line effects. The amount of modi-

fications required can be calculated by performing SPICE simulation or by using other simulation
packages.
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Figure 10-29. Derating Curves for the Intel486™ Processor

10.8 BUILDING AND DEBUGGING THE Intel486™ PROCESSOR-BASED
SYSTEM

Although an Intel 486 processor-based system designer should plan the entire system, it is neces-
sary to begin building different elements of the core and begin testing them before building the
final system. If aprinted circuit board layout has to be done, the whol e system may be simulated
before generating the net list for the layout vendor. It is advisable to work with apreliminary lay-
out to avoid the problems associated with wire wrap boards that operate at high frequencies. A
typical Intel486 processor-based system is shown in Figure 10-30.

I 10-37



In

u
EMBEDDED Intel486™ PROCESSOR HARDWARE REFERENCE MANUAL tel®

Intel486™
Processor

Il

Processor Bus

Il I

External
Cache

Bus

(Optional) Controller
System Bus
LAN
Memory Bus Controller Coprocessor
External Bus

Figure 10-30. Typical Intel486™ Processor-Based System

An optional second-level cache can also be added to the system. The following steps are usually
carried out in designing with the Intel 486 processor.

1. Clock circuitry should consist of an oscillator and fast buffer. The CLK signal should be
clean, without any overshoot or undershoot.

2. Thereset circuitry should be designed as shown in Chapter 4, “Bus OperationThis
circuitry is used to generate the RESET # signal for the Intel486 processor. The system
should be checked during reset for all of the timings. The clock continues to run during
these tests.

3. The INT and HOLD pins should be held low (deasserted). The READY# pin is held high
to add additional delays (wait states) to the first cycle. At this instance, the Intel486
processor is reset, and the signals emitted from it are checked for the validity of the state.
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The Intel 486 processor starts executing instructions at location FFFFFFFOH after reset.
The address latch is connected and the address is verified.

4. The PAL implementing the address decoder should be connected to the Intel486
processor.

10.8.1 Debugging Features of the Intel486™ Processor

The Intel486 processor provides several features which simplify the debugging process for the
system hardware designer. The device offers three on-chip debugging aids:

* The code execution breakpoint opcode.
* The single-step capability provided by the TF bit in the flag register.

* The code and data breakpoint capability as provided by the debug registers (DR3-DRO,
DR6 and DR7).

10.8.2 Breakpoint Instruction

The Intel486 processor provides a breakpoint instruction that can be used by software debugger:
This instruction is a single byte opcode and generates an exception 3 trap when it is executed. |
a typical environment a debugger program can place the breakpoint instruction at various points
in the program. The single-byte breakpoint opcode is an alias for the two-byte general software
interrupt instruction, INT wheren=3. The only difference between INT 3 and INT n is that INT3
is never IOPL-sensitive but INilis IOPL-sensitive in Protected Mode and Virtual 8086 Mode.

10.8.3 Single-Step Trap

The Intel486 processor supports x86-compatible single-step feature. If the single stepflag bit
(bit 8, TF) is setto 1 in the EFLAG register, a single step exception occurs. This exception is auto-
vectored to exception 1 and occurs immediately after completion of the next instruction. Typical-

ly a debugger sets the TF bit of the EFLAG register on the debugger's stack followed by transfel
of the control to the user program. The debugger also loads the flag image (EFLAG) via the IRET
instruction. The single-step trap occurs after execution of one instruction of the user program.

Since the exception 1 occurs right after the execution of the instruction as a trap, the CS:EIF
pushed onto the debugger's stack points to the next unexecuted instruction of the program whic
is being debugged, merely by ending with an IRET instruction.

After MOV to SS and POP to SS instructions, the Intel486 processor masks some exceptions, in
cluding single-step trap exceptions. Refer to the “Exceptions and Interrupts” chapter in the
Intel486™ Processor Family Programmer’s Reference Maroraén explanation of this pro-

cess.

