Application Note NEC

VR Series™

64-/32-Bit Microprocessor

Programming Guide

Target Devices
VR4100 Series™
VR4300 Series™
VR5000 Series™
VR5432™
VR5500™
VR10000 Series™

Document No. U10710EJ5VOANOO (5th edition)
Date Published November 2001 N CP(K)

© NEC Corporation 1996, 2001
Printed in Japan

[MEMO]

2 Application Note U10710EJ5VOAN

NOTES FOR CMOS DEVICES

@ PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using
insulators that easily build static electricity. Semiconductor devices must be stored and transported
in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work bench and floor should be grounded. The operator should be grounded using
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need
to be taken for PW boards with semiconductor devices on it.

@ HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Inputlevels
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused
pin should be connected to Voo or GND with a resistor, if it is considered to have a possibility of
being an output pin. All handling related to the unused pins must be judged device by device and
related specifications governing the devices.

(® STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS
does not define the initial operation status of the device. Immediately after the power source is
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does
not guarantee out-pin levels, 1/O settings or contents of registers. Device is not initialized until the
reset signal is received. Reset operation must be executed immediately after power-on for devices
having reset function.

Vr10000 Series, VrR10000, VrR12000, Vr12000A, Vr3000 Series, Vr4100 Series, Vr4100, VrR4121, Vr4122, Vr4181,
Vr4200, Vr4300 Series, Vr4300, Vr4305, VrR4310, VrR5000 Series, VrR5000, VrR5000A, Vr5432, Vr5500, and Vr
Series are trademarks of NEC Corporation.

MIPS is a registered trademark of MIPS Technologies, Inc. in the United States.

MULTI is a trademark of Green Hills Software, Inc.

Application Note U10710EJ5VOAN 3

Exporting this product or equipment that includes this product may require a governmental license from the U.S.A. for some
countries because this product utilizes technologies limited by the export control regulations of the U.S.A.

The information in this document is current as of October, 2001. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or
data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all
products and/or types are available in every country. Please check with an NEC sales representative
for availability and additional information.

No part of this document may be copied or reproduced in any form or by any means without prior

written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.

NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of

third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.

Descriptions of circuits, software and other related information in this document are provided for illustrative

purposes in semiconductor product operation and application examples. The incorporation of these

circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.

While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.

NEC semiconductor products are classified into the following three quality grades:

"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products

developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.

Customers must check the quality grade of each semiconductor product before using it in a particular

application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.

(Note)

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.

(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for

NEC (as defined above).
MSE 00. 4

Application Note U10710EJ5VOAN

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

« Device availability
« Ordering information

« Product release schedule

« Availability of related technical literature

« Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

« Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California

Tel: 408-588-6000
800-366-9782

Fax: 408-588-6130
800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany

Tel: 0211-65 03 02

Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK

Tel: 01908-691-133

Fax: 01908-670-290

NEC Electronics Italiana s.r.l.
Milano, Italy

Tel: 02-66 75 41

Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office

Eindhoven, The Netherlands

Tel: 040-2445845

Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France

Tel: 01-3067-5800

Fax: 01-3067-5899

NEC Electronics (France) S.A.
Madrid Office

Madrid, Spain

Tel: 091-504-2787

Fax: 091-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office

Taeby, Sweden

Tel: 08-63 80 820

Fax: 08-63 80 388

Application Note U10710EJ5VOAN

NEC Electronics Hong Kong Ltd.
Hong Kong

Tel: 2886-9318

Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch

Seoul, Korea

Tel: 02-528-0303

Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore

Tel: 253-8311

Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan

Tel: 02-2719-2377

Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP, Brasil
Tel: 11-6462-6810

Fax: 11-6462-6829

Jo1.2

Major Revisions in This Edition

Page Description
Throughout Addition and deletion of target devices
Addition: Vr4121™, Vr4122™, Vr4181™, Vr4305™, Vr4310™, VR5000A™, Vr5432,
Vr5500 (under development), VR10000™, Vr12000™, VrR12000A™
Deletion: Vr4100™, Vr4200™
Throughout Change, addition, and deletion of descriptions brought about by addition and deletion of

target devices

VOLUME 1 OUTLINE OF TOOLS

p.17

Change of composition of whole volume, deletion of descriptions

VOLUME 2 Ve SERIES ARCHITECTURE

p.19 Addition and deletion of products in Table 1-1 Vr Series Processors

pp.20, 21 Modification and addition of description in 1.1.2 Pipeline

p.25 Addition of registers in Table 1-2 CPO Registers

pp.26, 27 Addition of description in 1.2.1 (1) Config register

pp.28 to 30 Addition of description in 1.2.1 (2) Status register

pp.31, 32 Addition of Figure 1-9 Self-Diagnostic Status (DS) Area

p.35 Addition and deletion of products in Table 1-3 Difference in Cache Depending on
Processor

pp.-39, 40 Addition of description in 1.3.2 (1) Control/Status register (FCR31)

pp.41to 43 Change and addition of description in 2.1 Pipeline Stage

pp.49 to 54 Addition of description in 3.1 Primary Cache

p.50 Addition and deletion of products in Table 3-1 Primary Cache Size, Line Size, and
Index

pp.55, 56 Addition of description in 3.2 Secondary Cache

pp.57 to 59 Change of Table 3-3 Cache Instruction’s Suboperation Code opa.2 for each product

pp.59, 60 Addition of description in 3.3 Cache Instructions

p.61 Addition and deletion of products in Table 4-1 Physical Address Space

p.63 Deletion of description in 4.2 TLB Entries

pp.64 to 70 Addition of description in 4.3 TLB Entry Register

pp.76, 77 Addition of description in 5.4.2 General-purpose exceptions

pp.82, 83 Addition of CHAPTER 6 DEBUG INTERFACE

VOLUME 3 PROGRAMMING

p.87 Addition of description in 1.2 Instruction Hazards

p.92 Modification of description in 2.1.1 Cache initialization procedure

pp.93 to 98 Addition and change of description in 2.1.2 Example of cache initialization program

pp.98 to 103 Addition and change of examples of program in 2.2 Cache Writeback, 2.3 Cache Fill,
and 2.4 Cache Tag Display

p.108 Change of example of program in 3.3 TLB Settings

pp.110, 111 Change of example of program in 3.4 TLB Initialization

p.120 Change of example of program in 4.2 Initialization of Exceptions

pp.121, 122 Addition and deletion of description in 5.1 Initialization of CPU

pp.123 to 138

Addition and change of example of program in 5.2 Example of Initialization Program

The mark x shows major revised points.

Application Note U10710EJ5VOAN

INTRODUCTION

Target Readers This manual is intended for users who understand the functions of the following products
and wish to design application systems using these products.

¢ Vr4100 Series e VRr5432 (uPD30541)
Vr4121 (uPD30121) e VR5500 (uPD30550)""°
Vr4122 (uPD30122) ¢ VR10000 Series
Vr4181 (uPD30181) Vr10000 (uPD30700)

¢ VR4300 Series Vr12000 (uPD30710)
Vr4300™, VR4305 (uPD30200) Vr12000A (uPD30710A)
Vr4310 (uPD30210)

o VR5000 Series Note Under development
VR5000™ (PD30500)

VR5000A (1PD30500A)

Purpose This manual is designed to be used as a handbook for developing application systems
using the products listed above.

Organization This manual consists of the following subjects.

¢ Qutline of tools
* VR Series architecture
* Programming

How to Read This Manual It is assumed that the reader of this manual has general knowledge of microcontrollers,
the C programming language, and assembler language.

The program source code shown in this manual is for reference only and is not intended
for use in mass-production design.

For the hardware functions of each product
— Refer to the Hardware User’s Manual or User’s Manual of each product.

For the instruction functions of each product
— Refer to the Instruction User’s Manual, Architecture User’s Manual or User’s
Manual.

Application Note U10710EJ5VOAN 7

Conventions

Related Documents

Data significance:
Active low representation:

Higher digits on the left and lower digits on the right
xxx# (# after pin or signal name)

Note: Footnote for item marked with Note in the text
Caution: Information requiring particular attention
Remark: Supplementary information

Numerical representation:

Binary --- xxxx or xxxB
Decimal --- xxxxx
Hexadecimal --- Oxxxxx

Suffix representing an exponent of 2 (in address space or memory capacity):

The related documents indicated in this publication may include preliminary versions.

K (Kilo) 2"°=1,024
M (Mega) 2% =1,024
G (Giga) 2% =1,024°
T (Tera) 2%=1,024"
P (Peta) 2%=1,024°
E (Exa) 2% = 1,024°

However, preliminary versions are not marked as such.

e User’s Manual

Document Name

Document No.

Vr4121 User's Manual U13569E
Vr4122 Hardware User's Manual U14327E
Vr4181 Hardware User's Manual U14272E

Vr4100 Series Architecture User's Manual

To be prepared

Vr4300, Vr4305, Vr4310 User’'s Manual U10504E
VRr5000, VR5000A User’'s Manual U11761E
VRr5432 User's Manual U13751E

VRr5500 User’'s Manual

To be prepared

Vr10000 Series User's Manual

U10278E

VRr5000, VR10000 Instruction User's Manual

U12754E

e Data Sheet

Document Name

Document No.

1PD30121 (Vr4121) Data Sheet

U14691E

uPD30122 (Vr4122) Data Sheet

To be prepared

1PD30181 (Vr4181) Data Sheet U14273E
1PD30200, 30210 (Vr4300, Vr4305, Vr4310) Data Sheet U10116E
1PD30500, 30500A (Vr5000, VR5000A) Data Sheet U12031E
1PD30541 (Vr5432) Data Sheet U13504E

uPD30550 (Vr5500) Data Sheet

To be prepared

1PD30700, 30710 (Vr10000, VR12000) Data Sheet

U12703E

Application Note U10710EJ5VOAN

CONTENTS

VOLUME 1 OUTLINE OF TOOLS.......ccccoccrrircmerrsssmmrrsssmesssssmessssssmesssssnmesssssnmesssssmmesssssnmessassnmesessssnnnnes 16
CHAPTER 1 PROGRAMMING TOOLScococcecerrrrcmrresscmrrsssmmsssssmmsssssmmsssssmmssesssmmssesssmmssesssmmssessannnnes 17
VOLUME 2 VR SERIES ARCHITECTURE ... erecrresccr s e secessssssces s sece s s e s s e s e s e s snssmmnneas 18
L0 Y o = N © 11 I 0 19
0 2 L O 19
P I B O 0 111 1= R TSP S VPP R TR 19

LIPS I o= 1] T PP UPRRR PR 20

1.1.8 INSITUCTIONS ... e bbb s sbe e s s b 22

LI I o U= T] (=T £ S PPRUPRRR ORI 24

B I~ 00 o T o T =T =T o 25
L2 B = (= To 153 (T € T PP P TS PUPPPPPPPPRORE 25

1.2.2 MemOry MaNAGEMENTocuiiiiiiiiee et e e e s e e e e e e e s e e e e e asre e e s anre e e sanneeesrneeennes 33

B2 B 5 (o7 =Y o] (o] o - T 36

L2 o F= .= 1 (o < RSP RPRPN 36

R T O 37
131 INSITUCTIONS ... e s e s b e 37

LR T2 o (=T] (=T £ TSP UPRRROPRR 37
CHAPTER 2 PIPELINE ... cerrsssecersssssce s ssssmme s esssmme s esssmme s esssmms s essmmnsesssmmenesssmmenesssmmsnenssnmnnsssannnnes a1
P2 T o 1o =Y 1] 4 Lo Vo = 41

P70 | 41 (=1 g (o T 44

P2 0 = - 46
2.3.1 BranChing delaycc.eeeeiiiiiiiiie e e e e e e e s 46

P B o =T [T I o (=] o PSP PRRR PR 47

P2 = o T= L= = | 3V 48

L0 Y o e T 02 X 0 | 49
R T o 11T TV 0= o 4T 49

L B B SV 0T =T o= TP T PRSP P PP PRI 51

B.1.2 VRAB00 SEBIES. . uueeieiitieeeeitieeeeeteee e e eeteeeaas e eeeaeeeeesaneeeeeanteeeeaseeee s nseeeeanseeeeaanseeeeanneeeeanseneeaanseeeeannnens 52

3.1.3 VRB5000 SEIIES....cureiiutieitie ittt ettt b e e bt e she e e b et shr e e ebe e sar e e e an e e sare e ear e sreenre s 53

3.1.4 VR5432 @Nd VREB00......c.eeiiteieiuieeitiieiiee ettt sit e st e e sat e sbeesabe e st e e sab e e sbeesabe e e abeesabeeeabeeebeeenaeeeneean 54

Application Note U10710EJ5VOAN 9

RS T~ == oo T T F TV 0= T o = 55

T2 BVt 000 IR =Y 1= S 55

* B.2.2 VRTO000 SEIES...ceiiueeeieiieieeeittee ettt sttt et e e ettt e e e ettt e s ab e e e e aabe e e e eate e e e anbe e e e aabbeeeenbeeesannneeesanneeeas 56
B I 07 T o 1= [1= T o T 57

L0 Y o I I 0 61
4.1 Translation from Virtual Addresses to Physical Addressescccevemmmmmrrrrssssssssmeenssssssssnnes 62

L I = T o [63

L I o (T 5 1= o =] = 64
4.3.1 PageMask regiSTErccoiiiii it e s 64

4.3.2 ENIYHI FEQISTON ..ot e e s e e e e e e e e e e e e e e e e e an 66

e TR T =1 0119 o 10 T o 3 I (Yo [=1 (=Y PP UURUUPUPPPR 67

L S © [o= 1 £ PSPPSR U PRP I 68

L I = N [= T o T 71
CHAPTER 5 EXCEPTIONScoiiiiiiiiiiisrinnsssn s s s s s sssms s s s s s s s s mn s e mn s e s smm s nnsssmnn nnsssmnnnns 73
L0 T 7/ T T- 3 1 =5 =Y o { Lo T3 73

5.2 Priority of EXCEPLIONS.......ccccciemmiriiiiississmmnnsrsssssssssmesss s sessssssssmms s s s s essssssnsmmssnssessssssnnmmsssnsesssssnnn 74

5.3 EXCeption Vector AQAreSSccccciiiiiiiisrsmmemririsssssssssmsssnssssssssssssssssssssssssssssssssssessssssnnsnssnssesssssnnn 75

5.4 Cautions Concerning Major EXCeptions..........cccuiremmmmisimmmmnnsennmnnsssssnssssssssssssmsssssssmsssssssansnss 75
5.4.1 Cold reset, soft reset, NMI @XCEPLHONSuuiiiiiiiiee e es 75

5.4.2 GeENEral-pUrPOSE EXCEPLIONS ...cciiiiiiiiiiiiiie e e eect ettt e e e e e e e e e e e e st e e e e e e e eesnntaeeeaaeeessssbaeeeaeseaannnns 76

5.5 EXCEPlion ProCeSSINGcccocurrrirsrrimissntninisessrsssssssnssssssssssssssssssssss s sssssmsssssssmsssssssmnssssssmnsnssssmnsnns 78
5.5.1 Hardware PrOCESSINGueeiiiirreeiiireieeereee e ee e s et e s e e e e s e e e s s r e e e aasne e e s sneeeeeanreeeeeanneeesanneeesannneens 78

5.5.2 SOFtWAIE PrOCESSING ..o iuueeeieitiiee ettt eit ettt e ettt e ettt e sttt e e e st bt e e eaabe e e e sbe e e e e anbeeeeesbeeesanneeesanneeeas 80

5.5.3 MURIPIE INTEITUPES ...ttt et e e e e et e et e e e e e e aan b et e eaeeeaannnneeeaaeeeaannns 81

* CHAPTER 6 DEBUG INTERFACE.........ccooirrccerirccerrssscerssssme s essssme s eesssme s enssams s sesssmsssessamsesessansesessnnes 82
6.1 Debug Interface FUNCLIONco e 82

6.2 Debug System Configurationccceececrrerssrrrssserrsssserres s s resssmeressssmesresssmmessassnmessessannsees 83
VOLUME 3 PROGRANMMINGcocoeceerrassncereassmerrsssmerssssmssssssmessssssmsssassamssssssansnsessansssessanmnsessannnnessannnnes 84
CHAPTER 1 PIPELINE ... ceicesceresssscesesssscesssssssesessssmesessssmeseesssmeseessameseessmennessamssnessamnnnessannnnsssannenes 85
1.1 Program Not Stopping Pipeline.........ccciirceeiirccecrrrssceresss e s ssssmse s essssme s essssms s sessmns s essssmesesssnns 85
1.1.1 BrancChing EIAYcooeeeiiiiiiee et e e e e e e e e e s e e e e e e e 85

B 2 I Y- To [T To [o (=1 = Y2 SRR 86

10 Application Note U10710EJ5VOAN

1.2 INStruction Hazardsccceiiimnimmnsssnes s s s s s s s e mn s smn e 87

1.2.1 Calculation Of CPO hAZAIAScoiiiiiiiiiiiee et sae e sar e sar e e sareenans 91

L0 Y o I R 03 X 0 | 92
2.1 Cache INitializationocciiciinin s s s s e e s 92
2.1.1 Cache initialization ProCEAUIE...........ci ittt e e e e e e e e st e e e e e e e senrereeeeas 92

2.1.2 Example of cache initialization Programoooceeieiiieieeiie e 93

P 0 T L= gy (=T = U 98
2.2.1 Example of cache writeback Programe..........cueei it e 98

P2 O 0 1o o 1= | 100
2.3.1 Example of cache fill Programccoooiieeeiiiii e 101

2.4 Cache Tag DiSPlay.......cccuuecmrrrasrissmsissasmsssnsissassssssssasmssssssssasmssasasssssmssasasssssmssasmssssans asnssnsanssssnnn 102
2.4.1 Example of cache tag display Program..........cccceiiieiiieiiieenii et 102

L0 Y o I e I 0 104
3.1 ENtry Read......ccciiiiiiiiiiisssssssssssssssssssssssssssssssssssss s 104

B T~ =1 011V 4 | (= 105

B O I = Tt 1 3T = 107

R I I N [T 2= 11 110

3.5 TLB Entry Replacement.......... s 111

L0 Y o S 0 0 1 115
4.1 Discriminating Between EXCepPLiONS.........cccvvvimiimrirs s s ssee s 115
4.1.1 Cold reset, soft reset, and NMI €XCEPHONSccoeiuiieiiiieeiiiee e 115

o B2 @) (o1 Gy CoT=T o) (o] o - PP URPRNt 116

4.2 Initialization of EXCEPLIONScccceiiiiiiiiismcmernrrisssssssssss s s s sesssssssssms s s s s ssssssssssmss s s s sessssssnnmmssnsans 118
CHAPTER 5 CPU INITIALIZATION.....ccccecttiaismrrisssamssisssnmsssssssmsssasssmsssssssnsssasssnsssasssnss s ssssnns s snssnnsssnssanes 121
5.1 Initialization Of CPU........cccciiiiiiiinennis s s s s s s s s s s nn s nane s 121

LS 0 B 0 U T (] (=SSR 121

L 2 0 O I (=T o 1S3 (=] £ PO PP ST PPP PRSI 122

5.1.3 FPU (CP1) FEQISIEIS. ...t ieeiitii ettt ettt ettt ettt ettt ettt be e bt ae e e be e e s ae e e abe e e saeeennneesnneenanes 122

5.1.4 HALTIMEr SHUt OWN L..ooiiiiiiiiiiiii e e e 122

5.1.5 Initialization of cache and TLB.........ccoiiiii e 122

5.2 Example of Initialization Program.........ccccccrriimrmminsmsmmnssrmnssss s s s s sssssssssnsssssssnsssnes 123
L2 YAV 2 PO PEPT PP 123

L2 V. o RS 125

L2 BV AV < PSP PTPT PP 128

Application Note U10710EJ5VOAN 11

»*

B5.2.4 VRAS00 SEIES.....ccuiiiiiiiiiii i e 130

LN ST 110100 IS Y=Y =Y 131

T2 Y =V i RN 133

B.2.7 VRSB0 ... e eeeeiie et e et et e e ettt e e e e e e ettt e e eeeeeea—a——aeaeeeeetta——aeaetereta——aaeaererntaaaarernrnnn 134

5.2.8 VRTI0000 SEIES...cciiiiiiieieieieee ettt ettt ettt ettt ettt ettt et eaeaaaeaaaeaaeaeaens 135
APPENDIX INDEX....ciiicecciiiiiirinmcmesssaerernnnmmsssssssessrmmmmmsssssssesmmnmmssssssssssssnnmmssssssssssssnmnnsssssssssnnnmnnsnsssessnnnn 139
12 Application Note U10710EJ5VOAN

LIST OF FIGURES (1/2)

VOLUME 2 Vr SERIES ARCHITECTURE

Figure No. Title Page
1-1 Outline of Single-Way Pipeline (5 Stages) and Instruction EXeCUtioNccooouieiiiiiiiiiiiiie e 20
1-2 Outline of 2-Way Superscalar Pipeline (5 Stages) and Instruction EXeCUtioncc.ceevieeriieieneeeiieennennn 21
1-3 Outline of 4-Way Superscalar Pipeline (5 Stages) and Instruction Execution..............cccovviiiiieniiiiineens 21
1-4 a1 8 (o2 To] g I o] 0 = L (=PRSS 22
1-5 Example of R-type (ADD r14, 111, 110) ...uei ittt e e b e e e st e e enee e e s snbeeeeas 23
1-6 Example of I-type (ADDI r14, r11, OX0T00).......eeiiueiiiieeieeesiteeeieesbee et e st st eesae e e sbeeesse e e seneesaeeesbeeenneee e 23
1-7 (0701 a1ilo [S T=To 1153 T G TSP STOPPP 26
1-8 SEALUS REGISTEN ...ttt bttt e a et e e h bt e s ae e e sh bt e sas e e sa b e e sab e e sh bt e eae e e ahreeane e e anreenanee e 28
1-9 Self-Diagnostic STAtUS (DS) AFCaeeiiiiiiie ittt e et e e s ae e e e e bb e e s ebe e e e nneeas 31
1-10 Virtual MemOry AQArESS SPACEcieiueeitiieiieeitiie ettt ettt et e bt e bt e st eebe e s abeeebe e e sbeeesbeeebeeeaneeeabeeenee s 33
1-11 Mapping of Virtual Address and PhySiCal ADAreSSocuuiiiiiiiiiiiiiee ettt 34
1-12 Y T=TaaToT VA o =T 2= | PP 35
1-13 FIOW Of EXCEPLION PrOCESSING. ... ttiiiiiiiie ettt ettt e e ettt e e et e e e sab e e e e sabe e e e sneeeesanreeeean 36
1-14 L e O 1T 0] (= PP PP RPN 38
1-15 [O 2 EC T T PO P O TUPRPPPROPRTN 39
1-16 Cause/Enable/Flag Bit Of FORBToo ittt ettt ettt et sb e e st e e seneesaee e sbreenanee e 39
2-1 Operation of Single-Way Pipeling (5 StAgES)ccicueiiiiiiiiiiiii ettt 42
2-2 Operation of 2-Way Superscalar Pipeling (5 Stages)ccuuuuiiiiiiiiiiiiiee ettt 42
2-3 Operation of 4-Way Superscalar Pipeling (5 STages)ueuruieiieiiiiiiiee e 43
2-4 Relationship Betweem Interlocks, Exceptions, and FAultS ... 44
2-5 State of Pipeline During INtErloCK (STall)coueiiiiiiieiie et sae e 45
2-6 State of Pipeline DUring INTErIOCK (SHP) ...veeeeueieeiiiiieeeiie e e e 45
2-7 [Te=TaTed o T aTe T I 1= o PP 46
2-8 [IoT=To [[aTo [B 1] o) OO OO TP PPPPP ORI 47
2-9 EXampPle Of BYPASSINGeeiiiieeieiiiiie ettt e e e e e s e e e e e n e e e e e s 48
3-1 Referencing Primary CaChE...........oi ittt sttt et e e e nae e sbeeenaeee e 49
3-2 VR4100 Series On-Chip Cache LINEcc.oii ittt et e e e et e e e e e e e sanreeeeeeseennnnnes 51
3-3 VR4300 Series ON-Chip CaChe LNc.uiiiiiiiiieiieeit ettt e be e ne e e beeenee s 52
3-4 VR5000 Series Primary CaChe LINEccoouiiiiiiiieiiiie ettt sttt et e e s sane e s b e e enes 53
3-5 VR5432 and VR5500 ON-Chip CaChe LINESeoiiiiiiieiiee ettt sae e s 54
3-6 VR5000 Series Secondary CaChe LINEccoouiiiiiiiiiaiiie ettt ettt e e s e e e e bne e e e 55
3-7 VR10000 Series Secondary Cache LINEcoouii ittt sttt ene e naeeenee s 56
4-1 Translation from Virtual Address to PhysiCal AQArESS.......coocveiiiiiiieieiiee e 62
4-2 TLB TranSIationcoiiieiiiiii e e 63
4-3 PageMask REGISTEN ...t e e e e e e s 64
4-4 EntryHi Register (IN 32-Bit MOGE)ccoiuuiiiiiiiiie ettt et e st e e st e e s e e e e e snbeeeeas 66
4-5 EntryLo0/Lo1 Register (IN 32-Bit MOGE)coouiiiiiiiii ettt 67
4-6 [[ale (o) S T=T o] (= S PO P PP PPPP SRR 68
4-7 LR = TaTe (o] 4 T 1T o 1] (= PP PRI 69

Application Note U10710EJ5VOAN 13

LIST OF FIGURES (2/2)

Figure No. Title Page
4-8 Locations Indicated by Wired RegISIENeeiiiiieiiie e e e e e 70
4-9 L AT o I 1=] (=T PRSP PPPRR 70
4-10 TLBP INSIIUCTION ...t e be e s bb e s er e e 71
4-11 TLBR INSIIUCTION ...ttt oottt oo e oottt e e e e e s ta et e eee e e s aannnteeeeaaeeaannssneeaeeeeaansnnneaaaeeeannnns 71
4-12 TLBWI INSTIIUCTION ..o e s s 72
4-13 TLBWR INSTIIUCTION. ...ttt e ettt e e e e e e s ta et e e e e e e s e nnneeeeaaaesaannsseeeaeaeeaansnnneaaaeeeaannns 72
5-1 (O 0Tl ST 1] (= GO ST U ST PT PPN 76
5-2 General-Purpose Exception Processing by HardwWare............oocuiioiiiiiiiiiieieiee e 79
5-3 General-Purpose Exception Processing by SOftWarecoocueiiiiiiiiiiii e 80
6-1 Basic On-Chip Debug ConfiIQUIAtioNcoiueiiiiieie ettt s n e snn e sn e saneas 83

VOLUME 3 PROGRAMMING

Figure No. Title Page
3-1 EntryHi Register (IN 32-Bit MOGE)c.eiiiiiiie et 107
3-2 EntryLo0/Lo1 Register (IN 32-Bit MOAE)cooiiiiiiiiiiee et 107
3-3 PageMask REGISTE........ueiiiiiiie e e s e s 107
3-4 TLB Translation.......coooiiiiiic e e e 109
3-5 QLI = 38 1T o1 E=Te=T 4T o PRSP PRSI 111

3-6 Example of Creating Entry Table 0N MEMOTYccoiiiiiiiiiiee ittt 112
3-7 Context Register (IN 32-Bit MOGE)cccuuiiiiiiiieee et sbe e saee e e 113
14 Application Note U10710EJ5VOAN

LIST OF TABLES

VOLUME 2 Vr SERIES ARCHITECTURE

Table No. Title Page
1-1 VR SEIIES PrOCESSOISeeiitiiiite ettt ettt et s s e st e s bt e st e e bt e s bt e s bt e st e e e be e e beeen e e e nreeenee s 19
1-2 (O] SO o 1T 1 (=T €= T TSRO PRPTRPRPRPRN 25
1-3 Difference in Cache Depending ON PrOCESSON.coicuuiii it eritee ettt st e et e s snee e e s nareeeeas 35
1-4 Rounding Mode CONTIOl Bit........cueiiiieiiieiei ettt sae e sabe e sab e et e e e nae e e sbeeenanee e 40
2-1 Number of Pipeling STages iN VR SEIESei ittt sereesanee e 4
3-1 Primary Cache Size, Line Size, and INAEXc.uiiiiiiiiieiiee et e e e s e e e e e e eneeaeeenneeeeas 50
3-2 Cache Instruction’s SUbOPEration COUE OP1..0 wuviiiiiiiiiiiiiiie e et e e e e e s e e e e e e st rrr e e e e e e s eennraeeeans 57
3-3 Cache Instruction’s SUbOPEration COOE OP4.2ccueiiuiieiiiiiiee ettt ettt sae e sbeeesaee e e 57
4-1 PhySICal AQAIESS SPACEccueeitiieiiie ettt ettt ettt e et e e st e e e bt e e be e e bt e e sbeeeaaee e beeenbeeesbeeennneees 61
4-2 MasSk Values and PAgE SIZE......coiuuiiiiiiiii ettt et e s bt e sttt e e sb e e e e e abb e e e enee e e e nnreeeean 65
5-1 e (o414 Vo) = (eT=Y o] (1] o = U P PRI 74
5-2 EXCEPLION VECIOr AGQUIESSeeeieiiiie ettt e e e st e s e e e s s e e e e s r e e e e snne e e s anreeeean 75
5-3 Status WHen EXCEPHON OCCUIScuiiiiiiiiiiieiie ettt e ettt e e e e e e e e e e e e e e st beaeeaaeessanssnbeeeaeessansssaneeans 75
5-4 Exception Code Area of Cause REGISIENc...ii ittt sb e nae e 77

VOLUME 3 PROGRAMMING

Table No. Title Page
1-1 CPO Hazards Of VRATO0 SEIHESuuuuuururerrrrrerrrrrerersrsrersrsrsrsrersrsrsrsrersssssrsssrer.. 88
1-2 CPO Hazards Of VRAB00 SEIHESuuuuuuuuuurrrururrrurururuusrsrsusssssseseserererer...............—.—.—.—.—.—.——.——.......—.—.———————————————— 89
1-3 Instruction Hazards of VR5000 Series and VRS432oooeieiiiiiiieiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseseseeeseeeeeeeseeeeeeees 90
1-4 Instruction Hazards Of VRBEB00...........cceuiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeeeeeseeeeesseeeeeeesreseeeererererererrrerrerrrerrererrrererrrrrrrrren 90
Application Note U10710EJ5VOAN 15

16

VOLUME 1 OUTLINE OF TOOLS

Application Note U10710EJ5VOAN

CHAPTER 1 PROGRAMMING TOOLS

Tools that support development of Vr Series application programs are released by NEC and other companies.
¢ Principal programming tools

MULTI™ (Green Hills Software, Inc.)

