High Performance

SAB-R2010A

Floating-Point Coprocessor

Based on advanced RISC architecture
with four independent arithmetic functional units

Advance Information

Fully conforms to ANSI/IEEE standard
754-1985 for binary floating-point
arithmetic

Load/store instruction set
single cycle loads and stores

Four independent functional units

- Register, Add, Divide and Multiply
units

allows up to four floating-point
instructions to be executed in
parallel

Full 64-bit operation
sixteen 64-bit floating-point
registers

Seamless coprocessor intertface to
SAB-R2000A

Transparent addition of floating-point
extensions to the SAB-R2000A’s
instruction set

Fully compatible to all R2010A
processors of other manufacturers

Ceramic package: CL-CC-84

A RS AR,

Instruction CPU

SAB-R2000A |
RISC Integer §

SAB-R2010A
RiSC
Floating Point
Accelerator

IO
Subsystem}

Subsystem

System Bus

Control LogicEg

Ay

SAB-
Write Buffer

Interface

§ 4

i

Svrste'rn Bus_

MFPAQ0B41

411 5.90

SAB-R2010A

Ordering Information

Type Ordering code | Package Description

SAB-R2010A-12-QJ| Q67120-C553 | CL-CC-84 32/64-bit Floating-Point
Coprocessor, 12.5 MHz

SAB-R2010A-16-QJ| Q67120-C495 | CL-CC-84 32/64-bit Floating-Point
Coprocessor, 16.67 MHz

Introduction

The SAB-R2010A is a high performance Floating-Point Accelerator (FPA) which is
implemented as a full-custom VLSI CMOS chip. It serves as a coprocessor to the
SAB-R2000A RISC microprocessor. It transparently extends the SAB-R2000A’s instruction
set to perform floating-point operations, by cointerpreting the common instruction stream.
The FPA, with associated system software, fully conforms to the requirements of
ANSVIEEE standard 754-1985 "IEEE Standard for Binary Floating-Point Arithmetic”. In ad-
dition the SAB-R2010A fully supports the standard recommendations. The SAB-R2010A’s
architecture is organised as follows - hardware directly implements the essential
floating-point operations of addition, subtraction, division, multiplication, comparison,
conversion between farmats, absolute value and negation. These operations are highly
optimized. System software supplies the more complex functions and while doing so
benefits from the underlying fast arithmetic hardware. Figure 1 illustrates the SAB-R2010A
Logic symbol.

Siemens Aktiengesellschaft 412

SAB-R2010A

Pin Names
Data{31:0) Data Bus
DataP(3:0) Even parity for Data Bus
Run# System in Run or Stall state
Exception# Exception related information
FpBusy Floating-point busy stall
FpCond Floating-point condition
Fpint# Floating-point Interrupt
Reset# Synchronous Initialization
FpSync# Floating-paint Synchronize
FpSysIn# Floating-point System clock in
FpSysOut# Floating-point System clock out
PlION# Phase Lock Loop Cn
FpPresent# Floating-point present
Figure 1
Logic Symbol
Data(31:0) < ——— FpSync#
DataP(3:0y <] ¢ FpSysin#
— FpSysOut#
Run# —
Exception# — | gaAB-R2000A ¢ Clk 2xPhi
FpBusy] [Interface ek [Clk2xRd
FpCond — —— Clk 2XSmp
Fpint# — +—— Clk 2 X Sys
Reset# —h +——— PHOn#
- FpPresent#
MPLOO0842

Siemens Aktiengesellschaft 413

SAB-R2010A

Pin Configurations

Figure 2

CL-CC-84 (Top View)

R%8% E§giPofcg _ggcEs®
89 PgRoR8gELEBEEEETPERERT
S8338P58883883 88358888
mininisinisininisizsinisisininisininlsinin!
H 1 84 75
Clk2xRd [] 12 O 74] Gnd13
FpSysin# [] DataP(t)
Data31) [[V12
Vel [] Gnd12
Gnd1 [[] FpCond
DataP{3)[] [] FpBusy
FpSysout# [(] Fpint#
Clk2xSys []] Exeption#
Clk2xSmp [] [] Run #
Clk2xPhi [[] Resvd2
Reset# [[] Resvd!
FpSync# [] v 1
V2 [] Gndt
Gnd2 [1 .10
V3 O] Gnd 10
Gnd 3 []] FpPresent#
PliOn# [] Resvd0
Vied O] V9
Gnd 4 E] Gnd9
VECS] V([a
Gnds [32 54 [] Gnd8
! B/
oo O U U LU
255835288y pie
52355 3555258885 75588%

MPP00843

Siemens Aktiengesellschaft

414

SAB-R2010A

Pin Definitions and Functions

Symbol Pin Number Input (1) Function
Qutput (O)

Data(31:0) 14,11,10,9,8,5.4, |1/O A multiplexed 32-bit bus used for
3,1,84,83,82,79, instruction and data transfers on
78,77,76,53,52, phases 1 and 2, respectively.
51,50,47,46,45,

44 .42 41,40,39,
36,35,34,33

DataP(3:0) 17,2,73,43 O A 4-bit bus containing even parity over
the data bus. Parity is generated by the
FPC on stores.

Run# 66 I Input to the FPC which indicates
whether the processor-coprocessor
system is in the run or stall state.

Exception# | 67 I input to the FPC which indicates
exception related status information.

FpBusy 69 @) Signal to the CPU indicating a request
for a coprocessor busy stall.

FpCond 70 O Signal to the CPU indicating the result of
the last comparison operation.

Fpint# 68 O Signal to the CPU indicating that a
floating-point exception has occurred for
the current FPC instruction.

Reset# 22 | Synchronous initialization input used to
distinguish the processor-FPC
synchronization period from the
execution period. Reset# must be
synchronized by the leading edge of
SysOut from the CPU.

PlIIONn# 28 | Input which during the reset period
determines whether the phase lock
mechanism is enabled, and during the
execution period determines the output
timing model.

Siemens Aktiengesellschatt 415

SAB-R2010A

Pin Definitions and Functions (cont'd)

Symbol Pin Number Input (1) Function
Output {O)

FpPresent# |59 0 Qutput which is pulled to ground through
an impedance of approximately 0.5 k2.
By providing an external pull-up on this
line an indication of the presence or
absence of the FPC can be obtained.

Clk2 X Sys 19 | A double frequency clock input used for
generating FpSysOut#.

Clk2 X Smp 20 | A double frequency clock input used to
determine the sample point for data
coming into the FPC.

Clk2 x Rd 12 I A double frequency clock input used to
determine the disable point for the data
drivers.

Clk2 x Phi 21 A double frequency clock input used to
determine the position of the internai
phases 1 and 2.

FpSysOut# 18 O Synchronization clock from the FPC.

FpSysin# 13 I Input used to receive the
synchronization clock from the FPC.

FpSync# 23 I Input used to receive the
synchronization cliock from the CPU.

GND14-1 80,74,71,62,60, Ground

56,54,48,37,32,
30,27,25,16.6

Vee14-1 81,75,72,63,61, Power Supply {+ 5V)

57,55,49,38,31,

29,26,24,15,7
Resvd2-0 65,64,58 Reserved
Siemens Aktiengeselischaft 416

SAB-R2010A

Functional Description

The SAB-R2010A contains four independent arithmetic functional units (Register, Add,
Divide and Multiply) which interact with a scheduling and managing control unit. Figure 3
shows the block diagram of the SAB-R2010A.

Figure 3

Cache

Functional Block Diagram

Note: A hash sign # indicates an Active-LOW Signal

Data < Data Bus]
lL (32) (32)
Instructions Operands
——3 Register Unit (16 x 64)
Run# ' Exponent Part Fractian
(1 () (11} (53) {53) (53)
FoBusy #— 4 | " " l ;
A B Result ! ' Result
Exponent E Adf’ Unit
P] Round
Excoption# —— C%r:‘tin;ol unit [I . un

And (53) (53) (3)

Clocks ; 3 ,

Fpint# €—— i A I: 8 EGRS

Divide Unit, " |

] 1]

1 1 1

1 1 1

FpCond +—
(53) (53} (3)
A B GRS
Clocks —-J
Muitipty Unit
MPB00844

Siemens Aktiengesellschaft

417

SAB-R2010A

Basic Architecture
As figure 3 shows, the SAB-R2010A consists of five main units.

The Control Unit continually monitors the transactions between the SAB-R2000A (with
which the SAB-R2010A shares the data bus) and the instruction cache (i.e. the instruction
stream). If an instruction does not apply to the SAB-R2010A, it ignores it. When an in-
struction does apply, it interprets it. Synchronization between the coprocessor and the
main processor is also managed by the control unit. The control unit monitors the signals
Run# and Exception# to see what state the SAB-R2000A is in. Run# is used to track
pipeline disruptions due to non-exceptional events (i.e. CPU stalls) such as cache misses,
write busy etc. Exception# is used to track pipeline disruptions due to exceptional events
such as virtual to physical address translation misses, interrupts etc. When either of these
cases occurs, the SAB-R2010A’s pipeline is shut down {stalled), in such away that
unfinished instructions can be restarted later without numerical inconsistencies. Whenever
the SAB-R2000A requires the result of a floating-point instruction which is not yet
completed, the control unit signals the CPU to wait through the assertion of the FpBusy
signal. The control unit also schedules the execution of each instruction with the four
arithmetic units.