10.8.4 Debug Registers

The Intel486 processor has an advanced debugging feature. It has six debug registers that allow
data access breakpoints as well code access breakpoints. Since the breakpoints are indicated by
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on-chip registers, an instruction execution breakpoint can be placed in ROM code or in code
shared by several tasks. Neither of theseis supported by the INT3 breakpoint opcode.

The debug register provides the ability to specify four distinct breakpoint addresses, control op-
tions, and read breakpoint status. When the CPU goes through reset, the breakpointsare dl in the
disabled state. Hence the breakpoints cannot occur unless the debug resisters are programmed.

Itispossibleto specify up to four breakpoint addresses by writing into debug registers. The debug

registers are shown in Figure 10-31. The addresses specified are 32-bit linear addresses. The pro-

cessor hardware continuously compares the linear breakpoint addresses in DR3-DRO with the
linear addresses generated by executing software. When the paging is disabled then the linear ad-
dress is equal to the physical address. If the paging is enabled then the linear address is translated
to a 32-bit address by the on-chip paging unit. Whether paging is enabled or disabled, the break-
point register holds linear addresses.
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31 16 15 0
Breakpoint O Linear Address DRO
Breakpoint 1 Linear Address DR1
Breakpoint 2 Linear Address DR2
Breakpoint 3 Linear Address DR3
Intel Reserved. Do not define. DR4
Intel Reserved. Do not define. DR5
0 B(B|B B|B|[B|B
Tlsl|p ojfojojofojo|O0|O]|O al2]1l0 DR6
LEN | R|W| LEN [ R|W]| LEN [R|W R (W G G|L|[G|L|G|L|[G|L|G|L
333222111|'EN00OOODOOOEE33221100DR7
31 16 15 0
Note: 0 indicates Intel reserved: Do not define.
" - — — DR2 = 00000005H; LEN2 = 00B
LENi Breakpoint | Usage of Least Significant Bits in
Encoding | Field Width Breakpoint Address 31 0
Register i, (i = 0-3)
00 1 Byte [ All 32 bits used to specify a single- 00000008H
byte breakpoint field.
BKPT FLD2 00000004H
01 2 Byte | A31-Al used to specify a two-byte
word-aligned breakpoint field. A0 in 00000000H
breakpoint address register is not
used.
DR2 = 00000005H; LEN2 = 01B
10 Undefined
—Do not 31 0
use this
encoding. 00000008H
11 4 Byte | A31-A2 used to specify a four-byte 3
dword-aligned breakpoint field. AO BKPT FLD2 00000004H
and Al in breakpoint address 00000000H
register are not used.
DR2 = 00000005H; LEN2 = 11B
31 0
00000008H
<«—————— BKPTFLD2 ———>» | 00000004H
I I 00000000H

Figure 10-31. Debug Registers
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10.8.5 Debug Control Register (DR7)

A debug control register, DR7 shown in Figure 10-31 alows several debug control functionssuch
as enabling the breakpoints and setting up several control options for the breakpoints. There are
severa fieldswithin the debug control register. These are discussed below:

L ENi (breakpoint length specification bits). A 2-bit LEN field existsfor each of thefour break-
points. It specifies thelength of the associated breakpoint field. It is possible to have three differ-
ent choices: 1 byte, 2 bytes and 4 bytes. LENI field encoding is shown in Table 10-2.

Table 10-2. LENi Fields

RW Encoding Usage Causing Breakpoint
00 Instruction execution only
01 Data writes only
10 Undefined—Do not use this encoding
11 Data reads and writes only

The LENI field controls the size of the breakpoint field i by controlling whether all the low order
linear address bits in the breakpoint address register are used to detect the breakpoint event.
Therefore, al breakpoint fields are aligned: 2-byte breakpoint fields begin on word boundaries,
and 4-byte breakpoint fields begin on dword boundaries.

A 2-bit RW field existsfor each of thefour breakpoints. The 2-bit field specifies the type of usage
which must occur in order to activate the associated breakpoint.