GNU (Red Hat, Inc.)
¢ Principal debugging tools

PARTNER (Kyoto Microcomputer Corporation)

RTE-1000-TP (Midas Lab Co., Ltd.)

For details, consult NEC sales representative.

Application Note U10710EJ5VOAN

17

18

VOLUME 2 Vr SERIES ARCHITECTURE

Application Note U10710EJ5VOAN

CHAPTER 1 OUTLINE

11 CPU

The VR4100 Series, Vr4300 Series, VR5000 Series, VR5432, VR5500"", and VrR10000 Series consist of high-
performance 64-bit microprocessors that adopt the RISC (Reduced Instruction Set Computer) architecture developed
by MIPS™. The Vr Series instructions are upwardly compatible with the VrR3000™ Series, so existing applications
can be utilized as is.

Note Under development

1.1.1 Outline
The features of the Vr Series processors are shown below.

Table 1-1. Vg Series Processors

Series Name Part Number Features

Vr4100 Series Vr4121 Incorporates CPU and primary cache, includes product-sum operation and
MIPS16 instruction set, operates with ultra-low power consumption, and is
equipped with on-chip peripheral units.

Vr4122 Incorporates CPU and primary cache, includes product-sum operation and
MIPS16 instruction set, operates with ultra-low power consumption, is equipped
with on-chip peripheral units, and supports PCI bus (subset).

Vr4181 Incorporates CPU and primary cache, includes product-sum operation and
MIPS16 instruction set, operates with ultra-low power consumption, and is
equipped with on-chip peripheral units.

Vr4300 Series Vr4300, VR4305, Incorporates CPU, FPU, and primary cache, and external bus is 32 bits.
VR4310
Vr5000 Series Vr5000, VR5000A Adopts 2-way superscalar system for CPU, incorporates FPU, secondary cache
interface, and primary cache, and external bus is 64 bits.

- Vr5432 Adopts 2-way superscalar system for CPU, incorporates FPU, primary cache,
and branch prediction unit, and external bus is 32 bits (native mode/R43K mode
selectable).

- VR5500""" Adopts 2-way superscalar out-of-order system"**? for CPU, incorporates FPU,

primary cache, and branch prediction unit, and external bus can be switched
between 64 bits and 32 bits.

Vr10000 Series Vr10000, Vr12000, Adopts 4-way superscalar out-of-order system"**for CPU, incorporates FPU,
Vr12000A secondary cache interface, primary cache, and branch prediction unit.

Notes 1. Under development
2. “Out-of-order” is an execution method in which instructions such as for performing operations or
registers rewriting in the instructions fetched simultaneously are executed from wherever possible,
rather than in program order. Hardware detects the dependency relationship of registers and delay due
to load/branch, and resources are allocated so that no space remains in the pipeline and processed.
Note that the output of execution results, such as writeback to memory, is performed in program order.

Application Note U10710EJ5VOAN 19

VOLUME 2 Vr SERIES ARCHITECTURE

*1.1.2 Pipeline

In the Vr Series, an instruction execution system called a pipeline is adopted. In the pipeline, instruction
execution processing is delimited into several stages. Instruction execution is complete when each stage is passed.
When processing of one instruction in one stage of the pipeline is complete, the next instruction enters that stage.
When the pipeline is full, it means that instructions equalling the number of pipeline stages are being executed
simultaneously.

The pipeline clock is called the PClock. Each cycle of the PClock is called a PCycle. Instructions are read in
synchronization with the PClock. Each stage of the pipeline is executed in one PCycle. Therefore, executing an
instruction requires as many PCycles as the number of pipeline stages. When the required data has not been
cached and must instead be fetched from the main memory, the execution requires more cycles than the number of
pipeline stages.

The VR Series provides the following pipelines. The methods adopted differ depending on the product.

¢ Single-way pipeline
e 2-way superscalar pipeline
e 4-way superscalar pipeline
(1) Single-way pipeline
Reads and processes instructions one by one.

The pipeline of the VrR4100 Series and Vr4300 Series uses this method.

Figure 1-1. Outline of Single-Way Pipeline (5 Stages) and Instruction Execution

PClock J |_
() (el ()) ()))) (o)) () | Fo=)

IF RF EX DC WB

| Pipeline ‘

20 Application Note U10710EJ5VOAN

CHAPTER 1 OUTLINE

(2) 2-way superscalar pipeline
Reads two instructions simultaneously, and processes them in parallel.
The pipeline of the VR5000 Series, VrR5432, and VR5500 uses this method. In the VrR5000 Series, one of two
pipelines is assigned to CPU instructions, and the other is assigned to FPU instructions, and one each of the
CPU and FPU instructions are processed simultaneously. In the VrR5432 and Vr5500, this assignment does
not occur and two instructions are processed simultaneously regardless of whether the instruction is from the
CPU or FPU.

Figure 1-2. Outline of 2-Way Superscalar Pipeline (5 Stages) and Instruction Execution

PClock J |_

.)Instruction)) Olnstruction))) O\nstruction))) Olnstruction) D Olnstruction)) —>
\nstrucﬂon Instruction)Instruction)) Olnstruction))) O\nstruction))) Olnstruction) D Olnstruction)) —> Instruction

IC RF EX DC WB

| Pipeline ‘

(3) 4-way superscalar pipeline
Reads four instructions simultaneously and processes them in parallel.
The pipeline of the VR10000 Series uses this method.

Figure 1-3. Outline of 4-Way Superscalar Pipeline (5 Stages) and Instruction Execution

Instruction |n51(uction — Olnstrucnon nsrumon\§> Insrucnon \nsrucﬂon \nsrucﬂon - | nstruction

Instruction Instruction —- OMSUUCHOH) O\nSrumon) ‘) j
Instruction Insvuction —- w Instruction D Insrucnon)
. Instruction — M mm"/Z) Insructlon) \nsrucwon \nsrucwon - | [nsruction

IF ID IS EX WB

\ns ruct \on - |nStrUCHON

=
ElE
BE
=)

Inst ruchon

5
B
=

‘ Pipeline

Application Note U10710EJ5VOAN 21

VOLUME 2 Vr SERIES ARCHITECTURE

113
All the CPU instructions in the Vr Series except MIPS16 instructions are 32 bits in length. The instructions are

Instructions

divided into three types according to their formats.

Figure 1-4. Instruction Formats

31 26 25 21 20 16 15 0

I-type (immediate) | op | rs | rt | immediate |
31 26 25 0

J-type (jump) | op | target |

31 26 25 21 20 16 15 11 10 65 0

R-type (register) | op | rs | rt | rd | sa | funct |

They are further divided into seven types according to the function of the instruction.

(1) Load/store

)

©)

@

®)

(6)

)

22

Load/store instructions perform data transfer between the memory and general-purpose registers. The format
of load/store instructions is I-type.

Arithmetic
Arithmetic instructions execute arithmetic operations, logical arithmetic operations, shift operations, and
multiply/divide operations on the register value. The format of arithmetic instructions is R-type or I-type.

Jump/branch

Jump/branch instructions change the control and flow of the program.

The jump instruction is either J-type or R-type. The branch instruction is I-type.
The JAL instruction saves the return address to register 31.

Coprocessor
Coprocessor instructions execute coprocessor operations. The load/store instruction of the coprocessor is I-
type. The format of coprocessor arithmetic instructions differs depending on the coprocessor.

System control coprocessor
System control coprocessor instructions execute operations on CPO registers in order to perform memory
management and exception processing of the processor.

Special
Special instructions execute system call exceptions and breakpoint exceptions.
type.

These instructions are R-

Exception
Exception instructions generate trap exceptions based on the comparison result. These instructions are R-
type and I-type.

Application Note U10710EJ5VOAN

CHAPTER 1 OUTLINE

The following shows an example of arithmetic operation in the VR Series.

Figure 1-5. Example of R-type (ADD r14, r11, r10)

[AbD | 1 | o | 4 | | ADD | Instruction code

General-purpose register

r10

ri1

ri2
r13 ADD

r14

r15

Figure 1-6. Example of I-type (ADDI r14, r11, 0x0100)

| ADD ‘ ri1 ‘ r14 ‘ 0x0100 Instruction code

General-purpose register

r10

ri1

ri2
13 ADD

r14

r15

For details of the MIPS16 instruction set, refer to the user’'s manual of each product in the Vr4100 Series.

Application Note U10710EJ5VOAN 23

VOLUME 2 Vr SERIES ARCHITECTURE

1.1.4 Registers
The CPU of the Vr Series includes the following registers.

e Integer general-purpose registers 64 bits x 32

* Program counter 64 bits
* Hl register 64 bits
e LO register 64 bits
e LL bit register 1 bit (the Vr4100 Series does not have this register)

Among these registers, the program counter, HI and LO registers, and LL bit register are special function registers
used or revised by certain instructions. The program counter and LL bit register cannot be operated by software.
In addition, the following functions are allocated to two general-purpose registers, r0 and r31.

rO: This is the zero register. Its contents are always zero, and r0 can be specified as the target register for an
instruction when the result of the operation should be discarded. This register can also be used as the
source register when a value of zero is required.

r31: This is the return address register. It is the link register used for the JAL instruction and JALR instruction. It
can also be used for other instructions, but be careful not to duplicate use of data from operations by the
JAL/JALR instruction and other instructions.

24 Application Note U10710EJ5VOAN

CHAPTER 1 OUTLINE

1.2 Coprocessors

The CPU can be operated with up to four closely-coupled coprocessors (CPO to CP3). Coprocessor 1 (CP1) is a
floating point unit (however, this is reserved in the VrR4100 Series). Coprocessor 2 and coprocessor 3 are reserved
for future use (however, in the VrR5432, the CP2 instruction code area is used for dedicated instructions).
Coprocessor 0 (CPO0) is an on-chip system control coprocessor, and it supports the virtual memory system and

exception processing.

1.2.1 Registers
The following describes the registers in CPO.

Table 1-2. CPO Registers

Register Number Register Name Function Write
0 Index Used in memory management (TLB) O
1 Random Used in memory management (TLB) -
2 EntryLoO Used in memory management (TLB) O
3 EntryLo1 Used in memory management (TLB) O
4 Context Used in exception processing ©)
5 PageMask Used in memory management (TLB) O
6 Wired Used in memory management (TLB) O
8 BadVAddr Used in exception processing -
9 Count Used in exception processing ©)
10 EntryHi Used in memory management (TLB) (@)
11 Comparison Used in exception processing O
12 Status Used in exception processing and for self-diagnosis (@)
13 Cause Used in exception processing A
14 EPC Used in exception processing O
15 PRId Used in memory management -
16 Config Used in memory management A
17 LLAddr Used in memory management ©)
18 WatchLo Used in exception processing (debugging) @)

(reserved in Vr5000 Series)
19 WatchHi Used in exception processing (debugging) @)
(reserved in VR5000 Series)
20 XContext Used in exception processing
21 FrameMask Used in memory management (TLB) (Vr10000 (@)
Series only)
22 Diagnostic Used for self-diagnosis (Vr10000 Series only) O
25 Performance Used in exception processing (debugging) (Vr5500, (@)
Counter VR10000 Series only)
26 Parity Error Used in exception processing O
27 Cache Error Used in exception processing -
28 TaglLo Used in memory management (CACHE instruction) @)
29 TagHi Used in memory management (CACHE instruction) ©)
30 ErrorEPC Used in exception processing O

Remark O: Possible, A: Partially possible, —: Not possible

Application Note U10710EJ5VOAN

25

VOLUME 2 Vr SERIES ARCHITECTURE

The following describes the Config register and Status register, which are important in initialization, etc., among
these CPO registers.

(1) Config register
The Config register can be read/written and displays/sets various states of the processor.

The Config register of each CPU appears as shown below.

Figure 1-7. Config Register (1/2)

(a) Vr4121, Va4181

31 30 28 27 24 23 22 21 20 19 16 15 14 13 12 11 9 8 6 5 3 2 0

| 0 ‘ EC ‘ EP ‘ AD ‘ 00 ‘M16‘ 0010 ‘ BE ‘ 10 ‘CS ‘ IC ‘ DC ‘ 000 ‘ KO |
1 3 4 1 2 1 4 1 2 1 3 3 3 3
(b) Vr4122
31 30 28 27 24 23 22 21 20 19 17 16 15 14 13 12 11 9 8 6 5 4 3 2 0
| IS ‘ EC ‘ EP ‘ AD‘ 00 ‘M16‘ 001 ‘ BP‘ BE‘ 10 ‘ CS ‘ IC ‘ DC ‘ 1B ‘ 00 ‘ KO |
1 3 4 1 2 1 3 1 1 2 1 3 3 1 2 3

(c) Vr4300 Series

31 30 28 27 24 23 16 15 14 4 3 2 0
0 EC EP 0000010 BE 11001000110 CuU KO
1 3 4 7 1 11 1 3

(d) Vr5000 Series

31 30 2827 24 23 22 21 2019 18 17 16 15 14 13 12 11 9 8 6 5 4 3 2 0

0 EC EP SB SS EW | SC| 1 BE | EM| EB | SE IC DC IB | DB| O KO
1 3 4 2 2 2 1 1 1 1 1 1 3 3 1 1 1 3
(e) Vr5432
31 30 28 27 24 23 22 21 16 15 14 3 2 0
0 EC EP EM 110110 BE 110011011110 KO
1 3 4 2 6 1 12 3
(f) VR5500
31 30 28 27 24 23 22212019 181716 15 14 3 2 0
0 EC EP EM 11 EW 10 | BE 110011011110 KO
1 3 4 2 2 2 2 1 12 3

26 Application Note U10710EJ5VOAN

* % % %

CHAPTER 1 OUTLINE

Figure 1-7. Config Register (2/2)

(g) Vr10000

31 29 28 26 25 22 21 19 18 16 15 14 13 12 9 8 7 6 5 4 3 2 0
| Ic \ DC \ 0000 \ sc \ ss ‘BE‘SK‘SB‘ EC \ PM ‘PE‘CT‘ DN \ KO |
3 3 4 3 3 1 1 1 4 > 1 1 2 3

(h) VR12000, VR12000A

31 29 28 26 25 24 23 22 21 19 18 16 15 14 13 12 9 8 7 6 5 4 3 2 0
| Ic \ DC \ 0 ‘DSD‘ oo\ sc \ ss ‘BE‘SK‘SB‘ EC \ PM ‘PE‘CT‘ DN \ KO |
3 s 1 1 2 3 3 1 1 1 4 > 1 1 2 3

The following describes the bits especially important in the Config register.

IS: Instruction streaming function setting (Vr4122 only)
EP: Transfer data pattern display (Can be set by software only in the Vr4300 Series and VrR5432)
M16: Display of MIPS16 ISA mode enable (VrR4100 Series only)
BP: Branch prediction setting (VrR4122 only)
BE: Endian display (Can be set by software only in the VrR4300 Series)
IB: Size of primary instruction cache line
0 — 16 bytes (Reserved in the VR5000 Series)
1 — 32 bytes
DB: Size of primary data cache line
0 — 16 bytes (Reserved in the VR5000 Series)
1 — 32 bytes
KO: Coherency algorithm of kseg0

In the Vr Series CPUs, areas other than those described below have fixed values or are set with hardware
after reset and become read-only from software. The following bits can be read/written by software and
become undefined immediately after reset. Initialize by software after reset.

Vr4121, VR4181: EP, AD, KO

VRr4122: IS, EP, AD, BP, IB, KO

VRr4300 Series: EP, BE, CU, KO (EP and BE are conditional)

VRr5000 Series: SE, KO

VRr5432, VR5500: EP, EM (except in VrR5432’s R43K mode), KO (EP and EM are conditional)
VRr10000 Series: KO

The EP and BE bits in the VrR4300 Series and EP and EM bits in the VrR5432 and VrR5500 can be changed
only before the store instruction is executed upon the initialization of non-cache area immediately after cold
reset. When the BE bit is changed with an MTCO instruction, the load/store instruction must be separated by
two or more instructions before or after the MTCO instruction.

Application Note U10710EJ5VOAN 27

VOLUME 2 Vr SERIES ARCHITECTURE

(2) Status register
Status register can be read/written and holds information such as the operating mode, interrupt enable, and
the processor self-diagnostic status.
The following shows the Status register of each CPU.

Figure 1-8. Status Register

(a) Vr4100 Series

31 29 28 27 26 25 24 16 15 8 7 6 5 4 3 2 1 0
000 CUO| 00 RE DS IM(7:0) KX | SX|UX| KSU [ERLI|EXL| IE
3 1 2 1 9 8 1 1 1 2 1 1 1

(b) Vr4300 Series
31 28 27 26 25 24 16 15 7 6 5 4 3 2 1 0
CU(3:0) RP |FR | RE DS IM(7:0) KX | SX|UX| KSU [ERLI|EXL| IE
4 1 1 1 9 8 1 1 1 2 1 1 1

(c) Vr5000 Series
31 30 28 27 26 25 24 16 15 7 6 5 4 3 2 1 0
XX CuU(2:0) 0 |FR|RE DS IM(7:0) KX | SX|UX| KSU [ERLIEXL| IE
1 3 1 1 1 9 8 1 1 1 2 1 1 1

(d) Vr5432
31 28 27 26 25 24 16 15 7 6 5 4 3 2 1 0
CU(3:0) 0 |FR| O DS IM(7:0) KX | SX|UX| KSU [ERLIEXL| IE
4 1 1 1 9 8 1 1 1 2 1 1 1
(e) Vr5500

31 30 28 27 26 25 24 16 15 7 6 5 4 3 2 1 0
XX CuU(2:0) 0 |FR| O DS IM(7:0) KX | SX|UX| KSU [ERLIEXL| IE
1 3 1 1 1 9 8 1 1 1 2 1 1 1

(f) VR10000 Series
31 30 28 27 26 25 24 16 15 7 6 5 4 3 2 1 0
XX CuU(2:0) RP |FR |RE DS IM(7:0) KX | SX|UX| KSU [ERLIEXL| IE
1 3 1 1 1 9 8 1 1 1 2 1 1 1

28

Application Note U10710EJ5VOAN

CHAPTER 1 OUTLINE

The following describes the bits in the staus register.

XX:

CuU:

RP:

FR:

RE:

DS:

Enables use of MIPS IV instructions in user mode (VR5000 Series, VrR5500, and VR10000 Series only)
1 — Enable
0 — Disable
Enables use of coprocessors. Controls use of four coprocessors.
1 — Enable
0 — Disable
In the kernel mode, CPO can be used regardless of the CUQ bit value.
Specifies low-power mode (Vr4300 Series and VrR10000 Series only)
1 — Low-power mode
0 — Normal
Set to 0 in the VR10000 Series.
Sets the number of floating point registers that can be used (Reserved in the Vr4100 Series)
1-532
0— 16
Inversion of endian in user mode (Except VrR5432 and Vr5500)
1 — Inverted
0 — Disabled
Since the Vr4100 Series always operates using little endian, set this bit to 0.
Self-diagnostic status area (Refer to Figure 1-9.)
Interrupt mask (enabling external, internal, and software interrupts). Controls eight interrupts.
1 — Enable
0 — Disable
Interrupts are assigned to each bit as follows.
¢ Vr4100 Series
IM7: Masks timer interrupt
IM(6:2): Masks normal interrupt (Int(4:0)). However, Int4 is not generated.
IM(1:0): Masks software interrupt
¢ VR4300 Series
IM7: Masks timer interrupt
IM(6:2): Masks external normal interrupt (Int(4:0)# and external write request)
IM(1:0): Masks software interrupt
¢ VR5000 Series
IM7: Masks timer interrupt and external normal interrupt (Int5#)
IM(6:2): Masks external normal interrupt (Int(4:0)# and external write request)
IM(1:0): Masks software interrupt
e VR5432
IM7: Masks timer interrupt
IM(6:2): Masks external normal interrupt (Int(4:0)# and external write request)
IM(1:0): Masks software interrupt
¢ VR5500
IM7: Masks timer interrupt or external normal interrupt (Int5#)
IM(6:2): Masks external normal interrupt (Int(4:0)# and external write request)
IM(1:0): Masks software interrupt

Application Note U10710EJ5VOAN 29

VOLUME 2 Vr SERIES ARCHITECTURE

30

¢ VR10000 Series
IM7: Masks timer interrupt
IM(6:2): Masks external normal interrupt (external interrupt request)
IM(1:0): Masks software interrupt
KX: Enables 64-bit addressing in the kernel mode. In the kernel mode, 64-bit operation is always enabled.
1 — 64 bits
0 — 32 bits
SX: Enables 64-bit addressing and 64-bit operation in the supervisor mode
1 — 64 bits
0 — 32 bits
UX: Enables 64-bit addressing and 64-bit operation in the user mode
1 — 64 bits
0 — 32 bits
KSU: Operating mode
10 —» User
01 — Supervisor
00 — Kernel
ERL: Error level
1 — Error
0 — Normal
EXL: Exception level
1 — Exception
0 — Normal
IE: Enables interrupt
1 — Enable
0 — Disable

The details of the DS (self-diagnostic status) area are shown below. All bits except the TS bit can be
read/written.

Application Note U10710EJ5VOAN

CHAPTER 1 OUTLINE

Figure 1-9. Self-Diagnostic Status (DS) Area

(a) Vr4121, VR4181

24 23 22 21 20 19 18 17 16

0 0 BEV TS SR 0 CH CE DE

1 1 1 1 1 1 1 1 1

(b) Vr4122

24 23 22 21 20 19 18 17 16

0 0 BEV 0 SR 0 CH CE DE

1 1 1 1 1 1 1 1 1
(c) Vr4300 Series

24 23 22 21 20 19 18 17 16

ITS 0 BEV TS SR 0 CH CE DE

1 1 1 1 1 1 1 1 1
(d) Vr5000 Series

24 23 22 21 20 19 18 17 16

0 0 BEV 0 SR 0 0 CE DE

1 1 1 1 1 1 1 1 1
(e) Vr5432, Vr5500

24 23 22 21 20 19 18 17 16

DME 0 BEV TS SR 0 CH CE DE

1 1 1 1 1 1 1 1 1

(f) Vr10000

24 23 22 21 20 19 18 17 16

0 0 BEV TS SR NMI CH CE DE

1 1 1 1 1 1 1 1 1

(g) Vr12000, VR12000A
24 23 22 21 20 19 18 17 16
DSD 0 BEV TS SR NMI CH CE DE

1

1

1

Application Note U10710EJ5VOAN

31

VOLUME 2 Vr SERIES ARCHITECTURE

32

The following describes the bits especially important in the DS area.

BEV:

TS:

SR:

CH:

CE:

DE:

Specifies the base address of the TLB refill exception vector and general-purpose exception vector
0 — Normal
1 — Boot strap
Occurrence of TLB shut down
0 — Does not occur
1 — Occurs
Occurrence of soft reset exception or NMI exception
1 — Occurs
0 — Does not occur
¢ Vr4100 Series, Vr4300 Series, VR5000 Series, Vr5432, and VR5500
Condition bit of the CP0O
1 — True
0 — False
¢ VR10000 Series
Hit of Hit_Invalidate or Hit_Writeback_Invalidate operation for secondary cache processed last
1 — Hit (tag match, valid status)
0 — Miss
Cache check bit set/change (VrR5000 Series only)
1 — Uses ECC register contents
Exception occurrence due to cache parity error or ECC error (VR5000 Series and VrR10000 Series only)
1 — Disable
0 — Enable

Application Note U10710EJ5VOAN

CHAPTER 1 OUTLINE

1.2.2 Memory management

(1) TLB

Figure 1-10 shows the virtual memory address space for a VR Series processor in 32-bit kernel mode

operation.