The Register Unit’s register file can perform two 64-bit operand reads, one 64-bit write
result and one memory load/data write in one cycle. This implies that four ports exist.
Physically, a two-port design, which is accessed twice per cycle, implements the register
file.

The Add Unit executes add, subtract, convert, compare, negate and absolute value in-
structions as well as the final IEEE rounding step of multiply and divide operations. The
exponent data path (exponent unit) is included in this unit and it computes the 8-bits

(single-precision) or 11-bits (double-precision) of exponents for all arithmetic operations.

The Divide Unit uses a radix-4, SRT-division algorithm to produce four quotient bits per
cycle. This method uses a redundant encoding of the quotient as a sum of digits with
values 2, 1, 0, -1 and -2. A double-precision divide requires a total of 19 cycles {12 cycles
for a single-precision divide).

The Multiply Unit computes the product of the mantissa portions of its operands (refer to
the Data Formats section). in the case of double-precision, the multiplier computes the
product of two 53-bit operands in less than four cycles. It retains the most significant 56-
bits of the 106-bit product.

Results of both the multiplier and divider are returned to the add unit over the two
operand buses (A and B} for final carry propagation and rounding. A separate path exists
for the guard, round and sticky bits (GRS) required for IEEE rounding. The interaction of
the five units and the width of the major data buses can be seen infigure 3.

Siemens Aktiengesellschaft 418

SAB-R2010A

The autonomy of the four arithmetic units enables them to run in parailel. Concurrently
executing instructions generally do not conflict for resources - except at the beginning
and end cycles of each operation, mainly due to simultaneous requests for the add unit
(see the Pipeline Architecture section). Based on the latency of each operation, the control
unit schedules instructions to ensure that no two will need, for example, the exponent unit
or rounding function of the add unit at the same time. The floating-point architecture
requires that instructions must appear to complete in the order they were issued.
However the control unit recognizes the special cases of operations with exceptional re-
sults, conflicts for one arithmetic unit and data dependencies between operations -
therefore it will reschedule instructions for maximum pipeline efficiency. in such instances
it adjusts the issue schedule to maintain the illusion of in-order instruction completion.
Refer to the Pipeline Architecture section for more details.

Pipeline Architecture

The SAB-R2010A has an instruction pipeline which mirrors that of the SAB-R2000A pro-
cessor. However, there is a difference: the FPA (SAB-R2010A) has a 6-stage pipeline in
contrast to the 5-stage pipeline of the SAB-R2000A. It uses an exira pipestage 1o provide
efficient coordination of exception responses between the FPA and the CPU
(SAB-R2000A).The six stages of the SAB-R2010A pipeline are:

(1) IF Instruction Fetch:
The CPU calculates the instruction address required to read an instruction
from the instruction cache. The instruction address is generated and output
during phase 2 of this pipestage. No action is required by the SAB-R2010A
during this pipestage since the main processor is responsible for address
generation. Note that the instruction is not actually read into the processor
until the beginning of the RD pipestage. Refer lo figure 4.

(2) RD Register Fetch/Instruction Decode:
The instruction is present on the Data bus during phase 1 of this pipestage
and the FPA decodes the data on the bus to determine whether il is an in-
struction for the FPA. The FPA reads any required operands from its registers
(RF in figure 4) while decoding the instruction.

(3) ALU ALU Operation:
If an instruction is one for the FPA, execution commences during this
pipestage. If the instruction causes an exception, the FPA notifies the
SAB-R2000A of the exception during this pipestage by asserting the Fpint#
signal. If the SAB-R2010A determines that it requires additional time (i.e.
more than 1 cycle) to complete this instruction, it initiates a stall during this
pipestage.

{4y MEM Memory Access:
If it is a coprocessar Load or Store instruction, the FPA presents or captures
the data during phase 2 of this pipestage. If an interrupt is taken by the main
processor, it notifies the SAB-R2010A during phase 2 of this pipestage (via
the Exception# signal).

Siemens Aktiengesellschatft 419

SAB-R2010A

(5) WB Write back:
if the instruction that is currently in the write back (WB) stage caused an
exception, the main processor notifies the FPA by asserting the Exception#
signal during this pipestage. Thus, the FPA uses this pipestage solely to
deal with exceptions.

(6 FWB Floating-Point Write back:
The SAB-R2010A uses this pipestage to write back ALU results to its register
file. This stage is the equivalent of the WB stage in the SAB-R2000A pipe-
line.

Figure 4 illustrates the 6 stages of the SAB-R2010A pipeline. Each step requires
approximately one machine cycle.

Figure 4
Instruction Execution Sequence
Phase1|21|21|21|21|21i2
Clock —[—\-Jr_—/[- L -] C
/ 7 I I 7
IF RD ALU MEM wB FWB
ICACHE I} oP DCACHE | Exceptions FpWB
RF DA
1A
‘___Y_.J
one cycle
MPT0Q845
ICACHE : Instruction cache access
ID . Instruction decode
RF . Register operand fetch
A :Instruction address calculation and translation
OP : Operation
DA : Data address calculation and translation
DCACHE : Data cache access
FpwB . Floating-point write back to register file
FpWB . Floating-point WB

Siemens Aktiengesellschaft 420

SAB-R2010A

The executions of six instructions are overlapping as shown in figure 5.

Figure 5
FPA Instruction Pipeline

IF RD ALU MEM WB FwB

IF RD AlLU | MEM wB FwB

<:] IF RD ALU MEM wB FwB

Instruction
Flow

IF RD ALU MEM wB FwWB

IF RD ALU MEM wB FWB

IF RD ALU MEM wB FwB

Current
CPU
Cycle

MPADOB46

This is a simplified view of the overlapped instruction execution of the SAB-R2010A
because the figure assumes that each instruction can be completed in a single cycle.
Most FPA instructions, however, require more than one cycle to be completed.
Therefore, the pipeline must be stalled whenever register or resource contlicts occur.
Figure 6 illustrates the effect of a three-cycle stall on the SAB-R2010A pipeline.

To alleviate the performance impact that would result from frequently stalling the pipeline,
the SAB-R2010A overlaps instructions so that instruction execution can proceed so long
as there are no resource conflicts, data dependencies or exceptional conditions.

Siemens Aktiengesellschaft 421

SAB-R2010A

Figure 6
An FPA Pipeline Stall

mster | F | RD | ALu {MEM | we |FwB |

Instr.2 IF RD | ALU | MEM | WB | stall | stall | stall | FWB

<i_-1 Instr.3 IF

Instruction Instr.4 iF RD | ALY | alu alu au |MEM | WB | FWH
Flow

RD | ALU | MEM | stall statl stalt | wB | FWB

Instr.5 IF RD stall stall stall | ALLU | MEM | WB | FWB

Instr.6 IF stalt stall stall RD | ALU | MEM | WB | FWB

Stall initiated by Instr.4
during its ALU pipe stage. MPAGDB4T

As mentioned earlier the majority of SAB-R2010A instructions require more than one
cycle to be completed. Figure 7 shows the number of cycles required to execute each of
the FPA instructions, which varies from 1 to 19 cycles.

In figure 7 the cycles of an instruction’s execution time which are shaded darkest {i.e. at
the beginning and at the end of instruction execution time) require exclusive access to an
FPA resource (such as the Add unit) that precludes the concurrent use by another
instruction and therefore prohibits overlapping execution of another FPA instruction.
However, Load and Store operations can be overlapped with these cycles because the
SAB-R2010A’s register unit can execute memory operations when the other arithmetic

units are busy.

Siemens Aktiengesellschaft 422

SAB-R2010A

Figure 7

Cycles

ADD.fmt
SUB.fmt
MUL.S
MUL.D
DIV.S
DIV.D
ABS.fmt
MOV.fmt
NEG.fmt
CVT.8.D
CVT.S.W
CvT.D.S
CVvT.D.W
CVT.W
C.cond.fmt
BC1T/BC1F
LWC1
SwWCH
MTC1
MFC1
CTC1
CFC1

FPA Instruction Execution Times

—

BN

A

Ry

Requires exclusive access to an FPA resource.

Other FPA instructions can proceed during these
cycles. However, two multiply operations or two divide
operations cannot be overlapped.

Software must schedule operations to avoid reading
the FP register that is the target of an FPLoad or Move
to FPA instruction less than two cycles later. Software
must also ensure that FP branch instructions occur
two or more cycles after an FP compare instruction.
The MIPS compilers and assembler generate code that
obeys these restrictions.

The results are not available in the CPU's destination
register until after this cycle.