RW encoding 00 is used to setup an instruction execution breakpoint. RW encodings 01 or 11 are
used to setup write only or read-only or read/write data breakpoints. The data breakpoint can be
setup by writing the linear address into DRi. For data breakpoints, RWi can:

=01 M write only
=11 M read/write
LENi =00, 01, 11.

An instruction execution breskpoint can be setup by writing the address of the beginning of the
instruction into DRi. RWi must equal 00 and LENi must equal 00 for instruction execution break-
points. If the instruction beginning at the breakpoint address is about to be executed, the
instruction execution breakpoint has occurred, and the breakpoint is enabled, an exception 1 fault
occurs before the instruction is executed.

GD (Global Debug Register access detect). The debug registers can only be accessed in real
mode or at privilege level 0 in Protected Mode. The GD bit when set provides extra protection
against any debug register access even in Real Mode or at privilege level 0 in Protected Mode.
Thisadditional protection feature is provided to guarantee that a software debugger can have full
control over the debug register resources when required.

The breakpoint mechanism of the Intel486 processors differs from that of the Intel386™ micro-
processor. The Intel486 processor always does exact data breakpoint matching regardless of the
GEI/LE bit settings. Any data breakpoint trap is reported after completion of the instruction that
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caused the operand transfer. Reporting is provided by forcing the Intel486 processor execution
unit to wait for the completion of data operand transfers before beginning execution of the next
instruction.

When the Intel486 processor switchesto a new task, the LE bit is cleared. Thus, LE enables fast
switching from one task to another task. To avoid having exact data breakpoint match enabled in
the new task, the LE bit is cleared by the processor during the task switch. Note that exact data
breakpoint match must be re-enabled under software control.

The GE bit supports exact data breakpoint match that is to remain enabled during all tasks exe-
cuting in the system. The Intel486 processor GE bit is unaffected during atask switch.

NOTE
Note that instruction execution breakpoints are always reported.

G, L (breakpoint enable, global and local). Associated breakpoints are enabled when either G or
L are set. When this happens the Intel 486 processor detects the ith breakpoint condition, then the
exception 1 handler isinvoked.

Debug status register. A debug status register, DR6 alows the exception 1 handler to easily de-
termine why it was invoked. Exception 1 handler can be invoked as aresult of one of the several
events as documented in the Intel 486 processor datasheets. This register contains single-bit flags
for each of the possible eventsinvoking exception 1. Some of these events are faultswhile others
aretraps.

10.8.6 Debugging Overview

Once the Intel 486 processor-based system is designed and the printed circuit board is fabricated
and stuffed, the next step isto debug the hardware in increments.

The design of amicroprocessor-based system can be subdivided into several phases. The design
starts with preparation of the system specification followed by conceptual representation in the
form of block diagram. The next phase is implementing the design, which consists of the hard-
ware design and the software design occurring in parallel. Hardware debugging usualy begins
by testing the system with short test programs. Initially the power and ground lines are tested for
opens and shorts followed by the testing of the reset function. After the hardware passes these
programs, the hardware/software integration phase begins. The test programs are then replaced
by the application software and complete system is debugged.

When there are both hardware and software problems, it can be difficult to isolate each. Several

types of testing systems are available to assist in this process. The most common type is the in-

circuit emulator, which plugsinto the microprocessor socket and allows the operation of the sys-

tem to be controlled and monitored. In-circuit emulators usually include memory that can be used

in place of the prototype memory. Another useful test tool isthe logic analyzer, which captures

the “trace” of the bus activity and displays the sequence of bus cycles that were executed. Mos
in-circuit emulators also provide this function, which is invaluable for both hardware and soft-
ware debugging. Test programs can be run from an ICE or a monitor.
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The Intel486 processors contain a JTAG (Joint Test Action Group) test-1ogic unit, which you can

use to test the processor and its connections to the system. The JTAG specifications with which

this unit complies are documented in Standard 1149.1-1990, |IEEE Standard Test Access Port

and Boundary Scan Architecture and its supplement, Standard 11.49.1a-1993. Y ou can also refer

to the “Boundary Scan” section of the individual Intel486 processor datasheets for more informa-
tion on using the JTAG unit.
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