Figure 1-10. Virtual Memory Address Space

0xFFFF FFFF
0.5 GB with
TLB mapping kseg3
O0xE000 0000
0XxDFFF FFFF
0.5 GB with
TLB mapping ksseg
0xCO000 0000
OxBFFF FFFF [05 GB without
TLB mapping kseg1
0XA000 0000 Non-cacheable
0x9FFF FFFF
0.5 GB without
TLB mapping kseg0
0x8000 0000
0x7FFF FFFF
2 GB with
TLB mapping kuseg
0x0000 0000

Each segment is described below.

kuseg:
ksegO:

kseg1:

ksseg:
kseg3:

kuseg is accessed via the TLB.

ksegO is accessed without using the TLB. Instead, the address that is the virtual address minus
0x8000 0000 is selected as the physical address. Cache usage and coherency are controlled by the
KO area in the Config register.

kseg1 is accessed without using the TLB. Instead, the address that is the virtual address minus
0xA000 0000 is selected as the physical address.
cache. The physical memory (or the memory mapped I/O device register) is directly accessed.
ksseg is accessed via the TLB.

kseg3 is accessed via the TLB.

This space is also accessed without using a

The virtual address in the memory area that is accessed via the TLB is expanded to separate physical
addresses according to the contents of the ASID area. When accessing this area, set the TLB first. A TLB
exception will be generated if this area is accessed without setting the TLB. In virtual address space using
the TLB, cache usage and coherency are controlled by setting the C bit of TLB entries.

Figure 1-11 illustrates how the memory area that is accessed without using the TLB is translated to physical

addresses.

Application Note U10710EJ5VOAN 33

VOLUME 2 Vr SERIES ARCHITECTURE

Figure 1-11. Mapping of Virtual Address and Physical Address

kseg3

ksseg

kseg1 TLB mapping — 0x1FFF FFFF

kseg0 N

kuseg TLB mapping

Virtual address

0.5 GB with
TLB mapping Example of memory
on an actual unit

0.5 GB with
TLB mapping

0.5 GB without

Non-cacheable

ROM
0.5 GB without

TLB mapping . 0x1FCO0 0000
Physical address

2 GB with

0x0 1FFF FFFF
RAM

0x0 0000 0000

34

)

In the figure above, the ROM area on the actual unit is set from “Ox1FCO 0000”. This is because the reset
exception vector is set from “OxBFCO0 0000” so that this area is to be specified for the ROM area.

In addition, because the exception vectors for general use are set from “0x8000 0100”, memory must be
allocated to addresses from the physical address “0x0000 0000”. Normally, this area is set as RAM area.

Cache

The cache of the VrR4100 Series and Vr4300 Series adopts the direct mapping method. On the other hand,
the primary cache of the VR5000 Series, VR5432, VR5500, and VR10000 Series and the secondary cache of
the VR10000 Series adopt a 2-way set associative method.

Figure 1-12 shows the memory organization of the Vr Series. In the logical memory hierarchy, the cache is
located between the CPU and main memory, so that the access to the memory is speeded up from the user
side.

As shown in Figure 1-12, the lower portions of the memory organization have greater capacity and longer
access times than the upper portions.

Application Note U10710EJ5VOAN

CHAPTER 1 OUTLINE

Figure 1-12. Memory Hierarchy

Vr Series CPU

Register Register Register
Instruction
cache Data cache

Primary cache

Cache
Y
Secondary cache Access time Storage capacity
is shorter is larger
A
Main memory Memory
Disk, CD-ROM, tape, etc. Peripheral
device
Y

The Vr Series is equipped with the following caches and controllers.

Table 1-3. Difference in Cache Depending on Processor

Processor Primary Instruction Cache | Primary Data Cache | Secondary Cache Controller
Vr4121 16 KB 8 KB X
Vr4122 32 KB 16 KB X
Vr4181 4 KB 4 KB X
VR4300 Series 16 KB 8 KB X
VR5000 Series 32 KB 32 KB (@)
Vr5432, VrR5500 | 32 KB 32 KB X
Vr10000 Series | 32 KB 32 KB (@)

Remark O: Available, x: Not available

Application Note U10710EJ5VOAN

VOLUME 2 Vr SERIES ARCHITECTURE

1.2.3 Exceptions

When an exception is generated, the ordinary instruction stops execution. The processor exits the current mode
and enters the kernel mode. The processor disables interrupts and hands the execution to the exception handler
(the exception routine processed by software and located in the specific address). Save the processor states such
as the contents of the program counter, current operating mode (user or supervisor), status, and interrupt enable in
the handler. These states can be restored after processing the exception.

When an exception is generated, the CPU loads the address to resume the execution after processing the
exception to the EPC register. Normally, the address of the instruction that has generated the exception is loaded to
the EPC register as the resume address. However, if the instruction that has generated the exception is being
executed in the branching delay slot, the address of the branch instruction immediately before the branching delay
slot is loaded to the EPC register.

For a detailed description of the processing method for each exception, refer to CHAPTER 5 EXCEPTIONS.

Figure 1-13. Flow of Exception Processing

Main routine
Exception handler

Exception cause --------- - ; Resolves the exception
cause in the exception handler

ERET

1.2.4 Hazards
In Vr Series products other than the VR10000 Series, when executing the CP0O (CP1) instruction, unlike the CPU
instruction, the pipeline is not interlocked. Therefore, the location of instructions must be managed when creating a
program.
For the detailed description of CP0O hazards, refer to VOLUME 3 1.2 Instruction Hazards.
* In the VR10000 Series, almost all the hazards related to the pipeline are detected. It is therefore not necessary to
manage instruction allocation.

36 Application Note U10710EJ5VOAN

CHAPTER 1 OUTLINE

1.3 FPU

The floating point unit (FPU) of the Vr Series operates as a coprocessor and expands the CPU instruction set to
execute the floating point. The FPU complies with ANSI IEEE Standard 754-1985 “IEEE Binary Floating Point
Arithmetic Specifications”.

An FPU is not provided in the VrR4100 Series.

1.3.1 Instructions
All the FPU instructions are 32 bits in length and allocated to word boundaries. FPU instructions are categorized
as follows.

* Load/store/transfer instructions
Load/store/transfer instructions perform data transfer between the general-purpose registers of FPU and the
CPU or memory.
e Conversion instructions
Conversion instructions perform data conversion.
¢ Arithmetic instructions
Arithmetic instructions execute operations for floating point values in the FPU register.
e Comparison instructions
Comparison instructions perform comparison in the FPU register and set the result to the C/CC bit of FCR31.
* FPU conditional branch instructions
FPU conditional branch instructions execute a branch to a specified target if the indicated coprocessor
condition is true.

1.3.2 Registers
There are three methods to use the FPU general-purpose registers.

(1) The thirty-two general-purpose registers are 32 bits in length if the FR bit of the CP0 Status register is 0 and
64 bits in length if it is 1. The CPU accesses FGR with load/store/transfer instructions.

(2) If the FR bit of the Status register is 0, sixteen 64-bit registers (FPR) hold floating point data of single or
double precision. Each FPR register corresponds to FGR of the adjacent number as shown in Figure 1-14.

(3) If the FR bit of the Status register is 1, thirty-two 64-bit registers (FPR) hold floating point data of single or
double precision. Each FPR register corresponds to FGR as shown in Figure 1-14.

Application Note U10710EJ5VOAN 37

VOLUME 2 Vr SERIES ARCHITECTURE

Figure 1-14. FPU Registers

(a) FGR and FPR

(i) When FPR bit=0 (ii) When FPR bit =1
Floating point register Floating point general- Floating point register Floating point general-
(FPR) purpose register (FGR) (FPR) purpose register (FGR)
31 0 63
(Lower) FGRO FPRO FGRO
FPRO
(Higher) FGR1 FPR1 FGR1
(Lower) FGR2 FPR2 FGR2
FPR2
(Higher) FGR3 FPR3 FGR3
(Lower) FGR28 FPR28 FGR28
FPR28
(Higher) FGR29 FPR29 FGR29
(Lower) FGR30 FPR30 FGR30
FPR30
(Higher) FGR31 FPR31 FGR31
(b) FCR
(i) Control/Status register (ii) Implementation/Revision register
(FCR31) (FCRO)
31 0 31 0

The following describes the Control/Status register, which is especially important among these registers.

Application Note U10710EJ5VOAN

CHAPTER 1 OUTLINE

(1) Control/Status register (FCR31)

The Control/Status register (FCR31) can be read/written, and holds the control and status data.

FCR31

controls the rounding mode and enables the generation of floating point exceptions. It shows the information
of the exceptions that are generated in the instruction executed last and exceptions that have not become an
exception due to masking and have been accumulated instead. Figures 1-15 and 1-16 show the configuration

of FCR31.
Figure 1-15. FCR31
(a) Vr4300 Series
31 25 24 23 22 18 17 12 11 7 6 2 1
Cause Enable Flag
0 FS| C 0 EVZOU. VZ O U.I VZ O U.I RAM
7 1 1 5 6 5 5 2
(b) Vr5000 Series, Vr5432, VrR5500, and Vr10000 Series
31 25 24 23 22 18 17 12 11 7 6 2 1
. Cause Enable Flag
Ccer:1) FS cco 0 EVZOU. VZ O U.I VZ O U.I RAM
7 1 1 5 6 5 5 2
Figure 1-16. Cause/Enable/Flag Bit of FCR31
Bit 17 16 15 14 13 12
E \Y z o u | Cause bit
Bit 11 10 9 8 7
Vv z o u | Enable bit
Bit 6 5 4 3 2
\ 4 (0] U | Flag bit
lllegal operation
Underflow
Overflow
Zero division
Invalid operation

Undefined operation

Application Note U10710EJ5VOAN

39

VOLUME 2 Vr SERIES ARCHITECTURE

The following describes the bits in FCR31.

FS bit: Bit to enable flushing of values that cannot be normalized
C/CC bit: The result of the floating point comparison instruction is stored. When the result of the
comparison is true, this bit is set to 1. When the result is false, it is cleared to 0. Bit C/CC is not
affected by instructions other than the compare instruction and CTC1 instruction.
Cause bit: Displays the status of the floating point arithmetic executed last.
Enable bit: Enables the generation of floating point exceptions for each cause (V, Z, O, U, and I).
Flag bit: Accumulates the result of floating point arithmetic after reset.
RM bit: Rounding mode control bit. For details, refer to Table 1-4.
Table 1-4. Rounding Mode Control Bit
RM Bit Mnemonic Description
Bit 1 Bit 0
0 0 RN Rounds the result to the closest expressible value. If the result is between two
expressible values, the result is rounded to the value whose lowest bit is 0.
0 1 RZ Rounds the result towards 0. The absolute value is the closest value in the
range not exceeding the accurate result of the infinite precision.
1 0 RP Rounds the result towards +e. The value becomes the actual result or more.
1 1 RM Rounds the result towards —-. The value becomes the actual result or less.

40

Application Note U10710EJ5VOAN

CHAPTER 2 PIPELINE

2.1 Pipeline Stage
The following pipeline stages are provided in the VR Series.

¢ Instruction fetch (IF, IC, etc.)

e Instruction decode (ID, IT, etc.)

¢ Branch prediction (BR) (VrR5500 only)

e Instruction queuing (1Q) (Vr5500 only)

e Instruction issuance (IS) (VrR5500 and VrR10000 Series only)
¢ Register renaming (RN) (Vr5500 only)

¢ Reservation stationing (RS) (Vr5500 only)
* Register fetch (RF, etc.)

¢ Execution (EX, etc.)

e Data fetch (DC, DF etc.)

¢ Data align (AL) (Vr5500 only)

o Writeback (WB, etc.)

e Commit (CoR, CoM) (VR5500 only)

The number of pipeline stages is as follows depending on the products and operation mode.

Table 2-1. Number of Pipeline Stages in Vr Series

Number of Stages Processor
5 Vr4121 (MIPS Il instruction mode), Vr4122 (MIPS Ill instruction mode),
Vr4181, Vr4300 Series, VR5000 Series, Vr5432
6 Vr4121 (MIPS16 instruction mode), Vr4122 (MIPS16 instruction mode)
7 Vr10000 Series
81010 Vr5500

When the processing of one instruction in one pipeline stage is complete, the next instruction enters the stage. If
pipeline is full, it means the instructions equalling the number of pipeline stages are being executed simultaneously.
The following shows the instruction status in each type of pipeline if the pipeline is full.

Application Note U10710EJ5VOAN 41

VOLUME 2 Vr SERIES ARCHITECTURE

Figure 2-1. Operation of Single-Way Pipeline (5 Stages)

‘ PCycle ‘

(5 stages)

| bC WB

RF | Ex DC

WB

G EX

DC

| F RF

EX

IF

RF

Current
CPU
cycle

Figure 2-2. Operation of 2-Way Superscalar Pipeline (5 Stages)

‘ PCycle ‘ (5 stages x 2 ways)
RF | Ex | bC WB
Ic
RFE | Ex | bc WB
RF | EX DC ws |
Ic
RF | EX DC we |
RF EX pc | ws
Ic
RF EX pc | ws
RF EX DC wB |
Ic
RF EX DC wB |
RF EX oc | ws |
Ic
RF EX oc | ws |
Current
CPU
cycle

42

Application Note U10710EJ5VOAN

CHAPTER 2 PIPELINE

Figure 2-3. Operation of 4-Way Superscalar Pipeline (5 Stages)

(5 stages x 4 ways)

IS | EX WB
IS | EX WB
IF ID

IS | EX WB

IS | EX WB
IS EX wB |
IS EX wB |

IF ID

IS EX wB |
IS EX wB |

Current

CPU

cycle

Application Note U10710EJ5VOAN

VOLUME 2 Vr SERIES ARCHITECTURE

2.2 Interlock

A pipeline’s flow may be stopped upon a cache miss, a cache status change, the occurrence of an exception, or
detection of data dependencies. Among these, conditions that are processed by hardware such as cache misses are
called interlocks. On the other hand, conditions that must be processed by software are called exceptions.
Interlocks and exceptions are collectively called faults, as shown in Figure 2-4.

The VR4100 Series and VR5000 Series have two types of interlocks: one in which troubles one solved simply by
stopping the pipeline called stall, and one in which a part of pipeline is advanced and the rest delayed, called slip.
The Vr4300 Series and Vr5432 only have a stall.

* In the VR5500 and VR10000 Series, the pipeline flow is not interrupted by an interlock since out-of-order execution
is used. For details, refer to VR10000 Series User’s Manual.

Exceptions and interlock conditions are checked for all valid instructions during each cycle.

Figure 2-4. Relationship Betweem Interlocks, Exceptions, and Faults

Fault

Software Hardware

Exception Interlock

| Abort | | Stall | | Slip

44 Application Note U10710EJ5VOAN

CHAPTER 2 PIPELINE

Figure 2-5. State of Pipeline During Interlock (Stall)

(a) Single-way pipeline

IC RF EX DC WwB

EEEEE

(b) 2-way superscalar pipeline

IC RF EX DC WB

=) oﬂ

PR

Instruction

Figure 2-6. State of Pipeline During Interlock (Slip)

(a) Single-way pipeline

IC RF EX DC WwB

-
EEERERE
L]

(b) 2-way superscalar pipeline

IC RF EX DC WB

)Instruction))

Instruction

—

P)=) | B~
=)=) =)~ =

Application Note U10710EJ5VOAN 45

VOLUME 2 Vr SERIES ARCHITECTURE

2.3 Delay

2.3.1 Branching delay
For the sake of pipeline optimization, a one-cycle branching delay occurs in Vr Series processors. However, in
* processors that incorporate a branch prediction unit, this delay may not occur. For details of the branch prediction
unit, refer to the user’'s manual of each processor.

The virtual address of the branching target that is generated at the EX stage of a jump/branch instruction cannot
be used until the instruction fetch stage after the delay.

Figure 2-7. Branching Delay

(a) Single-way pipeline
Jumpiranch| 1Ic [RF | Ex | bc | ws |
1 \\ Re [ex [o [owe |} gEene?
Target [c] rRR | ex | Dc | wB |
|
Branching delay
(b) 2-way superscalar pipeline
Jump/branch B RFE | Ex | bc | ws |
RF\| ex | bc | ws |
Ic RF ‘ EX ‘ bC ‘ wB ‘ 7Branching
RF | Ex | bc | ws | y delayslot
\ Y
RFE | ex | oc | ws |
Target IC
RFE | ex | oc | ws |
<—>‘
Branching delay

When using an instruction for which a branching delay occurs in the assembler, one delay slot is required. In such
cases, note that the instruction within the delay slot is executed while the branching target instruction is being fetched
from the memory. Instructions that can be completed during that time are executed normally even when they are
coded within a delay slot. In the case of branch instructions, the operation differs depending on the instruction for
which a branching delay has not been established. For branch likely instructions (such as BNEL), the instructions in
the delay slots become invalid if the branch conditions are not established. For other branch instructions, the
instructions in the delay slots are unconditionally executed.

46 Application Note U10710EJ5VOAN

CHAPTER 2 PIPELINE

2.3.2 Loading delay
For the sake of pipeline optimization, a one-cycle loading delay occurs in the Vr Series processors.

For load instructions, data loading is completed when the data fetch stage is ended, but the data itself cannot be
used until the EX stage following the delay.

Figure 2-8. Loading Delay

(a) Single-way pipeline
load| i€ | RF | Ex [bc | ws |
e | A | Ex \ e | We | | oy
Instruction | ic | rRF [ex | bc | ws |
using target ‘
Loading delay
(b) 2-way superscalar pipeline
Load | RFE | ex [oc | ws |
RF | ex | bc\| ws |
e [[oo [ws | { o
RF | ex [\ bc | ws |
\
Instruction RF | EX | DC ‘ WB ‘
using target IC
RFE | Ex | bc | ws |
>
Loading delay

If an instruction using the data loaded during a loading delay is allocated, the CPU detects this and stalls the
pipeline until data loading is complete. There is no need to be aware of loading delays that occur in the assembler
because they are not treated as errors. However, from the viewpoint of performance enhancement, it is
recommended that instructions be scheduled taking loading delay in consideration.

Application Note U10710EJ5VOAN 47

VOLUME 2 Vr SERIES ARCHITECTURE

2.4 Bypassing

Data and conditions generated at the EX, DC, and WB stages of the pipeline are able to be used at the EX stage
of the next instruction via a bypass data path.

If the pipeline is bypassed, it is not necessary to wait for the data and conditions to be written to a register file
when the WB stage is ended, so the instruction of the EX stage can be continued.

For example, the following assembler program is created.

lui $1, 0x8000
ori $1, s$1, 0x0000

Writing to register 1 in the first instruction is completed normally at the WB stage. If the pipeline cannot be
bypassed, the RF stage of the second instruction must wait for the end of the WB stage of the first instruction, and
smooth pipeline operation cannot be performed. In the actual Vr Series, however, the pipeline can be bypassed, and
the data in register 1 can be used in the EX stage of the second instruction when the EX stage is ended.

Figure 2-9. Example of Bypassing

(a) Single-way pipeline

| ic | rRF [ex | bc | ws | LUl $1, 0x8000

\

| ic | rRF [Ex | bc | ws | ORI $1,81,0x0000

(b) 2-way superscalar pipeline

- RF [ex | oc | ws | LUl $1, 0x8000
RFE | ex | bc | ws |
\
B RFE [Ex | bc | ws | oml $1,81,0x0000
RFE | Ex | bc | ws |

* For bypassing in the VR10000 Series, refer to VR10000 Series User’s Manual.

48 Application Note U10710EJ5VOAN

CHAPTER 3 CACHE

3.1 Primary Cache
The primary cache in Vr Series products has the following states.

e Invalid
The cache line does not contain valid information.
* Dirty exclusive
The cache line contains valid information. Information in the line differs from the main memory.
* Clean Exclusive
The cache line contains valid information. Information in the line is the same as the main memory.
* Shared
The cache line contains valid information. The same information is contained in other processors.

Dirty Exclusive and Clean Exclusive are also known jointly as “valid state”.

The primary cache is incorporated in the processor and its contents can therefore not be manipulated externally.

The primary cache of the Vr Series refers to the cache with a part of the virtual address as the index. The index is
determined by the cache size and the cache line size. When the cachable memory is accessed, the index part of the
memory address is referred to, and the cache line is determined. The V bit is referred to for the validity of the cache
line. If the cache line is valid, a physical address is created from the higher virtual address by TLB conversion, and
compared to the tag part in the cache line. If the tag and the physical address match, it becomes a cache hit.

Figure 3-1. Referencing Primary Cache

Virtual address
‘ Index ‘ |
%\Offset
V| Tag Data
Virtual
TLB | I -
]
Physical
Physical Cache memory
Match check | P Data
Match
AND Hit
Valid

Application Note U10710EJ5VOAN 49

*

VOLUME 2 Vr SERIES ARCHITECTURE

The following shows the capacity, line (block) size, and bits used in the index of the primary cache in the Vr

Series.
Table 3-1. Primary Cache Size, Line Size, and Index
Processor Cache Cache Size Line Size Index
Vr4121 Instruction cache 16 KB 4 words vAddriz.4
Data cache 8 KB 4 words vAddriz.4
Vr4122 Instruction cache 32 KB 4 words or 8 words vAddria.4
Data cache 16 KB 4 words vAddriz.4
Vr4181 Instruction cache 4 KB 4 words vAddri1.4
Data cache 4 KB 4 words vAddri1.4
VR4300 Series Instruction cache 16 KB 8 words vAddria.s
Data cache 8 KB 4 words vAddriz.4
VR5000 Series, Instruction cache 32 KB 8 words vAddria.s
Vr5432, Vr5500 Data cache 32 KB 8 words vAddris.s
VR1000 Series Instruction cache 32 KB 16 words vAddriz.e
Data cache 32 KB 8 words vAddria.s

The format of the primary cache of each processor is shown below. For the primary cache of the VR10000 Series,
refer to VR10000 Series User’s Manual.

50

Application Note U10710EJ5VOAN

CHAPTER 3 CACHE

3.1.1 VR4100 Series
The format of the VrR4100 Series on-chip cache line is described below.

Figure 3-2. Vr4100 Series On-Chip Cache Line

(a) Instruction cache line

22 21
\% PTag
1 22
31
Data
Data
Data
Data
32
(b) Data cache line
24 23 22 21
W \' D PTag
1 1 1 22
63
Data
Data
64

Each bit of the cache line is described below.

V: Valid bit
W: Writeback bit
D: Dirty bit

PTag: Physical tag (bits 31 to 10 of the physical address)
Data: Cache data

Application Note U10710EJ5VOAN

51

VOLUME 2 Vr SERIES ARCHITECTURE

3.1.2 Vr4300 Series
The format of the Vr4300 Series on-chip cache line is described below.

Figure 3-3. Vr4300 Series On-Chip Cache Line

(a) Instruction cache line
20 19
\% PTag
1 20
63
Data
Data
Data
Data
64
(b) Data cache line
21 20 19
\Y D PTag
1 1 20
63
Data
Data
64

Each bit of the cache line is described below.

V: Valid bit

D: Dirty bit

PTag: Physical tag (bits 31 to 12 of the physical address)
Data: Cache data

52 Application Note U10710EJ5VOAN

CHAPTER 3 CACHE

3.1.3 VR5000 Series
The format of the VR5000 Series on-chip cache line is described below.

Figure 3-4. Vr5000 Series Primary Cache Line

(a) Instruction cache line

31 30 29 28 27 24 23

P F | PState | ICDEC PTag
1 1 2 4 24
71 64 63

DataP Data

DataP Data

DataP Data

DataP Data

8 64

(b) Data cache line

27 26 25 24 23

P F | PState PTag
1 1 2 24
71 64 63
DataP Data
DataP Data
DataP Data
DataP Data
8 64

Each bit of the cache line is described below.

PState:
ICDEC:
PTag:
DataP:
Data:

Even parity of PTag

Fill bit

State of primary cache

Instruction cache predecode bit

Physical tag (bits 31 to 12 of the physical address)
Even parity of Data

Cache data

Application Note U10710EJ5VOAN

53

VOLUME 2 Vr SERIES ARCHITECTURE

* 3.1.4 Vr5432 and Vr5500
The format of the Vr5432 and VrR5500 on-chip cache lines is described below.

Figure 3-5. Vr5432 and Vr5500 On-Chip Cache Lines

(a) Instruction cache line

27 4 3 1
ITag L \" U
24 1 1 1
71 64 63
DataP Data
DataP Data
DataP Data
DataP Data
8 64
(b) Data cache line
27 4 3 1
DTag L Vv D
24 1 1 1
71 64 63
DataP Data
DataP Data
DataP Data
DataP Data
8 64

Each bit of the cache line is described below.

ITag, DTag: Physical tag (bits 31 to 12 of the physical address)

L:

o c<

DataP:
Data:

54

Lock bit

Valid bit

Unused bit

Dirty bit

Even parity of ITag, DTag
Even parity of Data
Cache data

Application Note U10710EJ5VOAN

CHAPTER 3 CACHE

3.2 Secondary Cache

Since the VR5000 Series and the VrR10000 Series have an on-chip secondary cache controller, a secondary cache
can be used simply by connecting SRAM. The secondary cache can be accessed from both the processor and the

system interface.

The secondary cache has the following two states.

e Invalid

The cache line does not contain valid information.

¢ Dirty Exclusive

The cache line contains valid information. Information in the line differs from the main memory.

e Clean Exclusive

The cache line contains valid information. Information in the line is the same as the main memory.

e Shared

The cache line contains valid information. The same information is contained in other processors.

3.2.1 VR5000 Series

The format of the VR5000 Series secondary cache line is described below.

Figure 3-6. Vr5000 Series Secondary Cache Line

37 35 34 32 31
Vidx SState STag
3 3 32
71 64 63
DataP Data
DataP Data
DataP Data
DataP Data
8 64

Each bit of the cache line is described below.

Vidx: Primary cache index (bits 14 to 12 of the virtual address)
SState: State of secondary cache

STag: Secondary cache tag

DataP: Parity for Data

Data: Cache data

Application Note U10710EJ5VOAN

55

VOLUME 2 Vr SERIES ARCHITECTURE

* 3.2.2 VRr10000 Series
The format of the VR10000 Series secondary cache line is shown below.

Figure 3-7. VrR10000 Series Secondary Cache Line

32 26 25
ECC Tag
7 26
137 136 128 127

P ECC Data
P ECC Data
P ECC Data
P ECC Data
1 9 128

Each bit of the cache line is described below.