Load, Store, and Mave instructions can be executed
regardless of what other FPA instructions are in

progress.
MPAQQ848

Those cycles that are lightly shaded (i.e. in the middie of the Multiply and Divide in-
structions execution time) place minimal demands on SAB-R2010A resources (i.e. for a
Multipty instruction only the Multiply unit is being used) and other instructions can be
overlapped to obtain simultaneous execution of instructions without stalling the pipeline.
However, two Multiply or two Divide operations cannot be overlapped. An example of
overlapped FPA and non-FPA instructions is shown in figure 8.

Siemens Aktiengesellschatft

423

SAB-R2010A

Figure 8
Overlapping FPA Instructions
Cycles 0123456 78 9101112
Instr.1 DIV.S I I I | I l l
Instr.2 MUL.S
Instr.3 ADD.S
instr.4 SWCH
Instr.5 non FPA
Instr.6 MUL.S
Instr.7 MOV.S
Instr.8 ABS.S
Instr.9 swct [
Instr.10 LwC1 [
Instr. 11 SwC1 L]
Instr.12 non FPA m
MPAQ0849

In this figure the first operation (DIV.S) requires a total of 12 cycles for execution. Only
the first and last 3 cycles of this operation preclude the simultaneous execution of
another FPA operation. Similarly, in the second operation (MUL.S) there are two cycles in
the middle where an FPA operation can be overlapped. In this case the overlapping
operation is ADD.S. Although the execution of an instruction requires 6 pipestages, the
SAB-R2010A does not require that each instruction complete execution within 6 cycles to
avoid stalling the instruction pipeline. If a subsequent instruction does not require the FPA
resources being used by a preceding instruction and has no data dependencies with
preceding uncompleted instructions, then execution continues. This can be seen clearly
in figure 8.

This figure assumes that there are no data dependencies between the instructions that
would stall the pipeline. For example, if any instruction before Instr.13 (not shown in
figure 8) required the results of Instr.t (DIV.S), then the pipeline would be stalled until the
results are available.

Note: For a detailed discussion of the individual pipestages refer to the SAB-R2000A
data sheet.

Siemens Aktiengeseilschaft 424

SAB-R2010A

Coprocessor Registers

Floating-Point Registers

The SAB-R2010A provides thirty-two 32-bit Floating-Point General Registers (FGR's).
These are accessed through coprocessor Load/Store instructions and Move to/from
caprocessor register instructions. There are two views of the thirty-two coprocessor
FGR's. One is from the standpoint of the SAB-R2000A, which has no intrinsic represen-
tation of coprocessor registers. It regards these registers as simply thirty-two 32-bit
registers. From the standpoint of the SAB-R2010A, pairs of these single word registers
form Floating-Point Registers (FPR's), on which floating-point operations are performed.
The SAB-R2010A contains 16 FPR’s. Figure 9 shows the FGR’s and the corresponding
FPR's.

The FPR’s provide a sufficient amount of registers to support the allocation of floating-
point values in registers and to permit overlapping and scheduling of floating-point
operations. Each FPR can hold one value of either a single- or double-precision format
floating-point number. Only even numbers are used to address FPR'’s, odd FPR register
numbers are invalid. During single-precision floating-point operations, only the even
numbered (least) FGR’s are used, and during double-precision operations, the FGR'’s are
accessed in pairs. Thus, in double-precision operation, selecting FPRO addresses FGR0O
and FGR1. Table 1 shows the register addresses.

Figure 9
FPA Registers
Floating-Point
Floating-Point General Purpose Registers
Registers (FPR) 39 (FGR) 0
FpRo 1 (east FGRO
{most) FGR1
FPR2 (least) FGR2
{maost) FGR3
¢ .
* L
[]
]
FGR2
FPReg { (€3S GR28
(most) FGR29
FPR3o 4 (least) FGR30
(most) FGR31
MPAQD0850

Siemens Aktiengeselischaft 425

SAB-R2010A

Table 1
Floating-Point General Registers
FGR Number Usage
0 FPR 0 (least)
1 FPR 0 (mast)
2 FPR 2 {least)
3 FPR 2 (mast)
[]]
. .
® ®
28 FPR 28 (least)
29 FPR 28 (most)
30 FPR 30 (least)
31 FPR 30 {most)

Floating-Point Control Registers

Coprocessors for the SAB-R2000A can have up to thirty-two 32-bit control registers. The
SAB-R2010A implements two Floating-Point Control Registers (FCR's). These registers
are the Contral/Status register (FCR31) and the Implementation/Revision register (FCROQ).
These registers can only be accessed through Move to/from coprocessor register
instructions which address floating-point control registers.

Control/Status Register:

contains control and status data and can be accessed by instructions running in either
Kernel ar User mode. It controls the arithmetic rounding mode and the enabling of
exceptions. It also indicates the exceptions that occurred in the most recently executed
instruction, and all exceptions that have occurred since the register was cleared.

Reading this register (using a Move Control From Coprocessor 1 instruction, CFC1),
causes all unfinished instructions in the SAB-R2010A’s pipeline to be completed before
the contents of the register are transferred to the SAB-R2000A. If an exception occurs as
the pipeline empties, the exception is taken and the Move instruction can be re-executed
after the exception is serviced. Figure 10 illustrates the Control/Status register.

Siemens Aktiengesellschaft 426

SAB-R2010A

Figure 10
Control/Status Register Bit Assignments

The Controi/Status Register

31 24 23 22 18 17 12 11 7 6 2 1 0
0 C o 1 Exceptions " TrapEnable Sticky Bits RM
. - JEVZOUIl} VYZOUL]l VvZOoUI
8 1 5 6 5 5 2
MPAQD8S1
C : Condition bit. Set/cleared to reflect result of Compare instruction;
drives the FPA’s CpCond output signal.
Exceptions : These bits are set to indicate any exceptions that occurred during

the most recent instruction.

TrapEnable : Trap Enables. These bits enable assertion of the Cpint# signal if the
corresponding Exception bit is set during a floating-point operation.

Sticky bits : These bits are set if an exception occurs and are reset only by
explicitly loading new settings into this register (with a Move
instruction).

RM : Rounding Mode. These two bits specify which of the four rounding

modes is to be used by the FPA.

€} : Reserved. Currently ignores writes, undefined when read.

The bits in the Control/Status register can be set or cleared by writing to the register
using a Move Control To Coprocessor 1 (CTC1) instruction. This register must only be
written to when the FPA is not actually executing floating-point operations. This can be
assured by first reading the contents of this register to empty the pipeline.

Condition bit:

When a floating-point Compare instruction takes place, the detected condition is placed
at bit 23,-the "C" (condition) bit, so that the state of the condition line may be saved or
restored. If the condition is true it is set {1} and cleared (0) if it is false. This bit is only
aftected by Compare and Move To Control Register instructions.

Exception bits:
These are bits 17 through 12 in the Control/Status register, which are shown in figure 11,
which indicates the meaning of each bit.

Siemens Aktiengeselischaft 427

SAB-R2010A

Figure 11
Control/Status Register Exception/Sticky/TrapEnable Bits

Bit #17 16 15 14 13 12

E vV z 0 U | Exception Bils

Vv zZ O U | TrapEnable Bits

Bit #6 5] 4 3 2

v z 0 u I Sticky Bits

Inexact Operation

Underflow

Overflow

Division by Zero

Invalid Operation

Unimplemented Operation MPAD0852

These bits are appropriately set or cleared after each floating-point instruction. This is a
side effect of each floating-point operation (excluding Loads, Stores and unformatied
Moves). The exceptions which were caused by the immediately previous floating-point
operation can be determined by reading the exception field.

If two exceptions occur together in one instruction, both appropriate bits in the exception
bit field will be set. When an exception occurs, both the corresponding exception and
sticky bits are set. The exception bits cover the five IEEE standard exceptions and an
exira unimplemented operation exception (E bit). The unimplemented operation exception
is not one of the standard IEEE exceptions. It is provided to permit software im-
plementation of IEEE standard operations and exceptions that are not fully supported by
the FPA hardware. Trapping on this exception cannot be disabled - there is no
TrapEnable bit for E.

Siemens Aktiengesellschaft 4°8

SAB-R2010A

Sticky bits:

Hold the accumulated or accured exception bits required by the IEEE standard for trap
disabled operation. These bits are set whenever an FPA operation result causes one of
the corresponding Exception bits to be set. However, unlike the Exception bits, the Sticky
bits are never cleared as a side effect of floating-point operations; they can be cleared
only by writing a new value into the Control/Status register.

TrapEnable bits:

Are used to enable a user trap when an exception occurs during a floating-point
operation. If the TrapEnable bit correspanding to the exception is set (1) it causes the
assertion of the FPA’s Fpint# signal. The SAB-R2000A responds to the Fpint# signal by
taking an interrupt exception which can be used to implement trap handling of the FPA
exception.

Rounding Mode Centrol bits:

These bits specify the rounding mode the FPA will use for all floating-point operations as
shown in table 2.

Table 2

Rounding Mode Bit Decoding

RM Bits Mnemonic | Rounding Mode Description

00 RN Rounds result to nearest representable value; rounds to

value with least significant bit zero when the two nearest
representable values are equally near.

01 RZ Rounds result toward zero; rounds to value closest to and
not greater in magnitude than the infinitely precise result.

10 RP Rounds toward + =; rounds to value closest to and not less
than the infinitely precise result.

11 RM Rounds toward — =; rounds to value closest to and not
greater than the infinitely precise resuit.

Implementation and Revision Register:

This read only register, FCRO, contains values that define the implementation and re-
vision number of the SAB-R2010A. This information can be used to determine the co-
processor revision and performance level and can also be used by diagnostic software.
However, due to the variety of levels at which design changes may be implemented to
the silicon, the revision information cannot be guaranteed with every revision of the
device nor assured to follow a completely predictable numerical sequence. Siemens has
complete discretion over defining these characteristics of the FPA.

Siemens Aktiengeselischaft 429

SAB-R2010A

Only the low-order bits of the implementation and revision register are defined. Bit 15
through 8 identify the implementation and bits 7 through 0 identify the revision number as

shown in figure 12.

Figure 12
Implementation/Revision Register
31 16 15 8 7 0
0 Imp Rev
16 8 8

. MPADO853
imp : Implementation: 0 X 10 =R2010

Rev : Revision of FPA
0| : Unused;ignored on writes, zero when read.

Floating-Point Formats

The SAB-R2000A perfarms both 32-bit (single-precision) and 64-bit (double-precision) IEEE
standard floating-point operations. The 32-bit format ist divided into 3 fields: a single-bit
sign, an 8-bit biased exponent and a 23-bit fraction, as shown in figure 13.

Figure 13
Single-Precision Floating-Point Format
31 30 23 22 0
S e f
Sign Exponent Fraction
1 8 23 MPAQ0BS54

The 64-bit format has a 1-bit sign, an 11-bit biased exponent and a 52-bit fraction field, as
shown in figure 14.

Siemens Aktiengesellschaft 430

SAB-R2010A

Figure 14
Double-Precision Floating-Point Format
63 62 52 51 0
s e f
Sign Exponent Fraction
1 " 92 MPAQO855

Numbers in the single- and double-precision floating-point formats are composed of three
fields;

® A 1-bit sign: S

® A biased exponent: e = E +bias

® A fraction: f = .bibs.by,

The range of the unbiased exponent "E" includes every integer between and including
two values "E,,," and "E...", and also two other reserved values: "E.;, - 1" to encode
+/- 0 and denormalized numbers, and "E,. +1" to encode +/- » and NaNs (Not a
Number). For single- and double-precision each representable non-zero numerical value
has just one encoding.

For single- and double-precision formats, the value of a number, "v", is determined by
the equations shown in table 3.

Table 3
Equations for Calculating Values in Floating-Point Format

1 if E=Enac+ 1 and f = 0, then vis NAN, regardless of s.

if E=Epst1and f = 0,thenv = (1) w,

(1)

{2)

(3) if Eqn € E S Emay then v= (=15 28 (1.).
)
)

(8) | if E=Enn-1and f = 0, thenv = (—1)52Emin (0.f).
(5) |if E=Emy~1and f = 0, thenv = (-1)S0.

For ali floating-point formats, if "v" is NaN, the most significant bit of "{" determines
whether the value is a signaling or quiet NaN. "v" is a signaling NaN if the most
significant bit of "f" is set; otherwise, "v" is a quiet NaN. Signaling NaNs indicate
uninitialized variables or variables for implementing user-designed extensions to the
operations provided by the IEEE standard. Quiet NaNs are generated for invalid
operations. Table 4 defines the values for the format parameters in the preceding
description.

Siemens Aktiengesellschaft 431

SAB-R2010A

Table 4

Floating-Point Format Parameter Values

Parameter Singie Double
P 24 53
Enax +127 +1023
Emin - 126 -1022
exponent bias +127 +1023
exponent width in bits 8 11
integer bit hidden hidden
fraction width in bits 23 52
format width in bits 32 64

Number Definitions

This subsection contains a definition of the following number types specified in the
{EEE 754 standard:

e Normalized Numbers
¢ Denormalized Numbers
¢ Infinity

® Zero

Normalized Numbers:

The majority of floating-point calculations are performed on normalized numbers.
Normalized numbers have a biased exponent "e" and a normalized fraction field "t* -
which means that the leftmost (i.e. the one to the immediate left of the binary point), or
hidden, bit is one.

Denormalized Numbers:

Have a zero exponent and a denormalized (hidden bit equal to zero) non-zero fraction
field.

Infinity:

Has an exponent of all ones and a fraction field equal to zero. Both positive and negative
infinity are supported.

Zero:

Has an exponent of zero, a hidden bit equal to zero and a value of zero in the fraction
field. Both positive and negative zero are supported.

Siemens Aktiengesellschaft 432

SAB-R2010A

Instruction Set Overview

All SAB-R2010A instructions are 32-bits long. There are four basic instruction tormat
types as shown in figure 15.

Figure 15
Instruction Formats
I-type (Immediate)
31 26 25 21 20 16 15 0
op base ft offset
6 5 5 16
B-type (Branch)
31 26 25 21 20 16 15 0
op sub br offset
6 5 5 16
M-type (Move)
31 26 25 21 20 16 15 11 _10 0
op sub rt fs i
6 5 5 11
R-type (Register)
31 26 25 21 20 16 15 11 10 5 0
op sub ft fs fd function
6 5 5 5 6
MPAQDB56
where
op : is a 6-bit operation code
sub . is a 5-bit sub-operation code
br : is a 5-bit branch code
rt - is a 5-bit source/destination general register specifier
ft . is a 5-bit source/destination float register specifier
fs : is a 5-bit source register specifier
fd . is a 5-bit destination register specifier
offset : is a 16-bit address/branch displacement
function : is a 6-hit function code
. result of operation undefined if non-zero

Siemens Aktiengesellschaft

433

SAB-R2010A

The single instruction length simplifies instruction fetch and decode and eliminates the
overhead for instructions crossing word and page boundaries within the memory
hierarchy, thereby simplifying the interaction of instruction fetch with the virtual memory
management unit. The four instruction formats ensure that opcodes and register des-
criptors are always found in the same bit locations. This enables register fetch to proceed
in parallel with instruction decode on all instructions.

The SAB-R2010A instruction set can be divided into the following groups:

e Load/Store and Move instructions move data between memory, the main processor
and the FPA general registers.

e Computational instructions perform arithmetic operations on floating-point values in

the FPA

registers.

e Conversion instructions perform conversion operations between the various data
formats, e.g. floating-point to fixed-point format.

e Compare instructions perform comparisons of the contents of registers and set the
condition bit based on the resuits.

Table 5 lists the instruction set of the SAB-R2010A FPA. A more detailed summary is
contained in the Instruction Set Summary section.

Table 5

Instruction Set Summary

oP Description or Description
Load/Store/Move Instructions Computational Instructions
LWCA1 Load word ta FPA ADD.fmt Floating-point add
SWCH1 Store word from FPA SUB.fmt Floating-point subtract
MTCA Move word to FPA MUL.fmt Floating-point multiply
MFC1 Move word from FPA DIV.fmt Floating-point divide
CTCH Move control word to FPA ABS.fmt Floating-point absolute value
CFC1 Maove control word from FPA MOV.fmt Floating-point move
Conversion Instructions NEG.fmt | Floating-point negate

CVT.S.imt

CVT.D.fmt

CVT.W.fmt

Floating-point convert
to single FP

Floating-point convert
to double FP

Floating-point convert

to fixed-point

Siemens Aktiengesellschaft

Compare Instructions

C.cond.fmt

Floating-point compare

434

SAB-R2010A

Exception Handling

This section describes how the SAB-R2010A FPA handles floating-point exceptions. The
term exception is used for any infrequent or exceptional event that causes the
SAB-R2010A to make a temporary transfer of control from its current process 1o another
process that services the event. A floating-point exception occurs whenever the FPA
cannot handle the operands or results of a floating-point operation in the normal way. On
the occurrence of an exception the FPA either generates an interrupt (by asserting the
signal Fpint#) to initiate a software trap, or sets a flag. If the trap is taken, the FPA
remains in the state found at the beginning of the operation (i.e. execution is suspended)
and a software exception handling routine is executed. If no trap is taken (i.e. a flag is
set}, an appropriate value is written into the SAB-R2010A destination register {of the
exceptional instruction) and execution continues (see table 6).