ECC: ECC for Tag and Data
Tag: Secondary cache tag
P: Parity bit

Data: Cache data

56 Application Note U10710EJ5VOAN

CHAPTER 3 CACHE

3.3 Cache Instructions

Cache instructions (CACHE) are assembler instructions for VR Series processors. They are used to control
caches and cache lines. For the VR Series processors, cache instructions have the following format.

cache op, offset (base)

Each cache instruction is added to the contents of the general-purpose register base with a 16-bit offset sign
extension to create a virtual address. The 5-bit suboperation code op specifies the cache operation corresponding to
the specified cache block.

If the Status register’'s CUO has been cleared in user mode or supervisor mode, the CPO is disabled, and therefore
a coprocessor disabled exception will occur if this instruction is executed. Instruction execution is undefined if an
instruction is combined with a cache operation that is not listed in Table 3-2 or Table 3-3. Instruction execution to
secondary cache is undefined if there is no secondary cache. Execution of this instruction is also undefined if it is for
an uncached area.

The lower two bits (op1..0) of the suboperation code indicate the operation’s target cache.

Table 3-2. Cache Instruction’s Suboperation Code op1..0

op1.0 Mnemonic Cache Type
0 | Primary instruction cache
1 D Primary data cache
3 S Secondary cache

The higher three bits (op4.2) of the suboperation code specify the cache operation contents.

Table 3-3. Cache Instruction’s Suboperation Code opa.2 (1/3)

(a) Vr4100 Series, VrR4300 Series

0op4.2 Cache Cache Operation

0 | Index_Invalidate

Index_Writeback_Invalidate

Index_Load_Tag

Index_Store_Tag

Create_Dirty_Exclusive

o|/Y|o|o|®

Hit_Invalidate

a |~ | |N

Fill

D Hit_Writeback_Invalidate
D Hit_Writeback

Application Note U10710EJ5VOAN 57

VOLUME 2 Vr SERIES ARCHITECTURE

58

Table 3-3. Cache Instruction’s Suboperation Code opas..2 (2/3)

(b) Vr5000 Series

op4.2

Cache

Cache Operation

Index_Invalidate

D

Index_Writeback_Invalidate

S

Flash

—_

I,D, S

Index_Load_Tag

I,D, S

Index_Store_Tag

Create_Dirty_Exclusive

I,D

Hit_Invalidate

a |~ | [N

Fill

Hit_Writeback_Invalidate

Page_Invalidate

Hit_Writeback

(c)

Vr5432

0p4..2

Cache

Cache Operation

Index_Invalidate

Index_Writeback_Invalidate

—_

Index_Load_Tag

Index_Store_Tag

Create_Dirty_Exclusive

Hit_Invalidate

Fill

Hit_Writeback

N[O |0~]Ww (N

Fetch_and_Lock

(d)

Vr5500

opa.2

Cache

Cache Operation

Index_Invalidate

Index_Writeback_Invalidate

—_

Index_Load_Tag

Index_Store_Tag

Create_Dirty

D
D
I,D

D
D

Hit_Invalidate

(621 I~ BNV I I\

Fill

Hit_Writeback_Invalidate

Hit_Writeback

D
D
I,D

Fetch_and_Lock

Application Note U10710EJ5VOAN

CHAPTER 3 CACHE

Table 3-3. Cache Instruction’s Suboperation Code opas..2 (3/3)

(e) Vr10000 Series

op4.2 Cache Cache Operation
0 | Index_Invalidate
D, S Index_Writeback_Invalidate
1 I,D, S Index_Load_Tag
2 I,D, S Index_Store_Tag
4 I,D,S Hit_Invalidate
5 | Cache_Barrier
D, S Hit_Writeback_Invalidate
6 I,D, S Index_Load_Data
7 I,D,S Index_Store_Data

The cache operations are described below.

¢ Index operation
In this operation, an instruction is executed for the cache block that matches the index part of the address
specified by the cache instruction. The primary cache index is part of the virtual address
(vAddrcacHesize..BLocksIZE™ ™). The secondary cache index is part of the physical address
(pAddrcACHESIZE. BLOCKSIZE).
In the VR4100 Series and Vr4300 Series, specification of an address smaller than the cache block does not
have meaning.
Of the primary cache index addresses, bit 14 in the VR5000 Series or bit 0 in the VrR5432, Vr5500, and Vr10000
Series is used to determine the way of the 2-way set cache.

Note CACHESIZE and BLOCKSIZE are the number of bits required to indicate the cache size and the cache
block size. For details, refer to Table 3-1.

e Hit operation
This operation executes an instruction for a cache block that fully matches the address specified by the cache
instruction. The instruction is not executed if only the index matches.

e |nvalidate operation
This operation invalidates the specified cache block.

o Writeback operation
This operation writes back the specified cache block. If specified for a primary cache, the writeback is to the

main memory.

e Fill operation
This operation fills the specified cache block with instruction data from the main memory.

Application Note U10710EJ5VOAN 59

VOLUME 2 Vr SERIES ARCHITECTURE

Create_Dirty_Exclusive operation

This operation sets the specified address to the cache block tag, and makes the cache status Dirty. If the
address specified for the cache block is not included and if the block status is Dirty, writeback to the main
memory is performed.

Flash operation
This operation flashes the entire tag array of the secondary cache.

Page_Invalidate operation
This operation invalidates the entire secondary cache block corresponding to the specified pages.

Fetch_and_Lock operation

This operation sets the specified address to the cache block tag, and locks the cache status. If the address
specified for cache block is not included, and if the cache being used is the data cache and the block status is
Dirty, writeback to the main memory is performed.

Cache_Barrier operation
This operation spends time executing one instruction without affecting the cache contents.

Index_Data operation
This operation executes an instruction for the TagHi, TagLo, and ECC registers of the CPO.

For the detailed operations of each cache operation, refer to the CACHE instructions in the CPU instruction set in

the user’s manual of each product.

60

Application Note U10710EJ5VOAN

CHAPTER 4 TLB

In the MIPS architecture, all the accesses from a program to the memory are performed in the virtual memory.
The TLB (Translation Lookaside Buffer: High-speed translation buffer system) translates virtual addresses to physical
addresses.

VR Series processors are provided with a memory management unit (MMU) that utilizes the TLB.

The memory management system increases the CPU’s available address space by translating large virtual
memory space into physical addresses. The physical address spaces of each Vr Series product are as follows.

Table 4-1. Physical Address Space

CPU Space Size (Bytes) Address Width (Bits)
VR4100 Series 4G 32
Vr4300 Series 4G 32
VR5000 Series 64G 36
Vr5432 4G 32
VR5500 (32-bit bus) | 4G 32
VRr5500 (64-bit bus) 64G 36
VR10000 Series 1T 40

In 32-bit mode, virtual addresses are 32 bits in width, and the maximum user area is 2 GB (2* bytes). The virtual
address space is expanded according to the address space ID (ASID). Using ASID reduces the number of TLB
flushes during context switching. The ASID area is an 8-bit field and in the CPO EntryHi register. The global bit (G)
is in the CPO’s EntryLoO register and EntryLo1 register.

Application Note U10710EJ5VOAN 61

VOLUME 2 Vr SERIES ARCHITECTURE

4.1 Translation from Virtual Addresses to Physical Addresses

The first step in translating from virtual addresses to physical addresses is comparing the virtual address received
from the processor with all of the entries in the TLB. A match occurs when the Virtual Page Number (VPN) of the
virtual address is the same as the VPN area of the entry and when either of the following conditions is met.

The global bit (G) in the TLB is 1.

The ASID area of the virtual address is the same as the ASID area of the TLB entry.

Such a match is called a “TLB hit”. When no match occurs, the processor generates an exception called a TLB

refill.

When the TLB contains a matching virtual address, the higher bits of physical address are read from the TLB and
an offset is added. The offset represents the address within the page frame space. The offset portion does not pass

through the TLB and the lower bit of the virtual address is output directly.

Figure 4-1. Translation from Virtual Address to Physical Address

EntryHi register

Virtual address

ASID VPN Offset
Compare
ASID VPN
PFN
ASID VPN
Entry in which
ASID and VPN match
PFN
ASID VPN
PFN
TLB
PFN Offset

Physical address

62 Application Note U10710EJ5VOAN

CHAPTER 4 TLB

4.2 TLB Entries

VR Series processors have an on-chip TLB for translating virtual addresses into physical addresses. This on-chip
TLB uses fully associative memory and each entry is mapped into even/odd page pairs. The size of these pages can

be specified separately for each entry.
Figure 4-2 illustrates an example where each page occupies 4 KB.

Figure 4-2. TLB Translation

Virtual address

Physical address

TLB translation

Odd page
pag { 4 KB
PFN
K8 VPN2 (EntryLot) }
2 pages —_— .
(EntryHi)
4KB PFN
(EntryLo0) \
{ 4 KB
Even page

Application Note U10710EJ5VOAN

63

VOLUME 2 Vr SERIES ARCHITECTURE

4.3 TLB Entry Register

This section describes the TLB entry registers in CPO used to manipulate the TLB.

4.3.1 PageMask register

Figure 4-3. PageMask Register

(a) Vr4100 Series

31 19 18 11 10

MASK 0

13 8 11

(b) Vr4300 Series, VrR5000 Series, Vr5432, VR10000 Series

31 25 24 13 12
MASK 0
7 12 13
(c) VR5500
31 30 13 12
0 MASK 0
1 18 13

64

Each bit of the PageMask register is described below.

MASK: This is a page comparison mask.
It determines the virtual page size of the corresponding entry.

0: This is reserved.

Write a zero here. A zero will be returned when this area is read.

Application Note U10710EJ5VOAN

CHAPTER 4 TLB

The values shown in the table below can be set in the MASK area.

Table 4-2. Mask Values and Page Size

(@) Vr4100 Series

Page Size Bit
18 17 16 15 14 13 12 11
1 KB 0 0 0 0 0 0 0 0
4 KB 0 0 0 0 0 0 1 1
16 KB 0 0 0 0 1 1 1 1
64 KB 0 0 1 1 1 1 1 1
256 KB 1 1 1 1 1 1 1 1
(b) Vr4300 Series, VR5000 Series, Vr5432, VR10000 Series
Page Size Bit
24 23 22 21 20 19 18 17 16 15 14 13
4 KB 0 0 0 0 0 0 0 0 0 0 0 0
16 KB 0 0 0 0 0 0 0 0 0 0 1 1
64 KB 0 0 0 0 0 0 0 0 1 1 1 1
256 KB 0 0 0 0 0 0 1 1 1 1 1 1
1 MB 0 0 0 0 1 1 1 1 1 1 1 1
4 MB 0 0 1 1 1 1 1 1 1 1 1 1
16 MB 1 1 1 1 1 1 1 1 1 1 1 1
(c) Vr5500
Page Size Bit
30 |29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 |21 |20 |19 |18 | 17 | 16 | 15 | 14 | 13
4 KB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 KB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
64 KB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
256 KB 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
1 MB 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
4 MB 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
16 MB 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
64 MB 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
256 MB 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1GB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
65

Application Note U10710EJ5VOAN

VOLUME 2 Vr SERIES ARCHITECTURE

4.3.2 EntryHi register
The EntryHi register format in 32-birt mode is shown below.

Figure 4-4. EntryHi Register (In 32-Bit Mode)

(@) Vr4100 Series

31 11 10 8 7 0
VPN2 0 ASID
21 3 8

(b) Vr4300 Series, VR5000 Series, Vr5432, VrR5500, VR10000 Series

31 13 12 8 7 0

VPN2 0 ASID

Each bit of the EntryHi register is described below.

VPN2: This is the virtual page number divided by two (due to two-page mapping).

ASID: This is the address space ID area.
The 8-bit ASID area enables the TLB to be shared during multi-processing. The virtual addresses from
each process are able to overlap.

0: This is reserved.
Write a zero here. A zero will be returned when this area is read.

66 Application Note U10710EJ5VOAN

CHAPTER 4 TLB

4.3.3 EntryLoO/Lo1 register
The EntryLo register format in 32-bit mode is shown below.

Figure 4-5. EntryLo0O/Lo1 Register (In 32-Bit Mode)

(a) Vr4100 Series

31 28 27 6 5 3 210
PFN C D|IV|G
22 3 11 1

(b) VRA4300 Series, Vr5432

31 26 25 6 5 3210
PFN c |p|v|G
20 3 1 1 1

(c) Vr5000 Series, VrR5500

31 3029 6 5 3210
PFN ¢ |D|v|G
22 3 1 1 1

(d) VRr10000 Series

31 6 5 3210
PFN c |D|v|G
26 3 1 1 1

Each bit of the EntryLoO/Lo1 register is described below.

PFN: This is the page frame number.
It is the higher bits of the physical address.

C: This specifies the TLB’s page attribute.

D: This stands for dirty.
When the value of this bit is 1, the page is marked as “dirty”, which means it is write-enabled. Actually,
this bit functions as a “Write protect” bit that is used by the software to prevent modification of data.

V: This stands for valid.
When this bit is set to 1, it indicates that the TLB entry is valid. If this entry is hit when the V bit has not
been set, a TLB invalid exception (TLB or TLBS) occurs.

G: This stands for global.
If the global bit of the both EntryLoO and Lo1 has been set, the ASID is ignored when the TLB is
referenced.

0: This is reserved.

Write a zero here. A zero will be returned when this area is read.

Application Note U10710EJ5VOAN 67

VOLUME 2 Vr SERIES ARCHITECTURE

4.3.4 Others
In addition to the registers described so far, the following registers can be used for setting the TLB.

(1) Index register

The Index register is a 32-bit register that can be read/written. The lower 6 bits of this register are used for
the entry index. The highest bit indicates the result (success/failure) of the TLBP instruction.

This register indicates the TLB entries that are the targets of the TLBR instruction or TLBWI instruction.
Although the Index area holds 6-bit information, only the lower 5 bits are used in the Vr4100 Series and
VRr4300 Series.

Figure 4-6. Index Register

31 30 6 5 0
P 0 Index
1 25 6

68

Each bit of the Index register is described below.

P: Indicates success/failure of TLBP instruction.
0 — Success of probe instruction
1 — Failure of probe instruction
Index: Specifies the index to the TLB entries that are the targets of the TLBR instruction and TLBWI
instruction.
0: This is reserved.
Write a zero here. A zero will be returned when this area is read.

Application Note U10710EJ5VOAN

CHAPTER 4 TLB

&)

Random register

The Random register is a read-only register. The lower 6 bits of this register are used for referencing TLB
entries. Although the Random area holds 6-bit information, only the lower 5 bits are used in the Vr4100
Series and Vr4300 Series.

This register is decremented each time an instruction is executed. The available value range of this register is
as follows.

* The lower limit is indicated by the Wired register.
* The higher limit is the number of TLB entries (31 in the VrR4100 Series and Vr4300 Series, 47 in the VR5000
Series, VR5432, and Vr5500, and 63 in the VR10000 Series).

The Random register indicates the TLB entries that are the targets of the TLBWR instruction.

The Random register is set to the higher limit value upon cold reset. It is also reset to the higher limit value
when writing is performed to the Wired register.

Random entries can be updated with any TLB instruction.

Figure 4-7. Random Register

31

0 Random

26 6

Each bit of the Random register is described below.
Random: This is the TLB random index.

0: This is reserved
Write a zero here. A zero will be returned when this area is read.

Application Note U10710EJ5VOAN 69

VOLUME 2 Vr SERIES ARCHITECTURE

(3) Wired register
The Wired register can be read/written and indicates the lower limit of TLB random entries. Although the
Wired area holds 6-bit information, only the lower 5 bits are used in the VrR4100 Series and Vr4300 Series.
Wired entries cannot be updated with the TLBWR instruction, but can be updated with the TLBWI instruction.

Figure 4-8. Locations Indicated by Wired Register

TLB

Range indicated by
Random register

~—— Value of Wired register

?

Range of wired entries

!

The Wired register is cleared to 0 upon cold reset. The Random register is set to the higher limit value when
writing is performed to the Wired register.

When TLB entries are replaced, entries that are to be removed from the replacement targets are set as wired
entries. For example, TLB entries related to the area used by the kernel are set.

Figure 4-9. Wired Register

31 6 5 0

0 Wired
26 6

70

Each bit of the Wired register is described below.
Wired: This specifies the TLB wired boundary.

0: This is reserved.
Write a zero here. A zero will be returned when this area is read.

Application Note U10710EJ5VOAN

CHAPTER 4 TLB

4.4 TLB Instructions

TLB instructions are assembler instructions for the Vr Series processors that are used to control the TLB.

(1) TLBP (Translation Lookaside Buffer Probe)
The TLB number that matches the EntryHi register is loaded to the Index register. If the TLB entry does not
match, the highest bit in the Index register is set. The operation of any load/store instruction that comes
immediately after the TLBP instruction is undefined. The operation is also undefined when there is more than
one matching TLB entry.

Figure 4-10. TLBP Instruction

Retrieves entry

31
30
29

PageMask
- Loads entry number

EntryHi % :
n ———

EntryLoO

TLB

(2) TLBR (Translation Lookaside Buffer Read)
The contents of the TLB entry that is indicated by the Index register contents are written to the EntryHi,
EntryLoO, EntryLo1, and PageMask registers.

Figure 4-11. TLBR Instruction

31
30
29 Loads data
PageMask
Specifies entr
P y EntryHi
T
EntryLo1
EntryLoO
0
TLB

Application Note U10710EJ5VOAN 71

VOLUME 2 Vr SERIES ARCHITECTURE

(3) TLBWI (Translation Lookaside Buffer Write Index)
The contents of the EntryHi, EntryLoO, EntryLo1, and PageMask registers are written to the TLB entry that is
indicated by the Index register contents.

Figure 4-12. TLBWI Instruction

31
30
29 Stores data

PageMask
Specifies entry

e T

EntryHi

EntryLo1

EntryLoO

TLB

(4) TLBWR (Translation Lookaside Buffer Write Random)
The contents of the EntryHi, EntryLoO, EntryLo1, and PageMask registers are written to the TLB entry that is
indicated by the Random register contents.

Figure 4-13. TLBWR Instruction

31
30
29 Stores data

PageMask

Specifies entry

T P

EntryHi

EntryLo1

EntryLoO

TLB

72

Application Note U10710EJ5VOAN

CHAPTER 5 EXCEPTIONS

5.1 Types of Exceptions
The VR Series has the following exceptions.

* Cold reset

e Soft reset

* Address error

e TLB

e Cache error (does not occur in the Vr4300 Series)
* Bus error

* Integer overflow

e Trap

e System call

¢ Breakpoint

* Reserved instruction

e Coprocessor unusable

* Floating point arithmetic (does not occur in the VrR4100 Series)
e Watch (does not occur in the VR5000 Series)

* Interrupt

Application Note U10710EJ5VOAN

VOLUME 2 Vr SERIES ARCHITECTURE

5.2 Priority of Exceptions

When more than one exception simultaneously occurs for an instruction, only one of them is selected. The priority
of exceptions is shown in Table 5-1.

Table 5-1. Priority of Exceptions

Priority Exception Name
High Cold reset
Soft reset
NMI

Address error (Instruction fetch)
TLB refill (Instruction fetch)
TLB invalid (Instruction fetch)
Cache error (Instruction fetch)
Bus error (Instruction fetch)
System call

Breakpoint

Coprocessor unusable
Reserved instruction

Trap

Integer overflow

Floating point arithmetic
Address error (Data access)
TLB refill (Data access)

TLB invalid (Data access)
TLB modified (Data write)
Cache error (Data access)
Watch

Bus error (Data access)

Low Interrupt (except NMI)

Remark Some of the exceptions may not occur or the
priority may differ depending on the CPU. For
details, refer to the user's manual of each
product.

74 Application Note U10710EJ5VOAN

CHAPTER 5 EXCEPTIONS

5.3 Exception Vector Address

When exceptions occur in Vr Series processors, the processing branches to the addresses shown in Table 5-2.
Note that the address differs depending on the contents of the BEV bit of the Status register.

Table 5-2. Exception Vector Address

Type of Exception Vector Address (BEV = 0) Vector Address (BEV = 1)
Cold reset, soft reset, NMI BEV bit is automatically setto 1. | 0xBFCO 0000
TLB refill, EXL =0 0x8000 0000 0xBFCO0 0200
XTLB refill, EXL = 0 0x8000 0080 0xBFCO 0280
Cache error 0xA000 0100 0xBFCO0 0300
Others 0x8000 0180 0xBFCO 0380

Allocate the program of each exception processing to the address shown above using a section specification, etc.

5.4 Cautions Concerning Major Exceptions

5.4.1 Cold reset, soft reset, NMI exceptions

The cold reset, soft reset, and NMI exceptions use the same exception vector “0OxBFC0 0000”.
The following shows the registers, cache, and memory whose status is guaranteed when these exceptions occur.

Table 5-3. Status When Exception Occurs

Exception Status Register ErrorEPC CPU General- Cache Memory
SR RPMe ERL TS BEV Register Purpose Register

Cold reset 0 0 0 1 1 X X X X

Soft reset 1 (] 0 1 1 A ® X X

NMI 1 [0 1 1 A [[[]

Note VR4300 Series and VR10000 Series only.

Remarks 1. The Status register and ErrorEPC register are coprocessor 0 registers.

2. 0: A zerois set when an exception occurs.
1: A one is set when an exception occurs.
@: The status prior to exception is saved.
A: The address where exception occurred is saved.
x: Undefined

Application Note U10710EJ5VOAN

75

VOLUME 2 Vr SERIES ARCHITECTURE

5.4.2 General-purpose exceptions

In the Vr Series CPU, more than one exception shares the same vector. Of these, general-purpose exception
vectors use the address “OxBFCO0 0380 (BEV = 1)” or “0x8000 0180 (BEV = 0)".

To discriminate exceptions that utilize a general-purpose exception vector, refer to the exception code area
(ExcCode) of the coprocessor 0 Cause register, and perform processing for each exception according to the
ExcCode value.

The following shows the contents of the Cause register.

Figure 5-1. Cause Register

31 30 29 28 27 16_15 8 7 6 2 1 0
BD| 0 CE 0 IP(7:0) 0 ExcCode 0
11 2 12 8 1 5
Each bit of the Cause register is described below.
BD: Indicates whether the exception that occurred last has been executed in the branching delay slot.
1 — In the delay slot
0 — Normal
CE: Indicates the number of the coprocessor in which the coprocessor disable exception occurred. When
this exception has not occurred, this bit becomes undefined.
IP: Indicates the pending interrupt
1 — Pending

0 — No interrupt
However, for IP(1:0) only, an interrupt exception occurs when it is set to 1 by software. Interrupts are
assigned to each bit as follows.
¢ VR4100 Series
IP7: Timer interrupt
IP(6:2): Normal interrupt (Int(4:0)). However, Int4 is not generated.
IP(1:0): Software interrupt
¢ VR4300 Series
IP7: Timer interrupt
IP(6:2): External normal interrupt (Int(4:0)# and external write request)
IP(1:0): Software interrupt
¢ VR5000 Series
IP7: External normal interrupt (Int5#) and timer interrupt
IP(6:2): External normal interrupt (Int(4:0)# and external write request)
IP(1:0): Software interrupt
e VR5432
IP7: Timer interrupt
IP(6:2): External normal interrupt (Int(4:0)# and external write request)
IP(1:0): Software interrupt
e VR5500
IP7: External normal interrupt (Int5#) or timer interrupt
IP(6:2): External normal interrupt (Int(4:0)# and external write request)
IP(1:0): Software interrupt

76 Application Note U10710EJ5VOAN

CHAPTER 5 EXCEPTIONS

¢ VR10000 Series
IP7: Timer interrupt

IP(6:2): External normal interrupt (external interrupt request)

IP(1:0): Software interrupt

ExcCode: Exception code area (For details, refer to Table 5-4.)
This is reserved. Write a zero here. A zero will be returned when this area is read.

0:

Table 5-4. Exception Code Area of Cause Register

Exception Code Value | Mnemonic Explanation

0 Int Interrupt exception

1 Mod TLB change exception

2 TLBL TLB refill exception (load/instruction fetch)

3 TLBS TLB refill exception (store)

4 AdEL Address error (load/instruction fetch)

5 AdES Address error (store)

6 IBE Bus error (instruction fetch)

7 DBE Bus error (load/store data)

8 Sys System call exception

9 Bp Breakpoint exception

10 RI Reserved instruction exception

11 CpU Coprocessor unusable exception

12 Ov Operation overflow

13 Tr Trap exception

14 — Reserved

15 FPE Floating point arithmetic exception (reserved in the Vr4100 Series)
16 to 22 - Reserved

23 WATCH Watch exception (reserved in the Vr5000 Series)
24 to 31 - Reserved

Application Note U10710EJ5VOAN

77

VOLUME 2 Vr SERIES ARCHITECTURE

5.5 Exception Processing

This section briefly describes the flow of exception processing taking a general-purpose exception as an example.

5.5.1 Hardware processing
The following shows the contents set by hardware after the exception cause occurs and until the processing
moves to the exception vector.

78

M

)

©)

@

®)

Setting register
Performs setting of the register set for each exception (WatchLo/Hi registers, etc.) and the Cause register.

Checking Status register (EXL bit)
Checks the EXL bit in the Status register, and if it is 1, moves to the processing in (4) without setting the EPC
register.

Checking if exception has occurred in branching delay slot

Checks whether the exception has occurred in the branching delay slot or not.

If the exception has occurred in the branching delay slot, sets the BD bit of the Cause register, and sets the
value subtracting 4 from the address where the exception has occurred to the EPC register.

If the exception has occurred in other than the branching delay slot, resets the BD bit of the Cause register,
and sets the value of the address where the exception occurred to the EPC register.

Setting Status register (EXL bit)
Sets the EXL bit of the Status register. This enables the operation mode of the processor to move to the
kernel mode.

Checking Status register (BEV bit)

Checks the BEV bit of the Status register.

If the BEV bit is 1, the exception vector is set to 0xBFCO 0380, and processing moves to this exception vector.
If the BEV bit is 0, the exception vector is set to 0x8000 0180, and processing moves to this exception vector.

Application Note U10710EJ5VOAN

CHAPTER 5 EXCEPTIONS

Figure 5-2. General-Purpose Exception Processing by Hardware

(Start)

Setting Cause register
(ExcCode, CE)

No

EXL bit=07?

Yes

Is the No
instruction in delay
slot?

Yes

BD bit « 1 BD bit « 0
EPC « (PC —4) EPC « PC

!

A

EXL bit « 1

1 (boot strap)

BEV bit="?

0 (normal)

PC « 0x8000 0000 +180 PC « 0xBFCO0 0200 +180

To general-purpose exception
operation reference

For the details, refer to the chapter on exception processing in the user's manual of each CPU.

Application Note U10710EJ5VOAN

VOLUME 2 Vr SERIES ARCHITECTURE

5.5.2 Software processing
The following shows the processing performed by software after the processing has moved to the exception

vector.

M

)

3

@

®)

Saving CPU registers

Save the contents of the CPU registers used in the exception processing routine. Otherwise, the processing
cannot be continued when the processing is returned to the user program by the ERET instruction.
Especially, when using the JAL and BAL instructions, always save the contents of r31.

Checking Cause register
Check which exception has occurred, referring to the Cause register of CPO.

Excluding exception cause
Process the cause of the exception checked in (2) above, perform the setting so as not to interfere with the

execution of the user program.

Restoring CPU registers
Restore the contents of the CPU registers saved in (1) above.

Restoring from exception processing
Execute the ERET instruction and resume exception of the user program.

Figure 5-3. General-Purpose Exception Processing by Software

@eneral-purpose exception operation referenca

Saves CPU registers

Checks Cause register
Jumps to each routine

1 .
1 Processes by each routine
1 (excludes exception cause)

Restores CPU registers

G

As shown in Figure 5-2, if another exception occurs during the processing of an exception (with EXL of the Status

register = 1), the EPC register will not be set. If another exception occurs during the processing of an exception, the

exception processing cannot be properly ended. To enable multiple interrupts (exceptions), refer to 5.5.3 Multiple

interrupts.

80

Application Note U10710EJ5VOAN

CHAPTER 5 EXCEPTIONS

5.5.3 Multiple interrupts

In the exception processing described above, interrupts during the processing of exceptions (including interrupts)
are not supported. To enable multiple interrupts, save CPO registers (EPC register, Status register, etc.) used during
the processing of exceptions, and set the KSU, ERL, EXL, and IE bits of the Status register to interrupt enabled.

To disable multiple interrupts after once enabling them, change the Status register in the exception processing,
and then restore the contents of the register saved.

The exception processing to enable multiple interrupts is performed in the following procedure.

M

&)

3

@

®)

(6)

@

Saving CPU registers
Save the contents of the CPU registers used in the processing in (2), (3), (4), (5), (6), and (7) below to the
memory.

Saving CPO registers
Save the contents of the CPO registers and EPC register used in the processing in (3), (4), and (5) below to
the memory.

Setting Status register
Set the Status register to enable multiple interrupts. The following contents are set to the Status register:

KSU are: 00
ERL bit: 0
EXL bit: 0
IE bit: 1

Exception processing

Perform processing to exclude the cause of the exception. If the exception cause is the register to which the
contents have been saved in (1) and (2), change the memory to which the contents have been saved,
otherwise it is reverted to the state before the exception in the restoration processing in (6) and (7).

Setting Status register
Restore the contents of the Status register in (2), and disable multiple interrupts.

Restoring CPO registers
Restore the contents of the CPO registers saved in (2).

Restoring CPU registers
Restore the contents of the CPU registers saved in (1).

Application Note U10710EJ5VOAN 81

CHAPTER 6 DEBUG INTERFACE

Some products in the Vr Series incorporate debug interfaces that are compliant with the N-Wire specifications.

In the products incorporating debug interfaces compliant with the N-Wire specifications, hardware verification and
program debugging can be performed simply by connecting a dedicated emulator, with the device mounted on the
target board (on-chip debug).

The Vr4122, VR5432, and VR5500 incorporate a debug interface compliant with N-Wire specifications.

6.1 Debug Interface Function
The N-Wire-specification debug interface enables the following functions in each product.

(1) Vr4122

Register access

Memory access

Single-step execution

Break from real-time execution
Instruction access break: 2 points
Data access break: 2 points

(2) Vr5432 and Vr5500
o Register access
Memory access
Single-step execution
Break from real-time execution
Instruction access break: 1 point
Data access break: 1 point

Trace

Outputs only branch condition

82 Application Note U10710EJ5VOAN

CHAPTER 6 DEBUG INTERFACE

6.2 Debug System Configuration
The basic configuration for on-chip debugging using the N-Wire-specification debug interface is as follows.

Figure 6-1. Basic On-Chip Debug Configuration

Target system

System-on-chip

N-Wire
interface

CPU <:> Debug unit e’;m’;;ﬁr

User logic

Application Note U10710EJ5VOAN

84

VOLUME 3 PROGRAMMING

Application Note U10710EJ5VOAN

CHAPTER 1 PIPELINE
This chapter describes points to be noted to smooth the flow of the pipeline when creating a program using an
assembler and the CPO hazards when using coprocessor 0 in the assembler.
1.1 Program Not Stopping Pipeline

There are two causes of pipeline stall/slip: branching delays and loading delays. Allocating instructions on the
program to prevent these causes smoothes the flow of the pipeline and allows full use of the CPU capability.

Remark Scheduling for branching or loading delays is not necessary in the VrR10000 Series.

1.1.1 Branching delay
Instructions that generate branching delays include the following.

J BGEZAL BLTZ
JAL BGEZALL BLTZAL
JALR BGEZL BLTZALL
JR BGTZ BLTZL
BEQ BGTZL BNE
BEQL BLEZ BNEL
BGEZ BLEZL

These are FPU branching instructions. FPU instructions cannot be used in the VrR4100 Series.

BC1F
BC1FL
BC1T
BC1TL

When these instructions are used, the instruction after this instruction is executed while the next address is being
fetched after a jump is established. However, in branch likely instructions (BEQL instruction, etc.), if the branching
condition is not established, one instruction after the branching instruction is discarded.

The following shows an example of branching delay.

1

2 .

3 addiu $1, $0, O
4 addiu $3, $0, 10
5 Label:

6 addiu $1, $1, 1
7 addu $2, $2, $1
8 subu sS4, $1, $3
9 bne $4, $0, Label
10 nop

11

12

Application Note U10710EJ5VOAN 85

VOLUME 3 PROGRAMMING

These programs can optimize the allocation of instructions as follows.

1

2 .

3 addiu $1, $0, O
4 addiu $3, $0, 10
5 Label:

6 addiu $1, $1, 1
7 subu $4, $1, $3
8 bne $4, $0, Label
9 addu $2, $2, S1
10

11

In the case above, it looks as if the instruction “addu $2, $2, $1” in line 9 is not executed when the condition is
established. However, it is executed whether the condition is established or not because is in the branching delay
slot of the BNEZ instruction.

1.1.2 Loading delay
Instructions that generate loading delays include the following.

LB LH LWL
LBU LHU LWR
LD LL Lwu
LDL LLD

LDR Lw

These are FPU load instructions. FPU instructions cannot be used in the Vr4100 Series.

LDCH
LWC1

In the VR Series, it is possible to describe instructions that include the register of the loading destination
immediately after the load instruction. However, in that case, interlocks are generated for the number of required
cycles. Therefore, allocate instructions to reduce the generation of interlocks as much as possible in terms of both
performance and compatibility with the VR3000 Series.

The following shows an example of loading delay.

1

2 .

3 1w $1, 0x0($2)
4 addiu $2, $1, 10

5 andi $8, $9, 0x8
6

7

86 Application Note U10710EJ5VOAN

CHAPTER 1 PIPELINE

In this example, a pipeline stall has been generated because the instruction “addiu $2, $1, 10”, which uses
register 1, has been placed in the delay slot of the instruction “lw $1, 0x0($2)” in the third line.
In such a program, the allocation of instructions can be optimized as follows.

1

2 .

3 1w $1, 0x0($2)
4 andi $8, $9, 0x8
5 addiu $2, $1, 10

6

7

As shown above, placing an instruction that does not use register 1 in the delay slot of the instruction “lw $1,
0x0($2)” in the third line smoothes the flow of the pipeline, thus increasing the execution speed.

1.2 Instruction Hazards

When using the instructions of the VrR4100 Series and Vr4300 Series, pipeline stalls are not generated, unlike
loading delays. Therefore, the number of instructions required to avoid a hazard must be managed on the program.
Data and status is not properly conveyed unless the number of CP0 hazards is observed.

The number of instructions required between instruction A (instruction placing the value in CP0) and instruction B
(instruction which uses the same CPO register as instruction A as the source) can be calculated with the following
expression.

(Number of hazards of instruction A destination) — {(number of hazards of instruction B source) + 1}
In the VR5000 Series, VrR5432, VrR5500, and VR10000 Series, it is not necessary to take hazards into consideration
since the CPU stalls the pipeline. However, according to the combination of instructions, the result cannot be

predicted when a specific system event occurs during execution in the VR5000 Series, Vr5432, and VR5500.

Caution Do not allocate a jump/branch instruction in the delay slot of the jump/branch instruction in the
Vr Series.

Tables 1-1 to 1-4 show the instruction hazards of each CPU.

Application Note U10710EJ5VOAN 87

VOLUME 3 PROGRAMMING

Table 1-1. CP0 Hazards of Vr4100 Series

BadVaddr, Context,
XContext

Operation Source Destination
Name Number of Name Number of
Hazards Hazards
MTCO - CPRrd 5
MFCO CPRrd 3 -
TLBR Index, TLB 2 PageMask, EntryHi 5
EntryLoO, EntryLo1
TLBWI Index or Random, 2 TLB 5
TLBWR PageMask, EntryHi,
EntryLoO, EntryLo1
TLBP PageMask, EntryHi 2 Index 6
ERET EPC or ErrorEPC, TLB 2 Status.EXL, Status.ERL 4
Status 2
CACHE Index Load Tag - TaglLo, TagHi, PErr 5
CACHE Index Store Tag TaglLo, TagHi, PErr 3 -
CACHE Hit OPS. Cache line 3 cache line 5
Coprocessor usability test Status.CU, Status.KSU, 2 -
Status.EXL, Status.ERL
Instruction fetch EntryHi.ASID, Status.KSU, 2 -
Status.EXL, Status.ERL,
Status.RE, Config.KO
TLB 2
Instruction fetch exception - EPC, Status 4
Cause, BadVAddr, Context, 5
XContext
Interrupt Cause.IP, Status.IM, 2 -
Status.IE, Status.EXL,
Status.ERL
Load/store EntryHi.ASID, Status.KSU, 3 -
Status.EXL, Status.ERL,
Status.RE, Config.K0, TLB
Config.AD, Config.EP 3
WatchHi, WatchLo 3
Load/store exception - EPC, Status, Cause, 5

TLB shutdown

Status.TS

2 (Instruction)
4 (Data)

88

Application Note U10710EJ5VOAN

CHAPTER 1 PIPELINE

Table 1-2. CP0 Hazards of Vr4300 Series

Operation Source Destination
Name Number of Name Number of
Hazards Hazards
MTCO - CPRrd 7
MFCO CPRrd 4 -
TLBR Index, TLB 5-7 PageMask, EntryHi 8
EntryLoO, EntryLo1
TLBWI Index or Random, 5-8 TLB 8
TLBWR PageMask, EntryHi,
EntryLoO, EntryLo1
TLBP PageMask, EntryHi 3-6 Index 7
ERET EPC or ErrorEPC, Status, 4 Status.EXL, Status.ERL 4-8
LB LLbit 7
CACHE Index Load Tag - TaglLo, TagHi, ECC 8
CACHE Index Store Tag TagLo, TagHi, ECC 7 -
CACHE Hit OPS. - Status.CH 8
Coprocessor usability test Status.CU, Status.KSU, 2 -
Status.EXL, Status.ERL
Instruction fetch EntryHi.ASID, Status.KSU, 0 -
Status.EXL, Status.ERL,
Status.RE, Config.KO
TLB 2
Instruction fetch exception - EPC, Status 8
Cause, BadVAddr, Context 3
Interrupt Cause.IP, Status.IM, 3 -
Status.IE, Status.EXL,
Status.ERL
Load/store EntryHi.ASID, Status.KSU, 4 -
Status.EXL, Config.KO,
Config.DB, TLB
WatchHi, WatchLo 4-5
Load/store exception - EPC, Status, Cause, 8
BadVaddr, Context
TLB shutdown - Status.TS 7

Application Note U10710EJ5VOAN

89

VOLUME 3 PROGRAMMING

Table 1-3. Instruction Hazards of VrR5000 Series and Vr5432

Operation Destination Number of Hazards
TLBWR PageMask, EntryHi, EntryLoO, EntryLo1, Random 2
TLBWI PageMask, EntryHi, EntryLoO, EntryLo1, Index 2
TLBR Index, contents of TLB 2
TLBP PageMask, EntryHi, contents of TLB 2
ERET EPC, ErrorEPC, Status 2
*| DIV, DIVU, DDIV, DDIVU, MULT, HI, LO 2
MULTU, DMULT, DMULTU
| MTCO, MFCOQ" Count 2

Note VR5000 Series only.

* Table 1-4. Instruction Hazards of Vr5500
Operation Source Number of Hazards
Instruction fetch (at address translation) EntryHi.ASID, TLB Note
Instruction fetch (at address error Status.KSU, Status.EXL, Status.ERL, Status.KX, Status.SX, Note
detection) Status.UX
Instruction decode (at detection of Status.XX, Status.CU, Status.KSU, Status.EXL, Status.ERL, 1
coprocessor enable and privileged Status.KX, Status.SX, Status.UX
instruction enable)
Note A change within the exception handler is surely reflected till the ERET instruction execution.
90 Application Note U10710EJ5VOAN

CHAPTER 1 PIPELINE

1.2.1 Calculation of CP0 hazards
The following shows how to calculate CP0O hazards taking the Vr4300 Series as an example.

Example 1. When executing an FPU instruction after setting the CU1 bit of the Status register with the MTCO
instruction
Referring to the destination (CPR rd) column of the MTCO instruction, the number of hazards is 7.
For FPU instructions, refer to the coprocessor usability test column. The number of hazards of the
source (Status.CU) is 2.
This is calculated as follows.

7-(2+1)=4

Therefore, allocate instructions as follows.

mtcO $12, $1 # The value to be set to the Status register is placed in S$1.

nop

nop

nop

nop

ctcl $31, $2 # The contents of $2 are transferred to the Control/Status register of the FPU.

Example 2. When using the TLB entry newly set with the TLBWI instruction for address translation of data
access
Referring to the destination (TLB) column of the TLBWI instruction, the number of hazards is 8.
Refer to the load column for address translation. The number of source (TLB) hazards is 4.
This is calculated as follows.

8-(4+1)=3

Therefore, allocate instructions as follows.

tlbwi

nop

nop

nop

1w $1, 0x0 (s2) # Address set to TLB is placed in $2.

Example 3. When executing the ERET instruction after changing the EPC register with MTCO
Referring to the destination (CPR rd) column of MTCO instruction, the number of hazards is 7.
Referring to the source (EPC) column of the ERET instruction, the number of hazards is 4.
This is calculated as follows.

7-(4+1)=2

Therefore, allocate instructions as follows.

mtcO
nop
nop
1w $1, 0x0 (S$2) # Address set to TLB is placed in $2.

Application Note U10710EJ5VOAN 91

CHAPTER 2 CACHE

This chapter describes the method of manipulating the cache of Vr Series processors.

2.1 Cache Initialization
The following describes the cache initialization procedure.

2.1.1 Cache initialization procedure

What occurs in cache initialization differs somewhat between CPUs that have parity in their cache and CPUs that
have no parity. The cache with no parity can be initialized only by clearing the V bit of the cache line (invalidating the
cache line). This is because a cache with no parity does not cause parity errors next time it is used even if the data
portion is not initialized.

The cache can be initialized in the following procedure.

* (1) Cache with no parity

(a) Instruction cache
1. Invalidate the cache line using the Index_Invalidate operation of the CACHE instruction.

(b) Data cache
1. Initialize the TagLo register using the MTCO instruction.
2. Write to the cache tag using the Index_Store_Tag operation of the CACHE instruction.

* (2) Cache with parity

(a) Instruction cache

1. Set the CE bit of the Status register to 0.
Set the cache tag and determine the physical address managed by the cache.
Initialize the TagLo register using the MTCO instruction.
Write to the cache tag using the Index_Store_Tag operation of the CACHE instruction.
Initialize data block of the cache using the Fill operation of the CACHE instruction.
Invalidate the cache line using the Index(Hit)_Invalidate operation of the CACHE instruction.

o ok

(b) Data cache

1. Set the CE bit of the Status register to 0.

2. Initialize the TagLo register using the MTCO instruction.

3. Write to the cache tag using the Index_Store_Tag operation of the CACHE instruction.

4. Make the cache block Dirty Exclusive using the Create_Dirty_Exclusive operation of the CACHE
instruction.
Initialize data block of the cache using the SW instruction.

6. Invalidate the cache line using the Index(Hit)_Invalidate operation of the CACHE instruction.

Note that the initial value of the CPO register used in the cache instruction is not guaranteed after reset. Set the
values of these registers before use.

92 Application Note U10710EJ5VOAN

CHAPTER 2 CACHE

2.1.2 Example of cache initialization program

(1) Vr4100 Series and Vr4300 Series
The cache initialization method in a CPU with no parity is shown below. In a CPU with parity, create an
initialization program referencing the above procedure.
The following shows the assembler source list of the initialization program. As seen from the list, the cache
size and cache block size (line size) are referenced from the Config register at line numbers 14 to 43. Set the
Config register before calling this function. The actual cache initialization processing is performed at line
number 44 or later.

1 # Cache initialization function

2 # Description

3 # Initialize instruction cache and data cache.

4 # Since the cache size and cache block size (line size) are referenced in this
5 # program, set the correct value to the Config register before calling it.
6 # Format

7 # void initcache (void) ;

8 # Argument

9 # None

10 # Return value

11 # None

12 .globl initcache

13 .ent initcache

14 initcache:

15 mfcO $8, $16 # Reference Config register
16 andi $10, $8, O0xO0E00 # Check IC bit
17 srl $10, $10, 9

18 andi $11, $8, 0x01CO # Check DC bit
19 srl $11, $11, 6

20 andi $12, $8, 0x0020 # Check IB bit
21 srl $12, $12, 5

22 andi $13, $8, 0x0010 # Check DB bit
23 srl $13, $13, 4

24 andi $9, $8, 0x1000 # Check CS bit
25 bgtz $9, .csl

26 addiu $8, $0, 1

27 # Cache size calculation (when CS = 0)

28 addiu $10, $10, 10 # IC=2(n+10)
29 sllv $10, $8, s10

30 addiu $11, $11, 10 # DC=2 (n+10)
31 sllv $11, $8, s11

32 j .bsz

33 nop

34 .csl: # Cache size calculation (when CS= 1)

35 addiu $10, $10, 12 # IC=2(n+12)
36 sllv $10, $8, s10

37 addiu $11, $11, 12 # DC=2(n+12)
38 sllv $11, $8, s11

39 .bsz: # Cache block size calculation

40 addiu $12, $12, 4 # IB

41 sllv $12, $8, $12

42 addiu $13, $13, 4 # DB

43 sllv $13, $8, $13

44 initcache:

Application Note U10710EJ5VOAN 93

VOLUME 3 PROGRAMMING

45 mtcO $0, $28 # Set TaglLo register to 0

46 # Instruction cache initialization

47 1i $8, 0x80000000 # Set start virtual address

48 add $9, $8, s10 # Add cache size

49 subu $9, $9, s12 # Set end virtual address

50 .ic_loop:

51 cache 0x00, ($8) # CACHE instruction (Index Invalidate)

52 bne $8, $9, .ic loop # Is initialization of cache size complete?
53 addu $8, $8, s12 # Increment line size

54 # Data cache initialization

55 1i $8, 0x80000000 # Set start virtual address

56 add $9, $8, s11 # Add cache size

57 subu $9, $9, s$13 # Set end virtual address

58 .dc_loop:

59 cache 0x09, ($8) # CACHE instruction (Index Store Tag)

60 bne $8, $9, .dc_ loop # Is initialization of cache size complete?
61 addu $8, $8, s$13 # Increment line size

62 jr $31

63 nop

64 .end initcache

(2) Vr10000 Series
The C source list of the cache initialization program is shown below.
In this program, initialization should be performed after specifying that the cache size of the secondary cache
is 1 MB and the cache line size is 32 words.

#define CO_Index $0
#define CO_Random $1
#define CO_EntryLoO $2
#define CO_EntryLol $3
#define CO_Context $4
#define CO0_PageMask $5
#define CO_Wired $6
#define CO_BadVAddr $8
#define CO_Count $9
#define CO_EntryHi $10
#define CO_Compare $11
#define CO_SR $12
#define CO_Cause $13
#define CO_EPC $14
#define CO_PRIdA $15
#define CO_Config $16
#define CO_LLAddr $17
#define CO_WatchLo $18
#define CO_WatchHi $19
#define CO_XContext $20
#define CO_FrameMask $21
#define CO0_Diag $22
#define CO_Perf $25
#define CO_ECC $26
#define CO_CacheErr $27
#define CO_TagLo $28
#define CO_TagHi $29
#define CO_ErrorEPC $30

94 Application Note U10710EJ5VOAN

CHAPTER 2 CACHE

#define SR DE 0x00010000 /* parity or ECC to cause exceptions? */

#define Index Invalidate I 0xO0 /* 0 0 */
#define Index Writeback Inv D 0x1l /* 0 1 */
#define Index Writeback Inv_S 0x3 /* 0 3 */
#define Index Load_Tag I 0x4 /* 1 0 */
#define Index Load_Tag D 0x5 /* 1 1 */
#define Index Load_Tag S 0x7 /* 1 3 */

#define Index Store Tag I 0x8 /* 2 0 */
#define Index Store Tag D 0x9 /* 2 1 */
#define Index Store Tag S Oxb /* 2 3 */
#define Hit_Invalidate I 0x10 /* 4 0 */
#define Hit_ Invalidate D 0x11 /* 4 1 */
#define Hit_Invalidate S 0x13 /* 4 3 */

#define Fill I 0x14 /* 5 0 */
#define Hit_Writeback Inv D 0x15 /* 5 1 */
#define Hit_ Writeback Inv_S 0x17 /* 5
#define Index Load Data I 0x18 /* 6 0 */
#define Index Load Data D 0x19 /* 6 1 */
#define Index Load Data S 0xlb /* 6 3 */
#define Index Store Data I Oxlc /* 7 0 */
#define Index Store Data D 0x1ld /* 7 1 */

#define Index Store Data S 0x1f /* 7 3 */

#define TagHi P PMod Neither Refill 0x20000000 /* Neither Refill or Written */

/***

* Main program *
***/
.text
.set noat

.set noreorder

.globl init cache

.ent init cache
init cache:

/***

* Initialize L1 and L2 cache *
***/

/* Status register setting */
mfcO $11, CO_SR
1i $12, SR _DE
or $13, $12, $11 # DE:1
mtcO $13, CO_SR

/* initialize ECC Reg */
mtcO $0, CO_ECC

/* initialize TagLo TagHi */
mtcO0 $0, CO_TagLo
mtcO $0, CO_TagHi

/* initialize cache */
/* initialize I cache */
lui $8, 0x8000 # Base

Application Note U10710EJ5VOAN

VOLUME 3 PROGRAMMING

1i $9, 0x4000 # 32KB/2

I_CACHE:
cache Index Store Tag I, 0x0($8) # Index Store_ Tag Wa
cache Index Store Tag I, 0x1($8) # Index Store_ Tag Wa
cache Index Store Data I, 0x0($8) # Index Store Data
cache Index Store Data I, 0x1($8) # Index Store Data
cache Index Store Data I, 0x4($8) # Index Store Data
cache Index Store Data I, 0x5($8) # Index Store Data
cache Index Store Data I, 0x8($8) # Index Store Data
cache Index Store Data I, 0x9($8) # Index Store Data
cache Index Store Data I, Oxc($8) # Index Store Data
cache Index Store Data I, 0xd($8) # Index Store Data
cache Index Store Data I, 0x10($8) # Index_ Store Data
cache Index Store Data I, 0x11($8) # Index_ Store Data
cache Index Store Data I, 0x14($8) # Index_ Store Data
cache Index Store Data I, 0x15($8) # Index_ Store Data
cache Index Store Data I, 0x18($8) # Index Store Data
cache Index Store Data I, 0x19($8) # Index_ Store Data
cache Index Store Data I, 0Oxlc($8) # Index_ Store Data
cache Index Store Data I, 0x1d($8) # Index_ Store Data
cache Index Store Data I, 0x20($8) # Index_ Store Data
cache Index Store Data I, 0x21($8) # Index_ Store Data
cache Index Store Data I, 0x24($8) # Index_ Store Data
cache Index Store Data I, 0x25($8) # Index_ Store Data
cache Index Store Data I, 0x28($8) # Index Store Data
cache Index Store Data I, 0x29($8) # Index Store Data
cache Index Store Data I, 0x2c($8) # Index_ Store Data
cache Index Store Data I, 0x2d($8) # Index_ Store Data
cache Index Store Data I, 0x30($8) # Index Store Data
cache Index Store Data I, 0x31($8) # Index Store Data
cache Index Store Data I, 0x34($8) # Index Store Data
cache Index Store Data I, 0x35($8) # Index Store Data
cache Index Store Data I, 0x38($8) # Index Store Data
cache Index Store Data I, 0x39($8) # Index Store Data
cache Index Store Data I, 0x3c($8) # Index Store Data
cache Index Store Data I, 0x3d($8) # Index Store Data
addiu $9, $9, -0x40
bgtz $9, I_CACHE
addiu $8, $8, 0x40

/* initialize TagLo TagHi */
mtcO $0, CO_TagLo
mtcO $0, CO_TagHi
1i $12, TagHi P PMod Neither Refill

mfcO $11, CO_TagHi

or $13,

$12, $11 # SM:01

mtcO $13, CO_TagHi

/* initialize D_cache

*/

y 0

y 1

Way O
Way 1
Way O
Way 1
Way O
Way 1
Way O
Way 1
Way 0
Way 1
Way 0
Way 1
Way 0
Way 1
Way O
Way 1
Way 0
Way 1
Way O
Way 1
Way O
Way 1
Way O
Way 1

Way 0O
Way 1
Way 0O
Way 1
Way 0O
Way 1
Way 0O
Way 1

lui $8, 0x8000 # Base
1i $9, 0x4000 # 32KB/2
D CACHE:
96 Application Note U10710EJ5VOAN

CHAPTER 2 CACHE

H o H HF H H O H H*

H oH H H H H H H H H

Index Store Tag Way_
Index Store Tag Way_

Index Store Data
Index Store Data
Index Store Data
Index Store Data
Index Store Data
Index Store Data
Index Store Data
Index Store Data
Index Store Data
Index Store Data
Index Store Data
Index Store Data
Index Store Data
Index Store Data
Index Store Data
Index Store Data

0
1

Way O
Way 1
Way O
Way 1
Way O
Way 1
Way 0
Way 1
Way 0
Way 1
Way 0
Way 1
Way 0
Way 1
Way 0
Way 1

Index Store Tag Way O

0x01($8) # Index Store Tag Way 1

cache Index Store Tag D, 0x00($8)
cache Index Store Tag D, 0x01($8)
cache Index Store Data D, 0x0($8)
cache Index Store Data D, 0x1($8)
cache Index Store Data D, 0x4($8)
cache Index Store Data D, 0x5($8)
cache Index Store Data D, 0x8($8)
cache Index Store Data D, 0x9($8)
cache Index Store Data D, 0x0c($8)
cache Index Store Data D, 0x0d($8)
cache Index Store Data D, 0x10($8)
cache Index Store Data D, 0x11($8)
cache Index Store Data D, 0x14($8)
cache Index Store Data D, 0x15($8)
cache Index Store Data D, 0x18($8)
cache Index Store Data D, 0x19($8)
cache Index Store Data D, 0xlc($8)
cache Index Store Data D, 0x1d($8)
addiu $9, $9, -0x20
bgtz $9, D CACHE
addiu $8, $8, 0x20

/* initialize TagLo TagHi */
mtcO $0, CO_TagLo
mtcO $0, CO_TagHi

/* initialize secondary cache */
lui $8, 0x8000 # Base
1i $9, 0x80000 # 1MB/2

S_CACHE:
cache Index Store Tag S, 0x00($8)
cache Index Store Tag S,
cache Index Store Data S, 0x00($8)
cache Index Store Data S, 0x01($8)
cache Index Store Data S, 0x10($8)
cache Index Store Data S, 0x11($8)
cache Index Store Data S, 0x20($8)
cache Index Store Data S, 0x21($8)
cache Index Store Data S, 0x30($8)
cache Index Store Data S, 0x31($8)
cache Index Store Data S, 0x40($8)
cache Index Store Data S, 0x41($8)
cache Index Store Data S, 0x50($8)
cache Index Store Data S, 0x51($8)
cache Index Store Data S, 0x60($8)
cache Index Store Data S, 0x61($8)
cache Index Store Data S, 0x70($8)
cache Index Store Data S, 0x71($8)
addiu $9, $9, -0x80 # 32 word
bgtz $9, S_CACHE
addiu $8, $8, 0x80

H H H H H H H H H HF H H H H H H

Index Store Data_S
Index Store Data_S
Index Store Data_S
Index Store Data_S
Index Store Data_S
Index Store Data_S
Index Store Data_S
Index Store Data_S
Index Store Data_S
Index Store Data_S
Index Store Data_S
Index Store Data_S
Index Store Data_S
Index Store Data_S
Index Store Data_S
Index Store Data_S

Way O
Way 1
Way 0O
Way 1
Way 0O
Way 1
Way 0O
Way 1
Way 0O
Way 1
Way 0O
Way 1
Way 0O
Way 1
Way 0O
Way 1

Application Note U10710EJ5VOAN

VOLUME 3 PROGRAMMING

mfcO $11, CO_SR

1i $12, SR _DE

not $12, $12

and $13, $12, $11 # DE:0
mtcO $13, CO_SR

.end init cache

x 2.2 Cache Writeback

The cache data writeback procedure is described below.