The five IEEE standard exceptions are supported with exception bits, trap enables and
sticky bits (status flags). Refer to the Control/Status register in the Coprocessor’s Re-
gisters section. The SAB-R2010A has an additional exception type, unimplemented
operation exception (E). This is used in cases where the FPA itself cannot implement the
floating-point architecture specification, inciuding cases where the FPA cannot determine
the correct exception behaviour. The unimplemented operation exception has no trap
enable or sticky bits; whenever this exception occurs, an unimplemented exception trap
is taken (if the FPA’s interrupt input to the SAB-R2000A is enabled). It is impossible to
disable this exception, there is no trap enable bit.

Each of the five IEEE exceptions (Invalid Operation, Division by Zera, Overflow Exception,
Underflow Exception and Inexact Operation) is associated with a trap under user control
which is enabled by setting one of the five TrapEnable bits. When an exception occurs,
both the corresponding Exception and Sticky bits are set. If the corresponding
TrapEnable bit is set, the FPA generates an interrupt to the SAB-R2000A and the sub-
sequent exception processing allows a trap to be taken.

Exception Processing

When a floating-point exception trap is taken, the SAB-R2000A processor’s Cause
register (refer to the SAB-R2000A data sheet) indicates that an external interrupt from the
FPA is the cause of the exception and the SAB-R2000A’s EPC {Exception Program
Counter) contains the address of the instruction that caused the exception trap.

When no exception trap is signalled, a default action is taken, which provides a substitute
value for the original, exceptional result of the floating-point operation. The default action
taken depends on the type of exception and, in the case of the Overflow exception, the
current rounding mode. Table 6 lists the default action taken by the FPA for each of the
|IEEE exceptions.

Siemens Aktiengesellschaft 435

SAB-R2010A

Table 6
FPA Exception Default Actions
Exception Rounding | Default Action
Mode (nc exception trap signaled)
V |Invalid operation | — - Supply a quiet NaN.
Z |Division by zero | - - Supply a properly signed «.
RN Modity overflow values to = with the sign of the
intermediate resuit.
RZ Modify overflow values to the format’s largest finite
O (Overflow number with the sign of the intermediate result.
RFP Modify negative overtlows to the format’s most nega-
tive finite number. Modify positive overflowsto + «.
RM Modify positive overflows te the format’s largest finite
number. Modify negative overflow 1o — «.
U |Underflow - - Generate an unimplemented exception.
I [Inexact - - Supply a rounded result.

Internally the SAB-R2010A detects eight different conditions that can cause exceptions.
When it encounters one of these unusual situations, it will cause either an IEEE exception
or an Unimplemented Operation exception. Table 7 lists the exception-causing situations
and contrasts the behaviour of the SAB-R2010A with the |IEEE standard’s requirements.

Table 7
FPA Exception-causing Conditions

FPA internal result iEEE |Trap |Trap [Note
Stndrd | Enab. | Disab.

Inexact result | I I loss of accuracy

Exponent overflow on (O 2 (O normalized exponent > Eqa
Divide by zero Z z Z zero is (exponent = E,-1,
mantissa =0)

Overflow on convert Vv Vv E source out of integer range

Signaling NaN source |V Vv E quiet NaN source produces quiet
NaN result

fnvalid operation v v E 0/0 etc.

Exponent underflow] E E normalized exponent < Eq,

Denormalized source | none E E exponent = £,,-1 and mantissa < >0

) Standard specifies inexact exception on overflow only if overflow trap is disabled.

Note: A detailed description of the "exception handling” system for a SAB-R2000A is
contained in the SAB-R2000A data sheet.

Siemens Aktiengesellschaft 436

SAB-R2010A

Processor Interface

Figure 16 illustrates the tightly coupled coprocessor interface between the SAB-R2000A

and the SAB-R2010A.

Figure 16

SAB-R2000 and SAB-R2010 Coprocessor Interface

AReset = Asynchronous Reset

CpBusy FpBusy
Run# Run#
Exception# — Exception#
Int[n]# |* Fpint#
CpCond[1] FpCond
SAB-R2010A
SAB-R2000A [Data Bus Floating Point
T Processor Coprocessor
& CpSync# —) FpSync#
FpSysin#
+— SysOut# 25/33.333 I—_’ poys
MHz FpSysOut#
1804 NAND I
Bufter]
Delay Line
Clk2xPhi l Clk2 x Phi
Cik2 xRd Cik2 xRRd
P y Clk2 X Smp Clk2 x Smp
]
| a |1 Clk2 X Sys Clk2 x Sys
! i+ Reset#
AReset# D Q[' Intf4]# PION#
$— i
i)
bommmmmoomees 4 ¥ Configuration
Logic
SysClk DJ Heset#
Systermn Configuration Register ¢ +——] FpPresent#
4.7 k @

Vee

MPD00O8S57

Siemens Aktiengeselilschaft

437

SAB-R2010A

This external coprocessor interface of the SAB-R2000A is designed to support the
SAB-R2010A floating point accelerator, in what is called a tightly coupled interface, and
up to two additional copracessors. The SAB-R2010A is connected to the DATA bus only.
During each cycle in which a valid Instruction-Data pair is on the bus, the FPA accepts an
tnstruction. The coprocessor decodes the Instruction in parallel with the main processor
and if it is a floating-point instruction it will proceed to execute the instruction. The
coprocessor condition (CpCond(1) - FpCond) signal aliows the main processor to branch
on a coprocessor condition set up by a previous operation. The SAB-R2010A can assert
FpBusy to stall the main CPU when a floating-point instruction is issued while the FPA still
has the required functional unit busy with an earlier operation. The SAB-R2000A asserts
Run# to advance operations in the SAB-R2010A. When Run# is deasserted in the n th
cycle the FPA disregards the instruction-data pair presented in the n-1 th cycle. The
assertion of Exception# indicates that the SAB-R2000A is taking an exception. FpSync# is
used for timing synchronization between the SAB-R2000A and the coprocessor.

Instruction Set Summary

The following section is a table of the instructions available in the SAB-R2010A. The
instructions are listed in alphabetical order. For a more detailed description of the
operation of each instruction refer to the "SAB-R2010A Users Manual". A chart at the
end of this section lists the bit encoding for the constant fields of each instruction.

Instruction Notation Convention

The table that fallows is split up into three columns: Instruction, format and operation. The
instruction column contains the mnemonic name of the instruction and its meaning. The
instruction format (refer to figure 15) and assembly language notation for each instruction
are listed in the format column. The operation column describes the operation performed
by each instruction using a high level language notation. Special symbols used in the
notation are described in table 8.

Siemens Aktiengesellschaft 438

SAB-R2010A

Table 8

FPA Instruction Operation Notations

Symbol Meaning

— Assignment

1 Bit string concatenation

x¥ Replication of bit value x into a y-bit string.

Note that x is always a single-bit value.

Xy. z Selection of bits y through z of bit string x. Little-endian bit
notation is always used. If y is less than z, this expression is
an empty (zero length) bit string.

+ Two’s complement or floating-point addition

- Two’s complement or floating-point subtraction

* Two’s complement or floating-point multiplication

div Two’s complement integer division

mod Two’s complement modulo

< Two’s complement less than comparison

and Bitwise logic AND

or Bitwise logic OR

xor Bitwise logic XOR

nor Bitwise logic NOR

GPRIx] SAB-R2000A General Register x. Note that the contents of
GPR[0] are always zero: attempts to alter GPR[0] contents
have no effect.

FGRIx] FPA General Register x. As viewed by the R2000A processor.

FPR[x] FPA Floating-Point register x. Each FPR is assembled from two
FGRs.

FCRIx] FPA Control Register x.

T+i Indicates the time steps (CPU cycles) between operations.
Thus, operations identified as occurring at T+1 are performed
during the cycle following the one where the instruction was
initiated. This type of operation occurs with loads, stores,
jumps, branches and coprocessor instructions.

virtualAddress Virtual address

physicalAddress Physical address

Siemens Aktiengesellschaft 439

SAB-R2010A

In the Load/Store operation descriptions, the functions listed in table 9 are used to
summarize the handling of virtual addresses and physical memory.

Table 9

Load/Store Common Functions

Function Description

Addr Uses the TLB to find the physical address given the virtual
Translation address. The function fails and an exception is taken if the

entry for the page containing the virtual address is not present
in the TLB (Translation Lookaside Buffer).

Load Memory

Uses the cache and main memory to find the contents of the
word containing the specified physical address. The low-order
two bits of the address and the access type field indicate
which of each of the four bytes within the data word need to be
returned. If the cache is enabled for this access, the entire
word is returned and loaded into the cache.

Store Memory

Uses the cache, write buffer, and main memory to store the
word or part of word specified as data into the word containing
the specified physical address. The low-order two bits of the
address and the access type field indicate which of the tour
bytes within the data word should be stored.

The mnemonics of the floating-point instructions contain a ".fmt" field. This means
"format" and table 10 shows the three formats available.

Table 10

" fmt” field encoding

Mnemonic Size Format

S single binary floating-point
D double binary floating-point
w single hinary fixed-point

Siemens Aktiengeselischatt 440

SAB-R2010A

Instruction Set Summary

{paispioun pue puca)
1o (jenba pue ‘puo?)