To writeback the data cache by software, use the Hit_Write_Back operation or Index_Write_Back operation of the
CACHE instruction.

The Hit_Write_Back operation is used to perform writeback for a specific area with the virtual address specified.
In the Hit_Write_Back operation, note that the writeback is not performed if the cache holds tag contents that differ
from the address specified.

To perform writeback for all data on the cache, use the Index_Write_Back operation.

x 2.2.1 Example of cache writeback program

(1) Hit_Write_Back operation
The assembler source list of the function that performs the Hit_Write_Back operation is shown below.

1 # Cache writeback function (Hit Write Back operation)

2 # Description

3 # Writeback the data cache block specified by vaddr.

4 # Format

5 # void cache hit write back(unsigned int vaddr) ;

6 # Argument

7 # Vaddr: Cache block to be written back (virtual address)
8 # Return value

9 # None

10 .globl cache hit write back

11 .ent cache hit write back

12 cache hit write back:

13 cache 0x19, 0x0(s4) # Hit writeback (data cache)
14 jr $31

15 nop

16 .end cache hit write back

98 Application Note U10710EJ5VOAN

CHAPTER 2 CACHE

The C source list of the function that specifies the start and end points of the virtual address and performs
writeback using the above function is shown below.

© J 0 U Ww N R

[\CRN SR \C R SR \C R O R O VR e e R e e e B o)
<N 0N Uk W NPRE O W00 0 U W NP o

/* Cache writeback sample program 1 */
/* Description

* Writeback the data cache between the points specified by s vaddr and e vaddr.
* Format

* void Write Back cache(unsigned int s vaddr, unsigned int e vaddr);

* Argument

* s_vaddr: Start address (virtual address)

* e vaddr: End address (virtual address)

* Return address
* None

*/

/* External function */
extern void cache hit write back (unsigned int vaddr) ;

/* Cache block setting */
#define Cache BLK 0x10 /* When cache block is 16 bytes */

/* Cache writeback function */
void
Write Back cache (unsigned int s vaddr, unsigned int e vaddr)

{

for (; s_vaddr <= e vaddr; s_vaddr += Cache BLK)

{

cache hit write back(s _vaddr);

——

(2) Index_Write_Back operation

The assembler source list of the function that performs the Index_Write_Back operation is shown below.

® 90U W N R

H R R R R R PRV
o Ul W N R O

Cache writeback function (Index Write Back operation)
Description
Writeback the data cache block to the index specified by vaddr.
Format
void cache_index write back (unsigned int wvaddr) ;
Argument
vaddr: Cache block to be written back (virtual address)
Return value
None
.globl cache index write back
.ent cache index write back
cache_index write back:
cache 0x1, 0x0(S$4) # Index writeback (data cache)
jr $31
nop
.end cache index write back

Application Note U10710EJ5VOAN 99

VOLUME 3 PROGRAMMING

The C source list of the function that performs writeback for all the data on the data cache using the above
function is shown below.

1 /* Cache writeback sample program 2 */
2 /* Description
3 * Writeback all data caches.
4 * Format
5 * void Write Back cache all (void) ;
6 * Argument
7 * None
8 * Return value
9 * None
10 */
11
12 /* External function */
13 extern void cache index write back(unsigned int vaddr) ;
14
15 /* Cache size and block size setting */
16 #define Cache SIZE 0x4000 /* When cache size is 16 KB */
17 #define Cache BLK 0x10 /* When cache block is 16 bytes */
18
19 /* Start point of virtual address */
20 #define ORIGIN 0x80000000
21
22 /* Cache writeback function */
23 void
24 Write Back cache all (void)
25 {
26 unsigned int s _vaddr = ORIGIN;
27
28 for (; s _vaddr < (ORIGIN + Cache SIZE); s vaddr += Cache BLK)
29 {
30 cache index write back(s_vaddr);
31 }
32 }
*2.3 Cache Fill

The cache data fill procedure is described below.

To write data to cache memory from the main memory by software, use the Fill operation of the CACHE
instruction. Normally, it is not necessary to execute the Fill operation by software, but it may be necessary in a
specific situation such as when rewriting programs (instructions) by software for creating monitors, etc.

A Fill operation is not provided for the data cache. To fill the data cache with data, use the LW instruction, etc.

100 Application Note U10710EJ5VOAN

CHAPTER 2 CACHE

2.3.1 Example of cache fill program
The assembler source list of the function that specifies the start and end points of the virtual address and fills the
cache between these points is shown below.

© J 0 U W N R

I T R e O = S Vel
o Ul W N R O

Cache fill function (Fill operation)
Description
Fills instruction data from the memory specified by vaddr to the instruction cache.
Format
void cache fill (unsigned int wvaddr) ;
Argument
vaddr: Cache block to be filled (virtual address)
Return value
None
.globl cache fill
.ent cache fill
cache fill:
cache 0x14, 0x0(s4) # Fill operation
jr $31
nop
.end cache fill

The C source list of the function that specifies the start and end points of the virtual address and fills the cache
between these points using the above function is shown below.

® 90U W N R

MDD NMNMMNMMNMNRERPRRPR R R PR R RO
N 0N Uk WNDNE O W oo 0 Uk W N E o

/
/

* Cache fill sample program */

* Description

* Fills instruction cache between the points specified by s vaddr to e vaddr.
* Format

* void Fill cache (unsigned int s_vaddr, unsigned int e_vaddr) ;

* Argument

* s_vaddr: Start address (virtual address)

* e vaddr: End address (virtual address)

* Return value

* None
*/
/* External function */
extern void cache fill (unsigned int vaddr) ;
/* Cache block setting */
#define Cache BLK 0x10 /* When cache block is 16 bytes */
/* Cache fill function */
void
Fill cache(unsigned int s _vaddr, unsigned int e vaddr)

{

for (; s_vaddr <= e_vaddr; s_vaddr += Cache BLK)

{

cache fill(s _wvaddr);

Application Note U10710EJ5VOAN 101

VOLUME 3 PROGRAMMING

*x 2.4 Cache Tag Display

The cache tag display procedure is described below.

To reference the contents of the cache tag, use the Index_Load_Tag operation of the CACHE instruction.

* 2.4.1 Example of cache tag display program
The assembler source list of the function that performs the Index_Load_Tag operation is shown below.

1 # Cache tag load function (Index Load Tag operation)

2 # Description

3 # Reads the cache block tag for the specified index.

4 # Format

5 # unsigned int cache index load tag(unsigned int wvaddr, int type);
6 # Argument

7 # vaddr: Cache block from which the tag is to be read (virtual address)
8 # type: Cache type (0: Instruction cache, 1: Data cache)

9 # Return value

10 # Cache block TagLo register value

11 #

12 .globl cache index load tag

13 .ent cache index load tag

14 cache_index_load_tag:

15 bne $5, $0, .dcache

16 nop

17 .icache:

18 cache 0x4, 0x0(S$4) # Instruction cache tag load

19 J .mfc0_taglo

20 nop

21 .dcache:

22 cache 0x5, 0x0($4) # Data cache tag load

23 nop

24 .mfcO_taglo:

25 mfco $2, $28 # The TaglLo register value is set as the

return value

26 jr $31

27 nop

28 .end cache index load tag
102 Application Note U10710EJ5VOAN

CHAPTER 2 CACHE

The C source list of the function that displays the cache tag using the above function is shown below.

1 /* Cache tag display sample program 2 */

2 /* Description

3 * Displays all cache tags.

4 * Format

5 * void Print CahceTag(void) ;

6 * Argument

7 * None

8 * Return value

9 * None

10 */

11

12 /* External function */

13 extern unsigned int cache index load tag(unsigned int vaddr, int type);
14

15 /* Cache size and block size setting */

16 #define ICache SIZE 0x8000 /* When instruction cache size is 32 KB */
17 #define ICache BLK 0x10 /* When instruction cache block is 16 bytes */
18 #define DCache SIZE 0x4000 /* When data cache size is 16 KB */

19 #define DCache BLK 0x10 /* When data cache block is 16 bytes */
20

21 /* Start point of virtual address */

22 #define ORIGIN 0x80000000

23

24 /* Cache tag display function */

25 void

26 Print CacheTag(void)

27 {

28 unsigned int vaddr, tag;

29

30 printf (”I-CACHE\n”) ;

31 for (vaddr = ORIGIN; vaddr < (ORIGIN+ICache SIZE); vaddr += ICache BLK)
32 {

33 tag = cache index load tag(vaddr, 0);

34 printf (”%08x: %08x\n”, vaddr, tag);

35 }

36

37 printf ("D-CACHE\n”) ;

38 for (vaddr = ORIGIN; vaddr < (ORIGIN+DCache SIZE); vaddr += DCache BLK)
39 {

40 tag = cache index load tag(vaddr, 1);

41 printf (”%08x: %08x\n”, vaddr, tag);

42 }

43 }

Application Note U10710EJ5VOAN

103

CHAPTER 3 TLB

This chapter describes methods of reading from, writing to, and make settings to the TLB of Vr Series processors

using C language and an assembler.

3.1 Entry Read

This section describes the creation of a C-language type function (tlbread) by the assembler for reading the
contents of a TLB entry. The following shows the specification of this function.

struct tlb{

unsigned int Hi; /* EntryHi register */

unsigned int LoO; /* EntryLoO register */
unsigned int Lol; /* EntryLol register */
unsigned int Mask; /* PageMask register */

}i

struct tlb *tlbread(int, struct tlb *

)i

A function is created with the TLB entry number to be read and the pointer to the structure for writing the read
contents as arguments and the return value as the pointer to the above structure.
This function appears as follows when created by the assembler.

1 .globl tlbread
2 .ent tlbread
3 tlbread:
4 # --Initial setting (assign 0 to the registers used) --
5 move $8, S0 # Used as temporary
6 move $15, $0 # Used for saving index register
7 # -- Save Index register (cpO. $0->cpu. $15) --
8 mfcO $15, SO0
9 nop
10 # -- Argument 1 to Index register (cpu. $4->cp0. $0) --
11 mtcO $4, $0O
12 nop
13 # -- From TLB entry to TLB entry register of each cp0 --
14 tlbr
15 nop
16 # -- From EntryHi register to structure (cpO. $10->*$5) --
17 move $8, S0
18 mfcO $8, $10
19 nop
20 sw $8, 0(s$5)
21 #-- From EntryLo0O register to structure (cp0. $2->*$5+4) --
22 move $8, S0
23 mfco $8, $2
24 nop
25 sw $8, 4(s5)
26 # -- From EntryLol register to structure (cpO. $3->*3$5+8) --
27 move $8, S0
28 mfcO $8, 83
29 nop
104 Application Note U10710EJ5VOAN

CHAPTER 3 TLB

30 sw $8, 8(s$5)

31 # -- From PageMask register to structure (cp0. $5->*3$5+12) --
32 move $8, S0

33 mfco $8, S5

34 nop

35 sw $8, 12($5)

36 # -- Restore Index register --

37 mtcO $15, SO

38 # -- Create return value of function --
39 move $2, $5

40 nop

41 jr Sra

42 nop

43 .end tlbread

The contents of the TLB entry can be referenced when this function is called from a C-language program.

The initial setting of the function is made in lines 3 to 8 of this function.

In lines 9 to 14, the second argument (specifying the entry number of the TLB) passed to this function is copied to
the Index register of the CPO register.

In lines 13 and 14, the TLB entry indicated by the Index register is stored in the TLB entry registers (EntryHi,
EntryLoO, EntryLo1, and PageMask) with the TLBR instruction.

In lines 15 onward, each entry register is stored from the pointer to the structure passed by the first argument of
this function to the structure. The pointer to the structure is set as the return value of a function.

3.2 Entry Write

This section describes the creation of a C-language type function (tlbwrite) by the assembler for writing the
contents of a TLB entry. The following shows the specification of this function.

struct tlb{

unsigned int Hi; /* EntryHi register */

unsigned int LoO; /* EntryLoO register */
unsigned int Lol; /* EntryLol register */
unsigned int Mask; /* PageMask register */

Vi

struct tlb *tlbwrite(int, struct tlb *);

Application Note U10710EJ5VOAN 105

VOLUME 3 PROGRAMMING

A function is created with the TLB entry number to be written and the pointer to the structure containing the
contents to be written as arguments and the return value is the pointer to the above structure.
This function appears as follows when created by the assembler.

1 .globl tlbwrite

2 .ent tlbwrite

3 tlbwrite:

4 # -- Initial setting (assign 0 to the registers used) --

5 move $8, S0

6 move $15, $O0

7 # -- Save index register (cp0. $0->cpu. $15) --

8 mfcO $15, $O0

9 nop

10 # -- Argument 1 to Index register (cpu. $4->cp0. $0) --

11 mtco $4, SO

12 nop

13 # -- From structure to EntryHi register (*$5->cp0. $10) --
14 move $8, S0

15 1w $8, 0(s5)

16 mtcO $8, s$10

17 # -- From structure to EntryLoO register (*$5+4->cp0. $2) --
18 move $8, S0

19 lw $8, 4($5)

20 mtcO $8, $2

21 # -- From structure to EntryLol register (*$5+8->cp0. $3) --
22 move $8, S0

23 1w $8, 8(s5)

24 mtcO $8, $3

25 # -- From structure to PageMask register (*$5+12->cp0O. $5) --
26 move $8, S0

27 1w $8, 12(s5)

28 mfcO $8, S5

29 nop

30 # -- From TLB entry to each TLB entry register of CPO --
31 tlbwi

32 nop

33 # -- Restore Index register --

34 mtco $15, $O

35 # -- Create return value of function --

36 move $2, S5

37 nop

38 jr Sra

39 nop

40 .end tlbwrite

Data can be written to the TLB entry when this function is called from a C-language program.

The function’s initial setting is made in lines 3 to 8 of this function. In lines 9 to 11, the second argument
(specifying the entry number of the TLB) that is passed to this function is copied to the Index register of the CPO
register. In lines 12 to 28, data is copied from the structure pointers passed by the first argument of the function to
the each entry register. In lines 30 and 31, data is written from the TLB entry registers (EntryHi, EntryLoO, EntryLo1,
and PageMask) to the TLB entry indicated by the Index register with the TLBWI instruction. The pointer to the
structure is then set as the return value of the function.

106 Application Note U10710EJ5VOAN

CHAPTER 3 TLB

3.3 TLB Settings

This section describes the creation in C language of a function to set the TLB using the functions created as
described in 3.1 Entry Read and 3.2 Entry Write.

Correctly set each register (refer to the figures below): EntryHi, EntryLoO, EntryLo1, and PageMask, and call
tibwrite function.

Figure 3-1. EntryHi Register (In 32-Bit Mode)

31 8 7 0
VPN2Note 0 ASID

Note The number of bits differs depending on the processor.
Vr4100 Series: 21 bits
Vr4300 Series, VR5000 Series, VrR5432, Vr5500, VR10000 Series: 19 bits

Figure 3-2. EntryLo0O/Lo1 Register (In 32-Bit Mode)

31 65 3210
0 PFNNete c |D|vV|G
T 1 1

Note The number of bits differs depending on the processor.
Vr4100 Series: 22 bits
Vr4300 Series, VrR5432: 20 bits
VRr5000 Series, VR5500: 24 bits
VR10000 Series: 26 bits

Figure 3-3. PageMask Register

31 0
0 MASKNote 0

Note The number of bits differs depending on the processor.
Vr4100 Series: 8 bits
VRr4300 Series, VR5000 Series, VR5432, VR10000 Series: 12 bits
Vr5500: 18 bits
For details of the bit position, refer to VOLUME 2 Figure 4-3 PageMask Register.

Application Note U10710EJ5VOAN 107

VOLUME 3 PROGRAMMING

For example, the program that sets 4K page x 2 (1K page x 2 for the Vr4100 Series) from the virtual address
0x0000 0000 to the physical address 0x0 0001 0000 is as follows.

© J 0 U W N R

BB R R DWW WW W WWWWWNNNNMNMNNMNONNNMNRERRRRPBRRBRRPO
B W N R O WO®CUOo U D WNROWO®JIO U A WNREROWO®IOoO U & WM KR o

/* --- Initial setting --- */

struct tlb{
unsigned int Hi; /* EntryHi register */
unsigned int LoO; /* EntryLo0 register */
unsigned int Lol; /* EntryLol register */
unsigned int Mask; /* PageMask register */

i

struct tlb *tlbwrite(int, struct tlb *);

/* --- TLB setting --- */

#define VPN 0x0 /* Virtual page number */
#define ASID 0x0 /* Address space ID */
#tdefine PFN 0x10000 /* Page frame number */
#define C 0 /* Cache algorithm */
#define D 1 /* Dirty bit */

#define v 1 /* Valid bit */

#define G 1 /* Global bit */

#define MASK 1 /* Mask */

#define Entry 0 /* TLB entry number */

#ifdef Vrdlxx

#define MASKLOW 0x07ff
#else
#define MASKLOW Ox1fff
#endif
/* --- Program --- */
main ()
{
/* --- Structure definition--- */

struct tlb Tlb;

/* --- Assignment to structure--- */

Tlb.Hi=((VPN/2)<<13) | ASID;

Tlb.LoO= (PFN<<6) | (C<<3) | (D<<2) | (v<<1) la;

Tlb.Lol=((PFN + MASK + MASKLOW + 1)<<6) | (C<<3) | (D<<2) | (v<<1) lg;

#ifdef Vralxx
Tlb.Mask=MASK<<11;
#else
Tlb.Mask=MASK<<13;
#endif
/* --- Write to TLB entry--- */
tlbwrite(Entry, &Tlb);

When compiling the following sample, linking it together with the object of the tlbwrite function, and executing it,

TLB translation from the virtual address to the physical address operates as shown in the figure below, to enable the
memory of the virtual address 0x0000 0000 to 0x0000 1FFF (0x0000 0000 to 0x0000 07FF for the Vr4100 Series) to
be referenced.

108

Application Note U10710EJ5VOAN

CHAPTER 3 TLB

Figure 3-4. TLB Translation

(a) Vr4100 Series

Virtual address

Physical address

0x0001 O7FF »
ffffffffffffffffffffffff 1 K page x 2

0x0001 0000

0x0000 O7FF

0x0000 0000

(b) Vr4300 Series, VR5000 Series, Vr5432, VrR5500, and VrR10000 Series

Virtual address

Physical address

0x0001 1FFF~

ffffffffffffffffffffffff 4 K page x 2

0x0001 0000

0x0000 1FFF

0x0000 0000

Application Note U10710EJ5VOAN

109

VOLUME 3 PROGRAMMING

3.4 TLB Initialization

Initializing the TLB invalidates all TLB entries and sets all virtual addresses within the entries to the TLB mapping
invalid position. This program sets all TLB entries to the Vr Series kernel mode 32-bit address ksegO (a TLB
mapping disabled area). Note, however, that the initial value of the CPO registers used by the TLB is not guaranteed
after a reset. When using these registers, set the values to the registers before use. In the program shown below,

the CPO registers used by the tlbwrite function can be used as is because they are used after the values are set.

The following program initializes the TLB of the Vr Series. This program uses the tlbwrite function created as
described in 3.2 Entry Write. When linking this program, link it together with the object file that contains the tlbwrite

function.

In this program, all the TLB entries are set to the 32-bit kernel mode address kseg0 (a TLB mapping disabled

area).

1 /* --- TLB initialization --- */

2 /* Initial setting */

3 struct t1b{

4 unsigned int Hi; /* EntryHi register */

5 unsigned int LoO; /* EntryLoO register */
6 unsigned int Lol; /* EntryLol register */
7 unsigned int Mask; /* PageMask register */
8 };

9

10 struct tlb *tlbwrite(int, struct tlb *);

11

12 /* TLB setting */

13 #define ASID 0x0 /* Address space ID */

14 #define PFN 0x0 /* Page frame number */

15 #define ¢ 0 /* Algorithm */

16 #define D 0 /* Dirty bit */

17 #define v 0 /* Valid bit */

18 #define G 0 /* Global bit */

19 #define MASK 1 /* Mask */

20

21 /* Number of TLB entries */

22 #ifdef Vr5000 /* For Vr5000 */

23 #define MAX TLB 47

24 #else /* Vr5000 */ /* For Vrd4lxx, Vr43dxx */

25 #define MAX TLB 31

26 #endif /* Vr5000 */

27

28 void inittlb()

29 {

30 /* Variable */

31 int tlb_num; /* TLB number */
32 struct tlb Tlb; /* Structure */
33 unsigned long vpn=0x80000 /* Virtual page number */
34

35 Tlb.LoO= (PFN<<6) | (C<<3) | (D<<2) | (v<<1) lg;
36 Tlb.Lol= (PFN<<6) | (C<<3) | (D<<2) | (v<<1) lg;
37 #ifdef Vrd4lxx

38 Tlb.Mask=MASK<<11;

39 #else

40 Tlb.Mask=MASK<<13;

41 #endif

110 Application Note U10710EJ5VOAN

CHAPTER 3 TLB

42
43

44
45
46
47
48
49
50
51
52

for(tlb num=0; tlb num <= MAX TLB; tlb num++)

{

Tlb.

tlbwrite(tlb_num, &Tlb);

vpn+

}

Hi= ((vpn/2)<<13) | ASID;

+;

3.5 TLB Entry Replacement

Because the VR Series has a limited number of TLB entries, depending on the OS (monitor), etc., it is necessary to
save TLB entries in memory, etc. and replace the contents of entries if a TLB refill exception occurs.

This section describes the minimum processing required for the operation above. Exception processing such as
saving and restoring CPU and CPO registers is not described here. For subjects related to exception processing,

refer to CHAPTER 4 EXCEPTIONS.
There are three types of TLB exceptions:

Of these, the TLB refill exception requires TLB replacement. The following shows the procedure to be performed

TLB refill exception
TLB invalid exception

TLB modification exception

after a TLB refill exception has occurred.

Figure 3-5. TLB Replacement

Main program

LW $10

Y

TLB refill exception occurs

,0(811)

Exception handler

Saves registers

Judges exception

Processes TLB refill

Retrieves TLB entry in the memory
Replaces TLB entry

Restores registers

ERET

Application Note U10710EJ5VOAN

VOLUME 3 PROGRAMMING

The following method can be used as an example of | Processes TLB refill | in the figure above.

setting, the TLB entry buffer placed in the memory is created in the following format.

Figure 3-6. Example of Creating Entry Table on Memory

As the initial

Create entries of 4K page
x 2 from virtual memory
OxFFFF DFFF

Create entries of 4K page
x 2 from virtual memory
0x0000 2000

Create entries of 4K page
x 2 from virtual memory
0x0000 0000

Memory

PageMask

EntryHi

PageMask

EntryHi

PageMask

EntryHi

4 bytes

Create the configuration similar
to the contents of TLB entry

—+~——— Place the higher 7 bits of this
virtual address to PTEBase in
the Context register in the CPO.
Use 0 for the lower bits of these
address.

112

Application Note U10710EJ5VOAN

CHAPTER 3 TLB

The following shows the format of the Context register in 32-bit mode.

Figure 3-7. Context Register (In 32-Bit Mode)

(a) Vr4100 Series

31 25 24 4 3 0

PTEBase BadVPN2
7 21

(b) Vr4300 Series, VrR5000 Series, Vr5432, VrR5500, and Vr10000 Series

31 23 22 4 3 0
PTEBase BadVPN2
9 19

Each bit of the Context register is described below.

PTEBase: Base address of page table entry

BadVPN2: Value of the page number of the virtual address whose TLB translation is invalid divided by 2 (set by
hardware when an exception occurs)

0: This is reserved.
Write a zero here. A zero will be returned when this area is read.

In the state of Figure 3-6, if the Context register and TLB table are set, the table that is to be placed in the TLB
entry can be referenced by referencing the contents of the Context register and its address when a TLB refill
exception occurs. ASID can be supported by creating a TLB entry table for each ASID and rewriting the PTEBase

area of the Context register.
The information thus acquired to be written in the TLB entry is written in the TLB entry using the TLBWR

instruction.

Application Note U10710EJ5VOAN 113

VOLUME 3 PROGRAMMING

The following shows the program that performs table reference and rewriting.

This function requires the contents of the Context register for argument 1 and the contents of the Random register
for argument 2.

In this case, the Random register is specified for argument 2 because the tlbwrite function created as described in
3.2 Entry Write is used. However, argument 2 is normally not required if it is changed to use TLBWR instruction.

1 /* --- TLB rewrite --- */

2

3 /* Initial setting */

4 struct tlb{

5 unsigned int Hi; /* EntryHi register */

6 unsigned int LoO; /* EntryLoO register */

7 unsigned int Lol; /* EntryLol register */

8 unsigned int Mask; /* PageMask register */

9 };

10

11 struct tlb *tlbwrite(int, struct tlb *);

12

13 void TLB swap(unsigned int context, unsigned int random)
14 { -

15 struct tlb *Tlb; /* Pointer to structure */
16

17 Tlb = (struct tlb *)context;

18

19 tlbwrite (random, Tlb);

20 }

This method, however, requires a large memory™™

such as modifying the Context register are necessary.

to store TLB tables. Therefore, measures to save memory

Note A 4 MB memory space is required for one process (ASID) that uses kuseg only.

114 Application Note U10710EJ5VOAN

CHAPTER 4 EXCEPTIONS

4.1 Discriminating Between Exceptions

This section describes methods for discriminating between exceptions when several exceptions are using the
same exception vector.

4.1.1 Cold reset, soft reset, and NMI exceptions

Each cold reset, soft reset, and NMI exception can be discriminated by referring to the SR bit of the Status register
that is set when an exception occurs. Refer to VOLUME 2 Table 5-3 Status When Exception Occurs.

However, soft reset and NMI cannot be discriminated only from the Status register in the VrR4300 Series, VrR5000
Series, Vr5432, and Vr5500. To discriminate between soft reset and NMI, information with which the CPU can
determine NMI occurrence must be left by means of hardware.

In the VR4100 Series, soft reset does not occur. Therefore, manipulation for discrimination is not necessary.

In the VR10000 Series, since the Status register contains an NMI bit, soft reset and NMI occurrence can be
discriminated by referencing this bit.

(1) Discrimination program
The following shows a program that discriminates between cold resets and soft reset/NMI exceptions.

1 .set noreorder

2 .globl Reset

3 .ent Reset

4 Reset:

5 mfcO $26, $12

6 1i $27, 0x0010 # SR bit
7 and $27, $26, $27

8 bne $27, $0, NMI exception

9 # Add processing for cold reset exception

10

11 NMI_exception:
12 # Add processing for soft reset, NMI exception

Allocate these to exception handler addresses by section specification, etc.

Application Note U10710EJ5VOAN 115

VOLUME 3 PROGRAMMING

4.1.2 Other exceptions

This section describes the method and program for discriminating between types of exceptions that utilize the
exception vector “OxBFCO0 0380".

Some of the exceptions utilizing the exception vector “OxBFC0 0380” cannot be used depending on the CPU. For
details, refer to VOLUME 2 CHAPTER 5 EXCEPTIONS.

To discriminate between exceptions utilizing the exception vector “OxBFC0 0380”, refer to the exception code area
in the Cause register of coprocessor 0.

(1) Discrimination program
The following shows the program that discriminates between exceptions utilizing the exception vector
“0xBFCO 0380”.
In this example, the CPU register is not restored or saved. When actually creating an exception routine,
restore and save the CPU register used for exception processing.

1 .globl OTHER exception
2 .ent OTHER_exception
3 OTHER_exception:

4 # Set Cause register to argument 1
5 mfcO $4, $13

6 nop

7 nop

8 jal Check Exception
9 nop

10 .end OTHER_exception

The C-language program shown below is called from the exception handler.

1 #idefine Int 0 /* Interrupt */

2 #define Mod 1 /* TLB modified */

3 #define TLBL 2 /* TLB refill (Load/fetch) */

4 #define TLBS 3 /* TLB refill (Store) */

5 #define AJEL 4 /* Address error (Load/fetch) */
6 #define AdJES 5 /* Address error (Store) */

7 ##define IBE 6 /* Bus error (Instruction fetch) */
8 #define DBE 7 /* Bus error (Data load/store) */
9 #define Sys 8 /* System call */

10 #define Bp 9 /* Breakpoint */

11 #define RI 10 /* Reserved instruction */

12 #define CpU 11 /* Coprocessor unusable */

13 #define Ov 12 /* Operation overflow */

14 #define Tr 13 /* Trap */

15 #define FPE 15 /* Floating point */

16 #define WATCH 23 /* Watch */

17

18 void Check Exception(unsigned int Cause)

19 |

20 int ExcCode;

21

22 ExcCode = (Cause & 0x0000007c) >> 2 ;

23 switch(ExcCode)

24 {

25 case Int:

26 /* Describe processing for interrupt exception */

116 Application Note U10710EJ5VOAN

CHAPTER 4 EXCEPTIONS

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

break:

case Mod:
/* Describe
break:

case TLBL:
/* Describe
break:

case TLBS:
/* Describe
break:

case AdEL:
/* Describe
break:

case AdES:
/* Describe
break:

case IBE:
/* Describe
break:

case DBE:
/* Describe
break:

case Sys:
/* Describe
break:

case Bp:

/* Describe
break:

case RI:

/* Describe
break:

case CpU:
/* Describe
break:

case Ov:

/* Describe
break:

case Tr:

/* Describe
break:

case FPE:
/* Describe
break:

case WATCH
/* Describe
break:
default:
break:

}

return;

processing

processing

processing

processing

processing

processing

processing

processing

processing

processing

processing

processing

processing

processing

processing

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

TLB modified exception */

TLB refill exception */

TLB refill exception */

address error exception */

address error exception */

bus error exception */

bus error exception */

system call exception */

breakpoint exception */

reserved instruction exception */

coprocessor unusable exception */

operation overflow exception */

trap exception */

floating point exception */

watch exception */

Application Note U10710EJ5VOAN

117

VOLUME 3 PROGRAMMING

4.2 Initialization of Exceptions

This section describes the exception initial settings and program, and the methods for allocating exceptions in the
vector, which are required when creating a monitor, etc. This program calls the program described in CHAPTER 5
CPU INITIALIZATION. When linking this program, link it with the required objects.

1 .set noreorder

2 # Cold reset, soft reset, NMI ---------mm oo m oo m oo -
3 .globl Reset

4 .ent Reset

5 # Oxbfc0 0000

6 Reset:

7 mfco $26, $12

8 1i $27, 0x00100000

9 and $27, $27, $27

10 bne $27, $0, NMI exception

11 # Describe processing for cold reset exception

12 jal Check Processor

13 nop

14 J Reset

15 nop

16 NMI_exception:

17 # Add processings for soft reset and NMI exception
18 jal Check Processor

19 nop

20 J Reset

21 nop

22 .end Reset

23

24 # TLB eXCeption —-----mm oo oo oo
25 .align 0x200

26 .globl TLB exception

27 .ent TLB_exception

28 # 0xbfc0 0200

29 TLB_exception:

30 # Describe processing for TLB exception

31

32 J Reset

33 nop

34 .end TLB_exception

35

36 # XTLB eXCeption ------- - oo oo oo e
37 .align 0x280

38 .globl XTLB exception

39 .ent XTLB_exception

40 # OxbfcO 0280

41 XTLB_exception:

42 # Describe processing for XTLB exception

43

44 J Reset

45 nop

46 .end XTLB_exception

47

48 # Cache error exception -—----------mmm oo
49 .align 0x300

118 Application Note U10710EJ5VOAN

CHAPTER 4 EXCEPTIONS

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

.globl
.ent
O0xbfcO 0300
Cache_error:

Cache_error
Cache_error

Describe processing for cache error exception

]
nop
.end

Other exceptions
.align
.globl
.ent

Oxbfc0 0380

OTHER_exception:

Reset

Cache_error

0x380
OTHER_exception
OTHER_exception

Set Cause register to argument 1

mfco
nop
nop
jal
nop
]
nop
.end

$4, 513

Check_Exception

Reset

OTHER_exception

Application Note U10710EJ5VOAN

119

VOLUME 3 PROGRAMMING

When saving this program with the file name reset.s, the following shows a sample of the makefile to allocate this
program to 0xBFCO 0000 when the GHS tool is used.

1 # Specification of target to be created

2 TARGET=reset

3

4 # Modify according to target CPU

5 CPU=r4000

6

7 # Specification of option to be passed to compiler
8 CFLAGS = -ansi -cpu = $(CPU) -G -c

9

10 # Assembler option

11 AFLAGS = -$(CPU)

12

13 # Specification of option to be passed to linker
14 LFLAGS = -e Reset

15

16 # Section specification

17 SECTION = -sec { .text 0xbfc00000 : .data : .sbss 0xa0018000 : .sdata : .bss }
18

19 # Compiler and linker specification

20 # Pass these along a path that includes the GHS tools directory
21 CC=ccmipel

22 AS=asmips

23 LD=Ix

24

25 # Program to be created

26 .MAIN: $ (TARGET)

27

28 # Link

29 $(TARGET) :reset.o # Add other required objects to ... part
30 $(LD) -o $(TARGET) $(LFLAGS) reset.o ... $(SECTION)
31

32 # Assemble

33 .s.o

34 $(AS) $(AFLAGS) S$*.s

35

36 # Compile

37 .c.o

38 $(CC) $(CFLAGS) $*.c

39 # end makefile

120 Application Note U10710EJ5VOAN

CHAPTER 5 CPU INITIALIZATION

This chapter describes, using sample programs, the initialization to be performed by software for creating
monitors, etc.

5.1 Initialization of CPU

Once the CPU has been activated, initialize first the registers incorporated in the CPU or coprocessor that are not
set by hardware. In the Vr Series, most of the registers are undefined after reset. It is necessary to correctly set the
values when initializing.

5.1.1 CPU registers
Many of the CPU registers are general-purpose registers. At least the following registers of general-purpose
registers require initialization.

* Register 26, register 27
Used by OS/monitor. Can be used when designing OS/monitors, etc.

When calling C-language functions, the following registers also require initialization.

e GP register (register 28)
Required to be initialized when using small-scale data area.
» SP register (register 29), FP register (register 30)
* Register 4, register 5, register 6, register 7
Used as arguments for functions
* RA register (register 31)
Used as returned address of a function

Store desired values in the registers at initialization. Assign an appropriate value to the multiply/divide operation

register incorporated in the CPU. The uses of these registers differs depending on the compiler. For details, refer to
the manual of each tool.

Application Note U10710EJ5VOAN 121

VOLUME 3 PROGRAMMING

5.1.2 CPO registers
Coprocessor 0 has registers that specify the operation of CPU. Therefore, coprocessor 0 is the most important
part of CPU initialization. For a detailed description of the CPO registers, refer to the user’s manual of each product.
The following CPO registers require setting.

» Config register (register 16)

» Status register (register 12)

e WatchLo register (register 18)
In some cases, a watch exception may occur unless this register is initialized before executing a load/store
instruction. Omit this setting in the VR5000 Series since it does not have a watch register.

e Compare register (register 11)
If the value of the count register becomes equal to that of the Compare register before initialization, a timer
interrupt is generated.

* Wired register (register 6)
This register must be set before using the TLB.

* EntryHi register (register 10)
The ASID area must be initialized.

The Config register and Status register are particularly important registers since they specify CPU operations.

Initialize the Config register by software before using the cache. When changing the block size of the cache,
perform writeback to memory before changing. If the block size is changed, re-initialize the cache.

For details of these registers, refer to VOLUME 2 Figures 1-7 to 1-9.

5.1.3 FPU (CP1) registers
* The VR4300 Series, VR5000 Series, Vr5432, Vr5500, and VrR10000 Series include a Floating Point Unit
coprocessor (FPU).
The FPU includes one set of floating point registers (FGR) and two control registers (Control/Status register:
FCR31, Implementation/Revision register: FCRO). Of these, only the Control/Status register requires initial setting.
The following shows an example of initializing the Control/Status register as part of FPU initialization.

--- Initialization of FPU register ---
Control/Status register
FS = 0, C = 0, Cause bit = 0x00, Enable bit = 0x00,
Flag bit = 0x00, RM = 00
1i $8, 0x00000000
ctcl $8, $31

o Ul W N R

*5.1.4 HALTimer shut down
In the VRr4100 Series, when HALTimer is not released by software within approx. 4 seconds after RTC reset, the
reset status is restored. Be sure to release HALTimer (set the HALTIMERRST bit of the PMUCNTREG register to 1)
when initialization has been correctly processed.

* 5.1.5 |Initialization of cache and TLB

Separately from the CPU initialization, it is necessary to individually initialize the cache and TLB. For details, refer
to CHAPTER 2 CACHE and CHAPTER 3 TLB.

122 Application Note U10710EJ5VOAN

CHAPTER 5 CPU INITIALIZATION

5.2 Example of Initialization Program

This section shows examples of initialization programs for Vr Series processors for each CPU.

When initializing CPU registers, set the values required by the registers used in these programs. In the following
programs, the CPU and FPU (CP1) general-purpose registers are not initialized. When using these registers, note

that their initial values are not guaranteed.

5.2.1 Vr4121

An example of an initialization program (for an evaluation board from TANBAC Co., Ltd. (TB0120-21-SDRAM)) is
shown below. Add/change initialization depending on the hardware (BCU, etc.) in accordance with the system used.
The “USER_PROGRAM” in the list indicates the start address of the program that starts execution after initialization

is complete.

1 HHHHHAFHHAF RS HH A H SRS RS R A R A A R A R
2 # Initialization program sample (VR4121)

3 HHHHHAFHHAFH A HHAFH SRS HH AR R A A A A R A R
4 .globl 1Initialize

5 .ent Initialize

6 Initialize:

7 # clear Hi/Lo registers

8 mthi S0

9 mtlo $0

10

11 # clear kO0/kl registers

12 1i $26, 0x00000000

13 1i $27, 0x00000000

14

15 # initialize CPO:Config register

16 mfcO $8, S$16

17 1i $9, 0xf07f7ff8 # clear EP,AD,BE,KO0 bits
18 and $8, $8, $9

19 1i $9, 0x00000003 # set KO0=3

20 or $8, $8, $9

21 mtcO $8, S$16

22

23 # initialize CPO:Status register

24 1i $8, 0x10000000 # set CUO=1,RE=0,BEV=0,TS=0,
25 # SR=0,CH=0,CE=0,DE=0

26 # IM=0,KX=0,SX=0,UX=0,KSU=0,
27 # ERL=0,EXL=0, IE=0

28 mtcO s$8, S$12

29

30 # WatchLo register

31 1i $8, 0x00000000 # set PAddr0=0,R=0,W=0
32 mtcO $8, $18

33

34 # Compare register

35 1i $8, Oxffffffff

36 mtcO $8, S$11

37

38 ## initialize TLB ##

39 1i $8, 0xa0000000 # base addr of VPN2

40 1i $9, 32 # number of TLRB entries
41 1i $10, 0x0800 # VPN2 increment

Application Note U10710EJ5VOAN

123

VOLUME 3 PROGRAMMING

42 .tlb_clear:

43 mtcO $8, $10 # EntryHi

44 addu $8, $8, $10

45 mtco $0, $2 # EntryLoO

46 mtcO $0, $3 # EntryLol

47 mtcO $0, $5 # PageMask

48 addiu $9, $9, -1

49 mtcO $9, SO # Index

50 nop

51 nop

52 tlbwi # Write Indexed TLB Entry
53 bgtz $9, .tlb clear

54 nop

55

56 ## initialize cache ##

57 mtcO $0, $28 # TagLo

58 # i-cache

59 1i $8, 0x80000000 # vaddr

60 1i $9, 0x4000 # i-cache size = 16KB
61 .icache_clear:

62 cache 0x00, ($8) # Index Invalidate

63 addiu $9, $9, -0x10

64 bgtz $9, .icache clear

65 addiu $8, $8, 0x10 # increment of line size
66 # d-cache

67 1i $8, 0x80000000 # wvaddr

68 1i $9, 0x2000 # d-cache size = 8KB

69 .dcache clear:

70 cache 0x09, ($8) # Index Store Tag

71 addiu $9, $9, -0x10

72 bgtz $9, .dcache clear

73 addiu $8, $8, 0x10 # increment of line size
74

75 ## initialize peripheral ##

76 1i $8, 0xab000000

77

78 # BCU etc.

79 # Add/change the register settings in accordance with the hardware.
80 1i $9, 0x4000

81 sh $9, 0x0000(s8) # BCUCNTREG1 <- 0x4000
82 1i $9, 0x0000

83 sh $9, 0x0002(s8) # BCUCNTREG2 <- 0x0000
84 1i $9, 0x4000

85 sh $9, 0x0016(s8) # BCUCNTREG3 <- 0x4000
86 1i $9, 0x4000

87 sh $9, 0x000a(s8) # BCUSPEEDREG <- 0x0336
88 1i $9, 0x0333

89 sh $9, 0x000e(s8) # BCURFCNTREG <- 0x0333
90 1i $9, 0x8039

91 sh $9, 0x001la(ss8) # SDRAMMODEREG <- 0x8039
92 1i $9, 0x0944

93 sh $9, 0x001le(s8) # SDRAMCNTREG <- 0x0944
94 # PMU

95 1i $9, 0x0002

96 sh $9, 0x00a0(s8) # PMUINTREG <- 0x0002
97 1i $9, 0x0003

124 Application Note U10710EJ5VOAN

CHAPTER 5 CPU INITIALIZATION

98 sh $9, 0x00ac(s8) # PMUDIVREG <- 0x0003
99 # ICU

100 1i $9, 0x0001

101 sh $9, 0x008c(s$8) # MSYSINT1REG <- 0x0001
102 1i $9, 0x0000

103 sh $9, 0x0098(s$8) # NMIREG <- 0 NMI
104

105 ## reset haltimer ##

106 jal haltimerrst

107 nop

108

109 ## start user program ##

110 1i $31, USER_PROGRAM

111 jr $31

112 nop

113

114 # HALTIMER RESET

115 .globl haltimerrst

116 .ent haltimerrst

117 haltimerrst:

118 lui $8, 0xab00 # %$hi (PMUCNTREG)
119 1h $9, 0x00a2(s$8)

120 ori $9, $9, 0x4 # set HALTIMERRST
121 sh $9, 0x00a2(s$8)

122 jr $31

123 nop

124 .end haltimerrst

5.2.2 Vr4122

An example of an initialization program (for an evaluation board from TANBAC Co., Ltd. (TB0151-1)) is shown
below. Add/change initialization depending on the hardware (BCU, SDRAM, etc.) in accordance with the system
used. The “USER_PROGRAM” in the list indicates the start address of the program that starts execution after
initialization is complete.

1 HHHHH A HHAF RS HH G H SRS HH AR R A A A R A R
2 # Initialization program sample (VR4122)

3 HHHHHAFHHAF RS HH G H A H A RS R R R R R R A R
4 .globl 1Initialize

5 .ent Initialize

6 Initialize:

7 # clear Hi/Lo registers

8 mthi S0

9 mtlo $0

10

11 # clear kO0/kl registers

12 1i $26, 0x00000000

13 1i $27, 0x00000000

14

15 # initialize CPO:Config register

16 mfco $8, S$16

17 1i $9, 0x707e7fd8 # clear IS,EP,AD,BP,BE,IB,KO0
18 and $8, $8, $9

19 1i $9, 0x00000003 # set IS=0,BP=0,IB=0,K0=3
20 or $8, $8, $9

21 mtcO $8, $16

Application Note U10710EJ5VOAN 125

VOLUME 3 PROGRAMMING

22

23 # initialize CPO:Status register

24 1i $8, 0x10000000 # set CUO=1,RE=0,BEV=0,TS=0,
25 # SR=0,CH=0,CE=0,DE=0
26 # IM=0,KX=0,SX=0,UX=0,KSU=0,
27 # ERL=0,EXL=0,IE=0

28 mtco $8, $12

29

30 # WatchLo register

31 1i $8, 0x00000000 # set PAdAdr0=0,R=0,W=0
32 mtco $8, $18

33

34 # Compare register

35 1i $8, Oxffffffff

36 mtcO $8, S$11

37

38 ## initialize TLB ##

39 1i $8, 0xa0000000 # base addr of VPN2

40 1i $9, 32 # number of TLB entries
41 1i $10, 0x0800 # VPN2 increment

42 .tlb_clear:

43 mtcO $8, $10 # EntryHi

44 addu $8, $8, S$10

45 mtco 30, $2 # EntryLoO

46 mtco 30, $3 # EntryLol

47 mtco $0, S$5 # PageMask

48 addiu $9, $9, -1

49 mtcO $9, SO # Index

50 nop

51 nop

52 tlbwi # Write Indexed TLB Entry
53 bgtz $9, .tlb clear

54 nop

55

56 ## initialize cache ##

57 mtco $0, $28 # TagLo

58 # i-cache

59 1i $8, 0x80000000 # vaddr

60 1i $9, 0x8000 # i-cache size = 32KB
61 .icache clear:

62 cache 0x00, ($8) # Index Invalidate

63 addiu $9, $9, -0x10

64 bgtz $9, .icache clear

65 addiu $8, $8, 0x10 # increment of line size
66 # d-cache

67 1i $8, 0x80000000 # wvaddr

68 1i $9, 0x4000 # d-cache size = 16KB
69 .dcache clear:

70 cache 0x09, ($8) # Index Store Tag

71 addiu $9, $9, -0x10

72 bgtz $9, .dcache clear

73 addiu $8, $8, 0x10 # increment of line size
74

75 ## initialize peripheral ##

76 1i $8, 0xaf000000

77

126 Application Note U10710EJ5VOAN

CHAPTER 5 CPU INITIALIZATION

78 # BCU/SDRAMU etc.

79 # Add/change the register settings in accordance with the hardware.
80 1i $9, 0x0000

81 sh $9, 0x0000(s$8) # BCUCNTREGL1 <- 0x0000
82 1i $9, 0x2222

83 sh $9, 0x0004(s$8) # ROMSIZEREG <- 0x2222
84 1i $9, 0x3007

85 sh $9, 0x0006($8) # ROMSPEEDREG <- 0x3007
86 1i $9, 0x0080

87 sh $9, 0x0016(s$8) # BCUCNTREG3 <- 0x0080
88 1i $9, 0x8021

89 sh $9, 0x0400(s8) # SDRAMMODEREG <- 0x8021
90 1i $9, 0x0533

91 sh $9, 0x0402(s$8) # SDRAMCNTREG <- 0x0533
92 1i $9, 0x020c

93 sh $9, 0x0404(s8) # BCURFCNTREG <- 0x020c
94 1i $9, 0x4444

95 sh $9, 0x0408(s$8) # SAMSIZEREG <- 0x4444
96

97 # PMU

98 1i $9,0x0002

99 sh $9,0x00c0($8) # PMUINTREG <- 0x0002
100 # ICU

101 1i $9,0x0001

102 sh $9,0x008c ($8) # MSYSINT1REG <- 0x0001
103 1i $9,0x0000

104 sh $9,0x0098($8) # NMIREG <- 0 NMI

105

106 ## reset haltimer ##

107 jal haltimerrst

108 nop

109

110 ## start user program ##

111 1i $31, USER_PROGRAM

112 jr $31

113 nop

114

115 # HALTIMER RESET

116 .globl haltimerrst

117 .ent haltimerrst

118 haltimerrst:

119 lui $8, 0xaf0o0 # %$hi (PMUCNTREG)

120 1h $9, 0x00a2(s$8)

121 ori $9, $9, 0x4 # set HALTIMERRST

122 sh $9, 0x00a2(s$8)

123 jr $31

124 nop

125 .end haltimerrst

Application Note U10710EJ5VOAN 127

VOLUME 3 PROGRAMMING

*x5.2.3 VR4181
An example of an initialization program is shown below. Add initialization depending on the hardware (bus control,
etc.) in accordance with the system used. The “USER_PROGRAM” in the list indicates the start address of the
program that starts execution after initialization is complete.

1 HHHHHAFHHAF R R R R A R R
2 # Initialization program sample (VR4181)

3 HHHHHAHHHAF R R A R R A R R
4 .globl Initialize

5 .ent Initialize

6 Initialize:

7 # clear Hi/Lo registers

8 mthi 30

9 mtlo 30

10

11 # clear kO0/kl registers

12 1i $26, 0x00000000

13 1i $27, 0x00000000

14

15 # initialize CPO:Config register

16 mfco $8, s$16

17 1i $9, 0xf07f7ff8 # clear EP,AD,BE,K0 bits
18 and $8, $8, $9

19 1i $9, 0x00000003 # set KO0=3

20 or $8, $8, $9

21 mtcO $8, S$16

22

23 # initialize CPO:Status register

24 1i $8, 0x10000000 # set CUO=1,RE=0,BEV=0,TS=0,
25 # SR=0,CH=0,CE=0,DE=0

26 # IM=0,KX=0,SX=0,UX=0,KSU=0,
27 # ERL=0,EXL=0,IE=0

28 mtcO $8, $12

29

30 # WatchLo register

31 1i $8, 0x00000000 # set PAddr0=0,R=0,W=0
32 mtcO $8, $18

33

34 # Compare register

35 1i $8, Oxffffffff

36 mtcO $8, S$11

37

38 ## initialize TLB ##

39 1i $8, 0xa0000000 # base addr of VPN2

40 1i $9, 32 # number of TLB entries
41 1i $10, 0x0800 # VPN2 increment

42 .tlb_clear:

43 mtco $8, S$10 # EntryHi

a4 addu $8, $8, $10

45 mtco $0, $2 # EntryLoO

46 mtco $0, $3 # EntryLol

47 mtco 30, S$5 # PageMask

48 addiu $9, $9, -1

49 mtco $9, SO # Index

50 nop

128 Application Note U10710EJ5VOAN

CHAPTER 5 CPU INITIALIZATION

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

nop

tlbwi # Write Indexed TLB_Entry
bgtz $9, .tlb clear

nop

initialize cache

.icache clear:

mtcO $0, $28 # TagLo

i-cache

1i $8, 0x80000000 # wvaddr

1i $9, 0x1000 # i-cache size = 4KB
cache 0x00, ($8) # Index Invalidate
addiu $9, $9, -0x10

bgtz $9, .icache clear

addiu $8, $8, 0x10 # increment of line size
d-cache

1i $8, 0x80000000 # wvaddr

1i $9, 0x1000 # d-cache size = 4KB

.dcache_clear:

cache 0x09, ($8) # Index Store Tag

addiu $9, $9, -0x10

bgtz $9, .dcache clear

addiu $8, $8, 0x10 # increment of line size

initialize peripheral
1i $8, 0xab000000

Bus Control
Add the register settings in accordance with the hardware.