10 (888| pue Zpuod) — UONIPUOI | + |
ipud
as|ey — palaploun
(W'Y dddeniea = Quursidd49nieA — |enbs
(U Hd49NBA > (i's)ldd49aneAn — ss8)
as|a
jipus
uondaoxzuoneladopyeay| eubis
uay) Epuoa i
anJy — palspioun
as|el — |enba
asje] o ssay Y ‘sl wypuos D | aredwon jutod-buneoiy
uay) ((wy ‘Wud48neAINEN 10 (((w) ‘shHd4enieA)NeN Jt 1 ‘adA|-Y W) puod D
Jipua
1eb1el + Dd = Od
UDY} UORIPUCD §| L+ (1 Jossaooidon)
(1)puoDdy — uonipuod 19SYo 11049 anij vd4d uQ ydueig
20 119sYo i w1 (5'195)0) — 19018) 1 'adA)-8 1108
ypus
18612) + D4 = Od
uay] uomIpuod J| L+ 1 (1 lossasoidon)
(1)puondD 10U = UOKIPUDD 195140 4109 | @s|ed vdd uQ youeig
z0 119SHO | + (S* 195Y0) —> 1901€) 1 ‘adA|-g 4104
¥ ‘s) ‘py iy Qav PRV Juiod-Buneocid
{(wyy) Hdd4aniea + Qwys))dd49nieA Wy 'p)) Hd49401S L ‘8dA1-Y wyraay
anjeA anNosqay
S} 'py Wy Sgv uI04-buieol4
{((wysy) Hdd anrep)anieasIniosqy W 'pY) Hd 421018 1 adA] -y Juwysgy
uonesado JewIoq uonRdNIISU|

441

Siemens Aktiengeselischaft

SAB-R2010A

S Py W AOW

Ao uIo4-Buneoiy

(1w 's)) Hd4an|eA Wy ‘p)) Hd 43101 L ‘adA |-y W) AOW
(1 lossavoidon)
dwal = [UUdD 1+1 $) B LD4N Vdd Wwolj aroW
s)lyod —» dway 1 tadAL-N 104N

waw — [Yluond L+ 1L

107 °L ggaIppyeniA = 31AQ

'(ssalppyleaisAud ‘gHOM) FIOWINPEOT — WoW (1 Jossaooidon)
{{ssalppyieniiA) uone|suel j ssalppy — ssalippy|exsiyd (9seq) 12540 'Y LDM vdd O] PIOAA PeOT
‘[oseqlydD +© ' 12Sh0 |) (5 19SY0) — SSAIPPYIENLIA 1 odAL-| 1OMT
¥ 's) Py W AIQ apIaIg wod-buneoiy
(O ‘y) Hddenien / (wy ‘spHd4aniea Wy ‘pl) Hd491015 'L ‘odA1-H Wiy AKG
yewlo4 juiodpexi4 o}
S P IWE M LAD HUaAU0D WI0d4buneo) 4
((An Wy Qg “S)HHABNBANWSLIBAUOD ‘M 'P)) Hd 491015 L ‘adA Y WA LAD
lewlo uodbuneol
albuig 0}
S} ‘PLIWIS IAD BaAuoD Wiodbuneol4
((s 1wy “uy ‘sPYI4ONIEANWLVSAUGD 'S ‘P)) HJ48101S 1 ‘adh] -4 WS IAD
yewlo 4 wodbuiyeo|
a|gnoq 0}
S} 'p) WA LIAD | WBAuoD lulod-buneory
((Q 1wy “(wy S)HJIoNEANWILBAUOD ‘Q ‘Pl) Hd-49I01S L r9dAL-y uy'Q AAD
{110s888001d00D) WdH
dway — [siyDd L+1 S ‘W LD1D 01 PIOM |0NUOD SAOW
Mlydn - dway L odA]-N 101D
(L10ss9204d0D)
vdd4 woy
'dway - [WudD 1+ 1L S} ‘W 104D piom |oNuoD aroW
‘[s)]HD4 — dwa) ‘L odAL-W 104D
uonesado jeunod uonoNIsy|

442

Siemens Aktiengesellschaft

SAB-R2010A

(ssoippyieoisiyd ‘Blep ‘qHOM) AOWANSI0IS L + 1
WlyB4 — eep (1 10s59204d0D)
((ss0ipPYIENUIA) UDIB|SURI | SSSUPPY — ssalppy|eoisiyd (eseq) 195Y0 'Y LOMS Vdd WOl pIOAA BI0IS
[eseq]ddD +0 S! 19sY0 j g, (5! 1osy0) —» SSIPPY|ENUIA 1 radAL-| ‘1DMS
Gy ¥ sy priwygns | 10enans wiod-bugeord
‘W) Hdd4enjea — (Qwy ‘sjidd4eneA 1w ‘p)) 4481018 1 ‘edAj-Y Jwyans
S} Py W O33N ajeboN uiog-buneoly
‘((Qwy ‘spiHddanea)atebaN Wy ‘pY) Hd491018 1 ‘0dA1-H JWFHIN
¥osEpNwrIAN | Adminin Juod-buneordy
(((wy ‘Y) Hddeniea . (wy 's)dd4eniep W ‘pj) Hd421018 L ‘9dA]-H MWININ
(110888201d0D)
‘erep - [s)gD4 L+ 1 S1 U LOLN Vdd4 01 9A0N
{ulddo — dwey L ‘adAL-In (LO1N
uonesado jeuLIOq uoioNIIsU|

443

Siemens Aktiengesellschaft

SAB-R2010A

Instruction Encoding

28..26 Opcode
31..29 0 1 2 3 4 5 6 7
0 ~ ~ ~ ~ ~ ~ ~ ~
1 ~ ~ ~ ~ ~ ~ ~ -~
2 ~ COP1 ~ ~ ~ ~ ~ ~
3 ~ ~ ~ ~ ~ ~ ~ ~
4 ~ ~ ~ -~ ~ ~ ~ ~
5 ~ ~ ~ ~ ~ - ~ ~
6 ~ LWCAH ~ ~ ~ ~ -~ ~
7 ~ SWC1 ~ ~ ~ ~ ~ ~
23.21 sub
25..24 0 1 2 3 4 5 6 7
0 MF ~ CF ~ MT ~ CF ~
1 ? ® ® ® ® ® ® ®
2 | Single | Double ® ® ® ® ® 2
3 ® ® ® ® ® ® ® ®
18..16 br
20..19 0 1 2 3 4 5 6 7
0 BCF BCT ~ ~ ~ ~ ~ ~
1 ~ ~ ~ ~ ~ -~ ~ ~
2 ~ -~ -~ -~ ~ ~ ~ ~
3 -~ ~ ~ ~ ~ ~ ~ ~
2.0 function
5.3 0 1 2 3 4 5 6 7
0 | ADD.fmt | SUB.fmt [MUL.fmt | DIV.fimt ® ABS.fmt | MOV.imt | NEG.fmt
1 ® ® ® ® ® ® ® ®
2 ® ® ® ® ® ® @ ®
3 ® ® ® @ ® ® ® @
4 { CVTI.S | CVI.D ® ® CVT.W ® ® ®
5 ® @ @ ® ® ® ® ®
6 C.F C.UN C.EQ C.UEQ | C.OLT | C.ULT | C.OLE | C.ULE
7 C.SF |C.NGLE| C.SEQ | C.NGL CLT C.NGE C.LE C.NGT

® Codes marked with a "®’ cause unimplemented operation exceptions and are reserved for future

versions of the architecture.

~ Cades marked with a ‘~' are not valid and are reserved for future versions of the architecture. The results
of such an encoding are undefined

Siemens Aktiengesellschaft

444

SAB-R2010A

Timing Specifications

Absolute Maximum Ratings

Ambient temperature under bias (Tx) Oto +70 °C
Storage temperature (Tsy) -65t0 +150 °C
Supply Voltage (Vee) -05t0 +70V
Input voltage (Vin) -05t0 +7.0V
Note: Stresses above those listed under "Absolute Maximurn Ratings™ may cause

permanent damage to the device. Exposure {0 absolute maximum rating
conditions for extended periods may affect device reliability.

Not more than one output should be shorted at a time. Duration of the short
should not exceed 30 seconds.

DC Characteristics
Ta=0to +70 °C; Vcc=5V +5%

Parameter Symbol Limit values Unit | Test
12.5 MHz 16.67 MHz condition
min. max. min. max.

Operating Parameters

Qutput HIGH voltage | Vou 3.5 - 3.5 - Vv Ve = min.
fon=—4mA

Qutput LOW voltage Voo - 0.4 - 0.4 v Vec =min.
loL= 4mA

Input HIGH voltage Viu 2 Ve +0.25] 2 Voo +0.25| V

Input LOW voltage Vi -05%|038 -051(08 \'

Input HIGH voltage Vi 20 | 25 Vee +0.25] 3.0 Vee+0.25(V

input LOW voltage Vis 2 |-051]04 -051104 W

Input HIGH voltage Vie » | 4.0 Vee +0.25] 4.0 Ve +0.25| V

Input LOW voltage Ve » |[-050]04 -0501]04 \Y

Input capacitance Cn - 10 - 10 pF

Output capacitance Cou - 10 - 10 pF

Operating current leg - 550 - 650 mA | V=525V

1} V. min. = 3.0 V for pulse width less than 15 ns
2) Vs and Vg apply to Clk2 x Sys, Cik2 x Smp, Clk2 x Rd, Clk2 X Phi, FpSysin#, FpSync# and Reset#.
3) Vi and Vi apply to Run# and Exception#.

Siemens Aktiengesellschaft 445

SAB-R2010A

AC Characteristics

Ta=01t0 70 °C; Vcc =5V +5%

Notes: All output timings are given assuming 25 pf of capacitive load. Output timings
should be derated where appropriate as per the table below.

All timings referenced to 1.5 V.

Parameter Symbol Limit values Unit | Test condition
12.5 MHz 16.67 MHz
min. max. | min. max.

Clock Parameters 4
Input clock high tCikHigh 16 - 12 - ns Transition=5 ns
Input clock low {CIkLow 16 - 12 - ns Transition<5 ns
Input clock period tcwe 40 1000 {30 1000 | ns
Clk2 x Sys to Clk2 x Smp 0 tgye | O toee | DS

4 4
Cik2x Smp to Clk2 X Rd 0 fcye 0 Loy ns

4 4
Clk2x Smp to Clk2 X Phi 11 fcye 9 t oye ns

4 4
Run Operation Parameters
Data enable iDEN -1 ~-25 [-1 -2 ns -
Data disable {oDis 0 -1 0 -1 ns -
Data valid tovai - 3.5 - 3 ns 25 pF load
Data setup {bs 11.5 - 9 - ns -
Data hold toH -25 |- -25 |- ns -
FpCondition trpcand 0 45 0 35 ns -
FpBUSV tppgusy 0 20 0 15 ns -
Fplnterrupt trpint 0 55 0 40 ns -
FpMove To teoMov ¢} 45 0 35 ns -
Exception setup texs 15 - 10 - ns -
Exception hold ten 0 = 0 - ns -
Run setup teuns 15 - 10 - ns -
Run hold taunt -2 -~ -2 - ns -
Capacitive Load Deration
Load derate Co 0.5 2.5 0.5 2 ns/

25pF

4) The clock parameters apply to all four 2xClocks:

Siemens Aktiengesellschaft

Clk2 x Sys, Clk2 x Smp, Clk2 XRd, and Glk2 X Phi.

448

SAB-R2010A

Operation Fundamentals

A "cycle" is the basic instruction processing unit of the SAB-R2010A processor. Cycles
in which forward progress is made, i.e. an instruction is retired, are called "run” cycles.
An instruction is retired either by its completion or, in the presence of an exception, its
abortion. Cycles in which no forward progress is made are called "stall" cycles. Stall
cycles are used for resolving urgent situations such as cache misses on loads, write
system busy during stores, and coprocessor interlocks. All cycles can be classified as
either run cycles or stall cycles. "Fixup" stall cycles occur during the final cycle of the
stall and are used in general to fix up the conditions which caused the stall. Processor
transactions which accur during the first half of the cycle are called phase 1 transactions
while those which occur during the second half of the cycle are called phase 2
transactions.

As described earlier Run# is asserted by the SAB-R2000A during run cycles and
deasserted during stall cycles. When Run# is deasserted during the nth cycle, the
SAB-R2000A disregards the instruction-data pair presented during the n-1 th cycie. When
Run# is reasserted during the m th cycle, the SAB-R2010A takes, as are place-

ment for the instruction-data pair which was disregarded, the instruction-data pair
presented during the m-1 th cycle - which was the final fixup cycle for whatever stalls
equence was occurring.

Exception# is used by the FPA to track exception reiated information during run cycles
and stall related information during stall cycles.

e During phase 1 of run cycles Exception# indicates whether an exception has occurred
for the instruction which is currently in its "write back" pipestage. Unless the
exception is accurring as a result of an interrupt request by the SAB-R2010A, the as-
sertion of Exception# prevents any state from being committed in the FPA.

e During phase 2 of run cycles Exception# indicates whether an interrupt request is
being granted for the instruction which is currently in its "memory access” pipestage.

e During phase 1 of stall cycles Exception# indicates whether the current stall cycle is a
fixup cycle. When a fixup cycle is occurring, it is guaranteed that the data present on
the data bus is valid. The FPA uses the fixup indication to qualify the use of data
sampled from the bus during the stall.

e During phase 2 of stall cycles Exception# indicates whether the. current stall is a
Coprocessor Busy stall. The FPA does not use this information.

Siemens Aktiengesellschaft 447

SAB-R2010A

The use of the Exception# signal is summarized below.

Table 11

Exception#

Cycle Phase 1 Phase 2
Run Exc1W# IntGr2M#
Stall Fixup1# CPBusy2#

Processor Input Clocks

The SAB-R2010A has the same four separate double-frequency (i.e.ina 16.67 MHz
system these clocks are 33.33 MHz) input clocks as the SAB-R2000A. They can be ad-
justed to obtain optimum positioning of cache interface signals. The absolute timing of
these clocks with respect to the processor outputs is undefined, only the differences are
important. A short description of these four clocks follows. Refer to figure 16 for the
various signal names.

e (Clk2 X Sys:
is the master clock and must lead all others. It determines the position of SysOut#
(the processors output clock) with respect to data, Tag and Address buses.

¢ (Clk2 x 5mp:
determines the sample point for data coming into the SAB-R2000A on all its inputs
except those coming directly from coprocessors.

e Clk2xRd:
controls output enable time and provides sufticient address access to sample address
hold from end of write, and data hold from end of write.

e Clk2 X Phi:
determines the position of the internal phases 1 and 2.

Siemens Aktiengesellschaft 448

SAB-R2010A

Figure 17 shows the four 2 X input clocks.

Figure 17
2x Input Clocks

: One CPU cycle

Clk2 X Phi __JP-_/_—) If_—_/—___

aexrs TN\ TN AT\
-,
-

Clk2 X Smp _/—_/—_
Clk2 x Sys w

Lol L g

< foys MPT00858

In the timing diagrams which follow, timing specifications are given relative to a shifted
version of the FPA output clock, FpSysOut#. The clock is called FpPhiOut# and is a
virtual clock, i.e. the processar does not actually produce this output (FpSysOut# and
FpPhiOut# are equivalent to SysOut# and PhiQut# for the SAB-R2000A). It is shown in
the timing diagrams for reasons of clarity, because its period is synchronous with a
machine cycle. The shift amount is equal to the difference between Clk2 X Sys to

CIk2 X Phi and, as is shown in figure 17, is ts,s. Also in the timing diagrams Clk2 X Sys and
FpSysOut# are shown to clarify the relationship between these signals.

In reality FpSysOut# is produced rather than FpPhiOut# since this provides a signal with
timing appropriate for synchrenizing system transactions to the processor. Timings are
given relative to FpPhiOut# since this makes determining the position of the input clocks
the most straightforward. The timing of any output with respect to FpSysOut# can be
determined from its timing with respect to FpPhiOut# by adding tsys.

Siemens Akliengesellschatft 449

SAB-R2010A

Timing Diagram Notation
The following timing diagrams describe various transactions of the processor. Table 12

illustrates the notational conventions used in these diagrams.

Table 12

Notational Conventions for Timing Diagramms
Character Meaning

[instruction

D Data

Active low

Y An incorrect datum

! An unused datum

4 The high impedance state
Ad Address

in intoc caprocessor

out out of coprocessor
TI7T not valid or Don't Care

Load/Store and Processor Transfer Timings

During run cycles, the operation and timing of FPA loads and stores are identical to that
of the SAB-R2000A. In the case of a load the SAB-R2010A accepts data from the data bus
and on stores it drives data on the data bus. Both of these data bus transactions occur
during the MEM pipestage of each instruction (refer to figure 4 in the pipeline architecture
section}. On FPA ioads, the SAB-R2000A reads in the data and Tag buses for purposes
of miss detection. The Tag bus is the cache Tag bus and is only connected to the CPU -
for more information refer to the SAB-R2000A data sheet. For miss detection the SAB-
R2000A checks the valid bit, does the Tag comparison and checks parity on the Tag and
data buses. On Stores the SAB-R2010A generates data parity. All address generation,
cache and memory control functions are provided by the SAB-R2000A.

During all stall and fixup cycles, the FPA is passive; if an FPA Store is blocked by a write
busy stall or if the cycle in which the FPA Store occurs is redone due to any other stall,
the SAB-R2000A will re-present the FPA data during the stall’s fixup cycle. Timing of FPA
Loads/Stores is illustrated in figure 19.