PMU

1i $9, 0x0002

sh $9, 0x00a0($8) # PMUINTREG <- 0x0002

ICU

1i $9, 0x0001

sh $9, 0x008c($8) # MSYSINT1REG <- 0x0001
1i $9, 0x0000

sh $9, 0x0098(s$8) # NMIREG <- 0 NMI

reset haltimer
jal haltimerrst
nop

start user program

1i $31, USER_PROGRAM
jr $31
nop

HALTIMER RESET

haltimerrst:

.globl haltimerrst

.ent haltimerrst

lui $8, 0xab00 # %$hi (PMUCNTREG)
1h $9, 0x00a2(s8)

ori $9, $9, 0x4 # set HALTIMERRST
sh $9, 0x00a2(s8)

Application Note U10710EJ5VOAN

129

VOLUME 3 PROGRAMMING

107 jr $31
108 nop
109 .end haltimerrst

* 5.2.4 Vr4300 Series

1 H#HHHAHHHAH SRS A R A A A A R R A
2 # Initialization program sample (VR43XX)

3 #HHARHHE R R A R R R A R R R R R
4 .globl 1Initialize

5 .ent Initialize

6 Initialize:

7 # -- Initialization of CPU register --

8 # Hi, Lo registers

9 mthi $0

10 mtlo $0

11

12 # -- Initialization of coprocessor register --

13 # Config register

14 # EP=6, BE=1, KO=3, CU=0

15 mfcO $8, $1l6

16 1i $9, O0xfO0ff7£f0

17 1i $10, 0x06008003

18 and $8, $8, $9

19 or $8, $8, $10

20 mtcO $8, $16

21 # Status register

22 # CU=0x3, RP=0, FR=0, RE=0, DS=1, IM=0, KX=0

23 # SX=0, UX=0, KSU=0, ERL=0, EXL=0, IE=0

24 1i $9, 0x30010000

25 mtcO $9, $12

26 # WatchlLo register

27 mtcO $0, $18

28

29 # -- Initialization of FPU register --

30 # Control/Status register

31 # FS=0, c=0, Cause bit=0x00, Enable bit=0x00

29 # Flag bit=0x00, RM=00

30 1i $8, 0x00000000

32 ctcl $8, $31

33

34 # -- Initialization of TLB --

35 1i $8, 0x2000

36 1i $9, 0x80000000

37 move $10, $0

38 1i $11, 31 # 32 entries

39 mtco S0, $2 # Initialization of EntryLoO register
40 mtco S0, $3 # Initialization of EntryLol register
41 mtco $8, $5 # Initialization of PageMask register
42 .tlb clear:

43 mtc0 s$10, S0 # Set Index register

44 mtcO $9, $10 # Initialization of EntryHi register
45 tlbwi # From TLB entry to each TLB entry register
46 nop

47 addi $9, $9, 0x2000

130 Application Note U10710EJ5VOAN

CHAPTER 5 CPU INITIALIZATION

48 bne $10, s$11, .tlb clear

49 addi $10, $10, 0x1

50 nop

51

52 # -- Initialization of cache --

53 mtcO $0, $28 # Set TaglLo register to 0
54 # Initialization of instruction cache

55 1i $11, 0x80003fe0

56 1i $6, 0x80000000

57 .icache_clear:

58 cache 0x0, 0x0(%6)

59 bne $6, s$11, .icache clear
60 addi $6, $6, 0x20

61 # Initialization of data cache

62 1i $11, 0x80001ff0

63 1i $6, 0x80000000

64 .dcache_clear:

65 cache 0x9, 0x0(%6)

66 bne $6, s$11, .dcache clear
67 addi $6, $6, 0x10

68

69 # -- Jump to user program --

70 1i $31, USER_PROGRAM

71 jr $31

72 nop

73 .end Init Vr4300

5.2.5 VRr5000 Series

.set noreorder
.text
.globl init50
.ent init50
init50:
/*** CPO/l reg ***/
mfcO $2, $S16 /* $16=Config reg */
1i $3, Oxffffeffs
and $3, $3, $2
addiu $3, $3, 0x1003
mtcOo $3, S16 /* SE=0x1, K0=0x3 */
1i $4, 0xb0000000
mtcOo $4, $12 /* $12=Status reg, XX=0x1l, CU1l=0x1, CUO=0x1 */
mtc0 $0, $13 /* $13=Cause reg, IP[1:0]1=0x0 */
ctecl 30, $31 /* $31=FPU Control/Status reg */
/*** cache ***/
mfco $2, $12
1i $3, 0x00010000
or $3, $3, $2
mtcO $3, $12 /* DE=0x1 */
Application Note U10710EJ5VOAN 131

VOLUME 3 PROGRAMMING

i_cache:

d_cache_tag:

d_cache_data:

s_cache:

/***x TLB ***%/

mtcO $0, $28

1i $4, 0x80000000

1i $5, 0x80008000

cache 0x8, 0x0($4) /* index store tag */
cache 0x14, 0x0($4) /* £ill */

cache 0x0, 0x0($4) /* index invalidate */
addiu $4, $4, 0x20

bne $4, $5, i _cache

nop

1i $4, 0x80000000

cache 0x9, 0x0($4) /* index store tag */
addiu $4, $4, 0x20

bne $4, $5, d _cache tag

nop

1i $4, 0x80000000

cache 0xd, 0x0($4) /* create dirty exclusive */
sd $0, 0x0($4)

sd $0, 0x8(%4)

sd $0, 0x10(s4)

sd $0, 0x18(s4)

cache 0x1, 0x0($4) /* index write back invalidate */
addiu $4, $4, 0x20

bne $4, $5, d cache data

nop

1i $4, 0x80000000

1i $6, 0x80100000 /* ex. L2cache=1MB */
cache 0xb, 0x0($4) /* index store tag */
addiu $4, $4, 0x20

bne $4, $6, s_cache

nop

mtcO $2, $12

1i $2, 0x30

1i $3, 0xa0000000

mtc0 $0, $2 /* $2=EntryLo0 reg */

mtc0 $0, $3 /* $3=EntryLol reg */

mtc0 $0, $5 /* $5=PageMask reg */
tlb:

addiu $2, $2, -1

mtc0 $2, SO /* $0=Index reg */

mtc0 $3, $10 /* $10=EntryHi reg */
132 Application Note U10710EJ5VOAN

*

CHAPTER 5 CPU INITIALIZATION

nop
nop
nop
tlbwi
bne $0, $2, tlb
addiu $3, $3, 0x2000
.end init50

5.2.6 VRr5432
.set noreorder
.text
.globl init54
.ent init54

init54:

/*** CPO/l reg ***/
mfco $2, 816 /* $16=Config reg */
1i $3, OxXfOfffffs
and $3, $3, $2
1i $4, 0x3
add $3, $3, sS4
mtcO $3, $16 /* EP=0x0, KO0=0x3 */
1i $5, 0xf0010000
mtco $5, 812 /* $12=Status reg, CU[3:0]=0xf, DE=0x1 */
mtco 30, S$13 /* $13=Cause reg, IP[1:0]=0x0 */
mtco $0, 318 /* $18=WatchLo reg */
ctcl $0, $31 /* $31=FPU Control/Status reg */

/*** cache ***/
mtcO $0, $28
1i $4, 0x80000000
1i $5, 0x80004000

i cache:
cache 0x8, 0x0($4) /* index_store tag, way0 */
cache 0x8, 0x1(3%4) /* index_store tag, wayl */
addiu $4, $4, 0x20
bne $4, $5, 1 _cache
nop
1i $4, 0x80000000

d _cache:
cache 0x9, 0x0($4) /* index_store tag, way0 */
cache 0x9, 0x1($4) /* index_store tag, wayl */
addiu $4, $4, 0x20
bne $4, $5, d_cache
nop

Application Note U10710EJ5VOAN

133

VOLUME 3 PROGRAMMING

/***x TLB ***%/

1i $2, 0x30
1i $3, 0xa0000000
mtc0 $0, $2 /* $2=EntryLo0 reg */
mtc0 $0, $3 /* $3=EntryLol reg */
mtc0 $0, $5 /* $5=PageMask reg */
tlb:
addiu $2, $2, -1
mtc0 $2, SO /* $0=Index reg */
mtc0 $3, $10 /* $10=EntryHi reg */
nop
nop
nop
tlbwi
bne $0, $2, tlb
addiu $3, $3, 0x2000
.end init54
*5.2.7 Vr5500
.set noreorder
.text
.globl init55
.ent init55
init55:
lui r30, 0x6401 # Enable CP1l, CP2, & FR & Disable Parity.
mtcOo r30, CO_SR # Set Status Register.
mtcO r0, CO0_WatchLo # Disable all Watch Exceptions.
mfcO r2, CO_Config
1i r3, Oxf03ffffs
and r3, r3, r2
1i r4, 0x3
add r3, r3, r4
mtcO r3, CO_Config
ctcl 0, Cl SR # Clear CP1l Status Register.
mtcOo r0, C0_TagLo
mtcO r0, CO0_TagHi
1i rl, 0x80003FEO # Initialize Index.
1i r2, 0x80000000 # Define End Condition.
ICInvalLoop:
cache Index Store Tag I, 0x0000 (rl)
cache Index Store Tag I, 0x0001 (rl)
bne rl, r2, ICInvalLoop
addiu rl, 1rl,-0x0020
1i rl, Ox80003FEO # Initialize Index.
1i r2, 0x80000000 # Define End Condition.
DCInvalLoop:
134 Application Note U10710EJ5VOAN

*

CHAPTER 5 CPU INITIALIZATION

cache Index Store Tag D, 0x0000 (rl)
cache Index Store Tag D, 0x0001 (rl)
bne rl, 1r2, DCInvalLoop

addiu rl, 1rl,-0x0020

TLB initialize

mtcO r0, CO0_PageMask # Set Page size to

mtcO r0, CO_EntryLoO # Clear EntryLo (G

mtcO r0, CO_EntryLol # Clear EntryLo (G

1i rl, Ox2F # Initialize Index.

1i r2, 0xABC5E000 # Initialize VPN.
TLBInvalLoop:

mtcO rl, CO_Index

dmtco r2, CO_EntryHi
addiu rl, rl,-0x0001
addiu r2, 1r2,-0x2000

bgez rl, TLBInvalLoop
tlbwi
.end init55

4K.
Bit in particular)
Bit in particular)

5.2.8 VRr10000 Series

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#tdefine
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define

#define

C0_Index $0
C0_Random $1
C0_EntryLo0 $2
C0_EntryLol $3
C0_Context $4
C0_PageMask $5
C0_Wired $6
CO0_BadVAddr $8
C0_Count $9
C0_EntryHi $10
C0_Compare $11
CO_SR $12
C0_Cause $13
C0_EPC $14
C0_PRId $15
C0_Config $16
C0_LLAddr $17
C0_WatchLo $18
C0_WatchHi $19

CO_XContext $20
CO0_FrameMask $21
C0_Diag $22
CO_Perf $25
C0_ECC $26
CO_CacheErr $27
C0_TagLo $28
CO_TagHi $29
CO0_ErrorEPC $30

SR_XX 0x80000000 /* MipsIV mode enable */
SR_CU2 0x40000000 /* Coprocessor 2 usable */
SR _CU1l 0x20000000 /* Coprocessor 1 usable */

Application Note U10710EJ5VOAN

135

VOLUME 3 PROGRAMMING

#define SR _CUO 0x10000000 /* Coprocessor 0 usable */

#define SR_RP 0x08000000 /* $P bit */

#define SR_FR 0x04000000 /* FR bit */

#define SR DE 0x00010000 /* parity or ECC to cause exceptions? */

#define BP_All Taken 2 /* Predict all br as taken */
#define Diag BPModeShf 16 /* bits 17..16 */
#define Init BPT 00 2 /* bits 1..0 */

/***

*

Main program *

***/

.text

.set noat

.set noreorder
.globl init vr10000
.ent init vr10000

init_vr10000:
/***

* Initialization of CPO register *
***/

1i $0, 0x00
add $8, $0, $O
1i $8, (SR _XX | SR_CULl | SR CUO | SR _FR)

mtcO $8, CO_SR

mtcO $0, CO_TagLo

mtcO $0, CO_TagHi

mtcO $0, CO_ECC

mtcO $0, CO_PageMask # 4k byte pages
mtcO0 $0, CO_Index

mtcO $0, CO_EntryHi

mtcO0 $0, CO_EntryLoO

mtcO $0, CO_Entrylol

mtcO $0, CO_Cause

mtcO0 $0, CO Wired # also sets Random register to 63

/***

* Initialize all registers:
* After a power-on or cold reset sequence, all logical
* registers (both in the integer and the floating-point
* register files) must be written before they can be read.
* Failure to write any of these registers before reading from
* them will have unpredictable result.
IR R R EE R E RS RS R SRR EEEREEEEEEES]
add $1, $0, s0
dmtcl $0, S$fO
add $2, $0, s0
dmtcl $0, S$f1
add $3, $0, s0
dmtcl $0, S$f2
add $4, $0, S0
dmtcl $0, S$£f3

136 Application Note U10710EJ5VOAN

CHAPTER 5 CPU INITIALIZATION

add s$5, $0, $0

dmtcl $0,

sf4

add $6, $0, SO

dmtcl $0,

Sf5

add $7, $0, $O

dmtcl SO0,

Sfe

add $8, $0, $O

dmtecl $0,

SE£7

add $9, $0, $0

dmtcl $0,
add s$1o0,
dmtcl $0,
add $11,
dmtcl $0,
add $12,
dmtcl $0,
add $13,
dmtecl $O,
add $14,
dmtcl $O0,
add $15,
dmtecl $O0,
add s1ie6,
dmtecl $O,
add $17,
dmtecl $O,
add s18,
dmtecl $0,
add s$19,
dmtecl $O,
add $20,
dmtecl $O,
add $21,
dmtecl $O0,
add $22,
dmtecl $O,
add $23,
dmtecl $O,
add $24,
dmtecl $O,
add $25,
dmtcl $O,
add $26,
dmtecl $O,
add $27,
dmtecl $O,
add $28,
dmtecl $O0,
add $29,
dmtecl $O,
add $30,
dmtecl $O,
add $31,
dmtcl $O0,
dmtecl $O,
mult $1,

Sf8
$0, $0
$f9
$0, $0
$fi1o0
$0, $0
sf11
$0, $0
$fl12
$0, $0
$f13
$0, $0
sfl4
$0, $0
$f15
$0, $0
sfle
$0, $0
Sf17
$0, $0
sf18
$0, $0
$f19
$0, $0
$f20
$0, $0
sf21
$0, $0
sf22
$0, $0
$f23
$0, $0
sf24
$0, $0
$f25
$0, $0
sf26
$0, $0
sf27
$0, $0
sf28
$0, $0
$f29
$0, $0
$Sf30
$f31
$2 # for hi lo registers

Application Note U10710EJ5VOAN

137

VOLUME 3 PROGRAMMING

/* Change Prediction Mode to BP_All Taken before using branches */
1i $8, BP_All Taken << Diag BPModeShf

/***

* Initialize Branch Prediction Table using BPT line init *
***/

11 $9, 255 # number of lines to initialize in
BPT_loop:

sll $10, s$9, 6

ori $10, $10, Init BPT 00

or $10, S8

mtcO0 $10, CO_Diag

bgtz $9, BPT loop

addi s$9, -1

/***

* Initialize TLB using tlbwi instruction: all 64 entries invalid *
***/

1i $8, 63 # Index register

mtcO0 $0, CO_EntryHi

mtcO0 $0, CO_EntryLoO

mtcO $0, CO_Entrylol

tlb loop:

mtcO0 $8, CO_Index

nop

tlbwi

bne $8, $0, tlb loop

sub $8, 1

/***

* Initialize Cache *

***/

/* Enter the initialization program of the cache shown in page 94 here.

.end init vr10000

*/

138 Application Note U10710EJ5VOAN

APPENDIX

[B]

BYPaSsSINGcoveiieeeeiieee e 48

[C]

CacChe .o 49, 92
Fill. e 100
INAEX e 50
Initializationcoeeviiiiii e 92, 122
LiNe SIZ@ ..eeeeeeei e 50
Operationccuvveeiee e 59
Primary cache ... 49
Secondary cachecccccevvieiiiniiii e 55
SIZE e 50
Tag display.......cc.ueeeeeieeiiiieee e 102
Writeback ... 98

Cache iNStrUCtoNuveeiiiiii e 57
OPErationcceeeieeeiiie e 59
Suboperation code...........ccoeviiiiiiiiiiiinns 57, 58, 59

Cacheline......ccccccevviniiniiininnnn, 51, 52, 53, 54, 55, 56
SIZE e 50

Cause regisSterceriiiiiiieie e 76

Cold reset exception.........ccccvvveeeeeeiicciiieeeeenn. 75, 115

Config registerccoiiiiiiii e 26

Context register ... 113

Control/Status register.........ccceveeeniienieenieeneee e, 39

(0] o] (oTeT=T1-To] (PR URRRRN 25
REGISter...cii i 25

CPO s 25
Hazard.......cccoooeiiiiiie e 36, 87, 88, 89, 91
Register.... ..o 25, 122

CPU e s 19
Initializationcoeveviiiii e 121
INSTrUCHON...coiiii e 22
Register.... . 24, 121

[D]

Debug interfaceccccevvieiiiiiiie e 82

Delay ... 46
Branching delaycccoocoiiiieiiiiiiiiiieeeeen 46, 85
Loading delay.........ccoeeceveeeiieeeeiiee e 47, 86

DS Area....cccoiiiieiiiii e 31

[E]

EntryHi register........oocooiieeiiiiiie 66, 107

INDEX
EntryLo register.......coveevviiiiiiiee e 67, 107
EXCePioncoooviiiiiiee e 36, 73, 115
Discriminatingooocvverieeiiiiieeeee e 115
Initialization ... 118
PrOMY..ceeeeeee e 74
TYPES it 73
Vector address.........uveevveiiiiiciieeeee e 75
Exception processingccccvviiveeeeiniereesseee e 78
Hardwarec.oeeeieeiiiee e 78
Multiple interrupt ..o 81
SOfWAIE...ceiiiiiie e 80
[F]
FCRS3T e 39
FPU et e 37
INSTrUCHION ... 37
Register ... 37, 38, 122
[G]
General-purpose exception..........ccccuueerceeeriieeeneennns 76
[H]
HALTImer shut downoooiiiiiiiiiiiiiiieeeeee e 122
Hazard..........oooeiiiieiie e 36, 87
(1
INAEX reQIStEr .. 68
Initialization program
CaCNE ... 93
O] = S 123
25 (o1=T o] (o] o IR 118
FPU register.....ccovi e 122
T s 110
Instruction
CaCNE ... 57
O] = S 22
FOrmat ..o 22
FPU et 37
Hazardooeviiiiiie e 87, 90
I = S 71
INEEIOCK. ... 44
SlIP et 45
Stall. e 45
[M]
Mapping of address.........cccovvveeiiriee i 34

Application Note U10710EJ5VOAN 139

APPENDIX INDEX

Memory hierarchycccooiieii e 35

Memory managementccoccoveeeieee e 33

Multiple interruptcoovviiiiiii 81

[N]

NMI exceptioncccevvviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeees 75, 115

[O]

OUL-Of-0rdereeeeiiieeeeee e 19

[P]

PageMask register........cccccovviiiiieeiiiiiiiiineenn, 64, 107

Physical address.........cccceeiiiiiiieiieee e 34, 62

Pipeline ... 20, 41, 85
2-Way SUPEISCAlArccvveeiiiriieeeree e 21
4-Way SUPEISCAIArcceviiiiiiiiiieee e 21
Branching delay........cccccoveeeeiiiieniieee e 46, 85
BYPaSSING....ccocuiieeiieeee e 48
INEEMOCK . .ccieee e 44
Loading delaycccoovviiiiiieiiiiiiiiieeeeeeeee 47, 86
Number of stagesccevvveiiii e, 41
Operation........ceeeeeiecciiieee e 42,43
SINGIE-WaAYeoiiiiiiiiiiee e 20
SHP e 45
STAGE e 41
Stall o 45

Program
Branching delay...........coccuviieiiiiiiiie s 85
Cache fill....ooeeeeeeee e 100
Cache initializationcccccceevviiiiieiiiiiieceeee 93
Cache tag displaycccoceerveeriee e 102
Cache writebackK..........ccccovriiiiiiiiic e 98
CPU initializationc.ccceeriieeniii e 123
Discriminating between exceptions............ 115, 116
FPU register initialization............c.cccoceiiiinennens 122
Initialization of exceptionscccovvveeveeiiiinnns 118
Loading delayccoeeeirmeeiieeee e 86
TLB entry read.......ccooocvveieeiiiiiiiieeeee e 104
TLB entry replacementcccccovieeeeiiinennnnen. 111
TLB entry Write ...cccooviiiiieeieeee e 105

TLB initialization ... 110
TLB Setting.....ceeeeeieieieee e 107
Programming t00ISccccuvvieeiiiiii e 17

[R]

Random register.........coociiiiieiiiiieee e 69

Register
[070] o] (oot =T1-To) SR 25
CPO . 25,122
CPU ..o 24,121
FPU . 37,122
TLB @NEIY oo 64

Rounding Modecccovviiieeiiiieee e 40

[S]

Soft reset exception.........ccoeeceiiiiiiieiceeee 75, 115

Status register ... 28
Self-diagnostic status area........cccccccceeeecerernnnen. 31

[T]

TLB et 33,61, 104
Initializationccooevvviiiiiie 110, 122
INSTrUCHION ..o 71
Translationcoooueeiiiiiiiiie e 63, 109

TLB @NEIY e 63
Page Siz€......cooveiiiiiii e 65
Read ..o 104
Register.. ... 64
Replacement..........ccoiiiieiii e 111
SEHING . .eeii i 107
Table ... 112
WG e 105

Translation of address........cccceviiiiiieeieni e, 62

[V]

Virtual address........ceeeeeeeeeeieeieeeeeeeeeee e, 34, 62

(w]

Wired register ... 70

140 Application Note U10710EJ5VOAN

NEC

Although NEC has taken all possible steps
essage to ensure thatthe documentation supplied
to our customers is complete, bug free

. and up-to-date, we readily accept that
From: P
errors may occur. Despite all the care and
precautions we've taken, you may
Name encounter problemsinthe documentation.
Please complete this form whenever
Company you'd like to report errors or suggest
improvements to us.
Tel. FAX
Address
Thank you for your kind support.
North America Hong Kong, Philippines, Oceania Asian Nations except Philippines
NEC Electronics Inc. NEC Electronics Hong Kong Ltd. NEC Electronics Singapore Pte. Ltd.
Corporate Communications Dept. Fax: +852-2886-9022/9044 Fax: +65-250-3583

Fax: +1-800-729-9288
+1-408-588-6130

Europe Korea Japan
: NEC Electronics Hong Kong Ltd. NEC Semiconductor Technical Hotline
NEC EI E H
© Electronics (Europe) GmbH o | 5ranch Fax: +81- 44-435-9608

Market Communication Dept.

Fax: +49-211-6503-274 Fax: +82-2-528-4411

South America Taiwan
NEC do Brasil S.A. NEC Electronics Taiwan Ltd.
Fax: +55-11-6462-6829 Fax: +886-2-2719-5951

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

If possible, please fax the referenced page or drawing.

Document Rating Excellent Good Acceptable Poor
Clarity a a a a
Technical Accuracy a a a a
Organization a a a a

CS 01.11

	COVER
	Major Revisions in This Edition
	INTRODUCTION
	VOLUME 1 OUTLINE OF TOOLS
	CHAPTER 1 PROGRAMMING TOOLS

	VOLUME 2 VR SERIES ARCHITECTURE
	CHAPTER 1 OUTLINE
	1.1 CPU
	1.1.1 Outline
	1.1.2 Pipeline
	1.1.3 Instructions
	1.1.4 Registers

	1.2 Coprocessors
	1.2.1 Registers
	1.2.2 Memory management
	1.2.3 Exceptions
	1.2.4 Hazards

	1.3 FPU
	1.3.1 Instructions
	1.3.2 Registers

	CHAPTER 2 PIPELINE
	2.1 Pipeline Stage
	2.2 Interlock
	2.3 Delay
	2.3.1 Branching delay
	2.3.2 Loading delay

	2.4 Bypassing

	CHAPTER 3 CACHE
	3.1 Primary Cache
	3.1.1 VR4100 Series
	3.1.2 VR4300 Series
	3.1.3 VR5000 Series
	3.1.4 VR5432 and VR5500

	3.2 Secondary Cache
	3.2.1 VR5000 Series
	3.2.2 VR10000 Series

	3.3 Cache Instructions

	CHAPTER 4 TLB
	4.1 Translation from Virtual Addresses to Physical Addresses
	4.2 TLB Entries
	4.3 TLB Entry Register
	4.3.1 PageMask register
	4.3.2 EntryHi register
	4.3.3 EntryLo0/Lo1 register
	4.3.4 Others

	4.4 TLB Instructions

	CHAPTER 5 EXCEPTIONS
	5.1 Types of Exceptions
	5.2 Priority of Exceptions
	5.3 Exception Vector Address
	5.4 Cautions Concerning Major Exceptions
	5.4.1 Cold reset, soft reset, NMI exceptions
	5.4.2 General-purpose exceptions

	5.5 Exception Processing
	5.5.1 Hardware processing
	5.5.2 Software processing
	5.5.3 Multiple interrupts

	CHAPTER 6 DEBUG INTERFACE
	6.1 Debug Interface Function
	6.2 Debug System Configuration

	VOLUME 3 PROGRAMMING
	CHAPTER 1 PIPELINE
	1.1 Program Not Stopping Pipeline
	1.1.1 Branching delay
	1.1.2 Loading delay

	1.2 Instruction Hazards
	1.2.1 Calculation of CP0 hazards

	CHAPTER 2 CACHE
	2.1 Cache Initialization
	2.1.1 Cache initialization procedure
	2.1.2 Example of cache initialization program

	2.2 Cache Writeback
	2.2.1 Example of cache writeback program

	2.3 Cache Fill
	2.3.1 Example of cache fill program

	2.4 Cache Tag Display
	2.4.1 Example of cache tag display program

	CHAPTER 3 TLB
	3.1 Entry Read
	3.2 Entry Write
	3.3 TLB Settings
	3.4 TLB Initialization
	3.5 TLB Entry Replacement

	CHAPTER 4 EXCEPTIONS
	4.1 Discriminating Between Exceptions
	4.1.1 Cold reset, soft reset, and NMI exceptions
	4.1.2 Other exceptions

	4.2 Initialization of Exceptions

	CHAPTER 5 CPU INITIALIZATION
	5.1 Initialization of CPU
	5.1.1 CPU registers
	5.1.2 CP0 registers
	5.1.3 FPU (CP1) registers
	5.1.4 HALTimer shut down
	5.1.5 Initialization of cache and TLB

	5.2 Example of Initialization Program
	5.2.1 VR4121
	5.2.2 VR4122
	5.2.3 VR4181
	5.2.4 VR4300 Series
	5.2.5 VR5000 Series
	5.2.6 VR5432
	5.2.7 VR5500
	5.2.8 VR10000 Series

	APPENDIX INDEX