Transfers between the SAB-R2010A and the SAB-R2000A have identical input and output
characteristics as Loads and Stores. That is, for a Move to FPA transfer (MTC1), the
SAB-R2000A drives the data bus and the SAB-R2010A reads it, as for an FPA Load.
For a Move from FPA instruction {MFC1) the roles are reversed, as for an FPA Store.
Parity is not checked for either direction of transfer. The timings for these transfers are
also illustrated in figure 19.

Siemens Aktiengesellschaft 450

SAB-R2010A

Floating-Point Condition Timing

Floating-point operations occur within the SAB-R2010A and only affect the interface when
they change the Floating-Point Condition output or cause stalls or exceptions. Floating-
point conditions are described here, stalls and exceptions are described in subsequent
sections.

The SAB-R2010A has a Floating-Point Condition output called FpCond. The FpCond output
is connected directly to the CpCond(1) input of the SAB-R2000A, refer to figure 16. The
FpCond signal is sampled by the SAB-R2000A during phase 2 of every run cycle. if the
SAB-R2000A executes an FPA branch instruction, the state of the FpCond signal deter-
mines the direction of the branch.

Floating-point instructions which affect the FpCond signal are two-cycle operations (e.g.
Floating-Point Compare). This can be seen externally by the invalidity of the FpCond output
during the entire ALU pipestage of Instruction Execution, refer to figure 18 which
illustrates the FpCond timing. The FpCond output becomes valid during the MEM pipe-
stage of instruction execution, which is too late to be used by the succeeding instruction,
therefore the operation requires two cycles. Refer to the Pipeline Architecture section and
the SAB-R2000A data sheet for more details on two cycle instructions.

Siemens Aktiengesellschaft 451

SAB-R2010A

‘Alannoedse.

sabeisadid yorg SWMAHOWIW/NTY d1edwio) juiog-Buneoly eyl a1e gM/WIN/NTY a1edwio)dy
aaym ‘uononnsuy adedwoy) julog-buneord e st Buiin puo)d4 8y} djeASnjl O) 848y pPasn uORINASU} 8y ‘BION

$5800LaW

i pucy d s, % puody
| puoddyy] iucsat -

gm asndwo) dy W3W 24odwo?) dy My 2Jodwo) dg aboys adi4

| _ _
unyg uny uny CIRLY)
B C_ #4n01Uddy
T 4 4n05As04

SASY — = mxm.\

Z L b z L asoyd

Buiwi) puoddd
g1 a.nbi3

452

Siemens Aktiengesellschaft

SAB-R2010A

098001 dwW

(peod4) s1015d4 se Buiw swes ay) sey (018A0NdS) w4sronNdH

#4ny

vivo

uny

2)24)

0] A0 d4

pooy d4 3J0JS d4 UoI14IN14sU]

i + Jﬂ #4n0Igdy

#4N0SAS TS

| asoyd

Bujwil J9JSuel] pue al101g/peoT
61 a.nbi4

453

Siemens Aktiengesellschaft

SAB-R2010A

Floating-Point Coprocessor Stall Timing

As described earlier, to maintain synchronization with the SAB-R2000A the FPA requests
"Coprocessor Busy" stalls as required. To initiate such a stall the SAB-R2010A asserts
FpBusy during phase 2 of the ALU pipestage of the stalling FPA instruction. To terminate
the stall FpBusy is deasserted during phase 1 of the stall cycle in which it will complete
the operation whose incompletion required the stall. In the absence ot other stall
requests, the cycle following that in which FpBusy is deasserted will be the fixup cycle.
Figure 20 illustrates the FPA busy timing.

For all stalls, whether FPA-initiated or not, the indication of the stall condition is signalled
by the SAB-R2000A via the deassertion of the Run# signal. If Run# is not deasserted
following the assertion of FpBusy, then the FPA stall request has been ignored by the
SAB-R2000A due to the occurrence of some exceptional event.

Exception/Interrupt Timing

The SAB-R2010A signals exceptions to the SAB-R2000A through cne of its interrupt
inputs using the Fpint# output, refer to figure 16. The SAB-R2000A samples the interrupt
inputs during phase 2 of every run cycle and final fixup cycle of a stall sequence. The
FPA signals exceptions by asserting Fpint# during the ALU pipestage of the instruction
causing the exception. If the SAB-R2000A takes the interrupt during that cycle, it signals
interrupt grant (INtGr2M#) back to the FPA (via the Exception# signal) during the MEM
pipestage of the exceptional instruction. Interrupt grant is signalled to the FPA on its
Exception# input during phase 2 of the MEM pipestage.

The occurrence of any exception, including those caused by the FPA, is signalled to the
FPA during the WB pipestage of the exception-causing instruction. The occurrence of an
exception prevents any non-exception-related state from being committed within the FPA.
This means that when an exception occurs which is not FPA related, execution in the
FPA is suspended until the exception is resolved. The occurrence of an exception is
signalled to the FPA on its Exception# input during phase 1 of the WB pipestage of the
exceptional instruction. Figure 21 illustrates an Interrupt timing sequence.

Special Case

A special case of FPA — SAB-R2000A transfers is the MoveTo FPA Status register. When
moves to this register occur the interface can be further affected via a change in the
Fplnt# or FpCond outputs. Figure 22 illustrates the timing of the FpCond and Fpint#
outputs in conjunction with an FPA MoveTo instruction.

Siemens Aktiengesellschaft 454

SAB-R2010A

‘Z1 a|qes u g2Asngdy se ewes ay) SI #Asngd)y [OION

SJSE: | .
aa_“_ 31) _{noysEn LIiogs @))
%, (#55) k\ N RN 7 V7 *;mﬁx\\ 70 L # U01,039x3
i - f—
- s WEr b 7 :S& Suny
| # .‘,l? w:u.__.l-. i] h—-—
—" . Lﬁ # uny
- wS& =% . i F:mu& P tsngdyy 1‘.
il f
74 Xz A ez N, Xz _ i, §w r \$ N\ Asngd4
7 s Thxig 045 N54S g | I 8134)
| | I]
| W3k 9045 Mydody N1y dodd my dody v 964 [9boys adig
|
|/||X||Jn|||u_n|k #4n014dd4
rl|h|\ I/IlTw # In0SASY
_ 4 4 4 s ?SDU4
Buywyy Asng
0z ainBi4

455

Siemens Aktiengesellschaft

SAB-R2010A

C9800LdM
|

L

s

‘21 BIGE} Ul #M [OXT = #OXJ PUB #NZIDIUI = #1DMU| 810UM

|
T, 4% ,
[

#X3 ¥ #uoiydaxy
W | asorg) nwm_. MSTL
77 7 #4U] 0 X 7 #4u1dy
o YIE_n_#\ W EE#.. R
uny uny uny uny EIRLY
i | _ |
am dy W3l dd iy d4 QY d3 3abuys adid
B x 5 X P a N #4004
7 TN\ /TN /T wosksdy
img | —] " m,\ p——

l

4 b Z b asoud

Buiwny uopdaoaxg pue 1dnuiajug
12 @4nbBi4

456

Siemens Aktiengesellschaft

SAB-R2010A

£98001dW
& #10103 Lﬂ\ n 7, #widd
e R— Ao

& “,_3 0 g@%\\\\\\\\ 77, Pyl

uny uny uny CIPLY]

gmd4 o_H 3A0 am a_ 3A0} WIW o_h BAOW abnys adiy
S S W S - £ X #4n0uddd
||(|f4aﬁ| ||/||\|I|||;MJT|\|I. #1n0shs dy
A l 4 FA l asoyd

Buiwy] sneis vdd4 0} enon

ZZ 9.nbig

457

Siemens Aktiengesellschaft

SAB-R2010A

SAB-R2000A - FPA Timing Synchronization

The processor — coprocessor (SAB-R2000A - SAB-R2010A) systemrequires that there be
minimum timing skew between the SAB-R2000A and FPA to operate at maximum speed.
To facilitate deskewing, a phase lock loop is provided on the FPA.

This synchronization must be achieved during the reset period to ensure that clock skew
is acceptably smalil when the first instruction is fetched. During the reset period, the
SAB-R2010A’s phase lock circuitry acquires and locks to the SAB-R2000A’s output clock.
For correct operation, the CPU - FPA system must remain in reset for 3000 clocks or
200 microseconds after power is stable, whichever is longer. If the phase lock mechanism
is not enabled, the reset period can be shortened to 128 clock cycles after power is
stable. Figure 23 illustrates the required reset sequence for the case where the phase
lock mechanism is enabled.

Figure 23
Reset Sequence

Phase 11212 1] 2 1121112 112 11 2
Cycle None Run Run Run Run Run Run
PllOn#
— Fogwer Stable M
- fPhuse Lock
Reset# _ A

MPT0D864

Note: PliOn# must be asserted continuously after Reset# is deasserted for correct
operation of the SAB-R2010A - SAB-R2000A system.

Siemens Aktiengesellschatft 458

